Model-based image reconstruction in MRI

Jeffrey A. Fessler

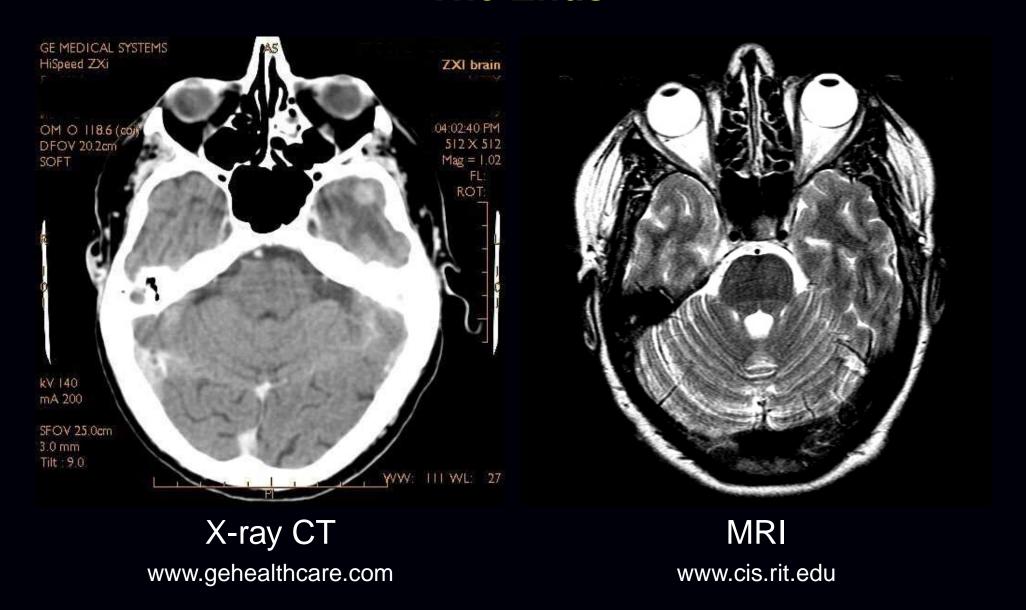
EECS Department
BME Department, Dept. of Radiology
The University of Michigan

Huangguoshu International Interdisciplinary Conference on Biomedical Mathematics

November 5, 2008

Acknowledgements: Doug Noll, Brad Sutton, Valur Olafsson, Amanda Funai, Chunyu Yip, Will Grissom

The Ends



MRI: excellent soft tissue contrast, and no ionizing radiation. (But, expensive, slow, big, small bone signal...)

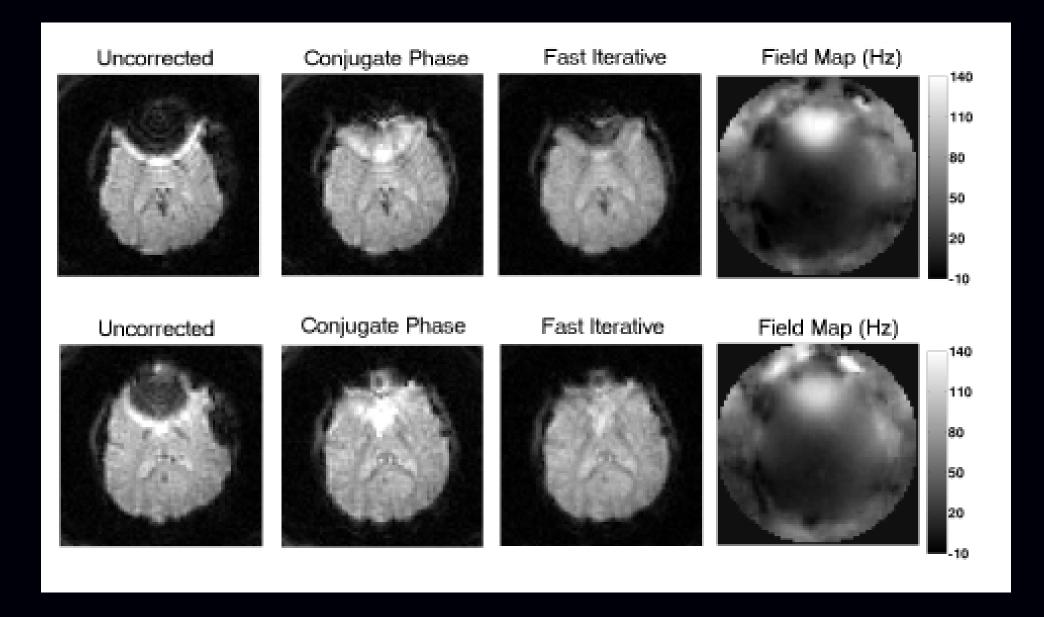
Outline

- MR image reconstruction problem description
- Overview of image reconstruction methods
- MR image reconstruction introduction
- Conventional reconstruction
- Model-based image reconstruction
- Iterations and computation (NUFFT etc.)
- Regularization
- Field inhomogeneity correction

Image reconstruction toolbox:

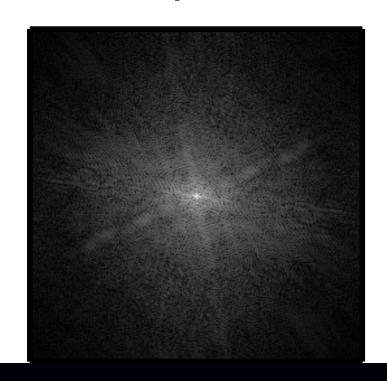
http://www.eecs.umich.edu/~fessler

Example: Iterative Reconstruction under ΔB_0



Standard MR Image Reconstruction

MR k-space data Reconstructed Image



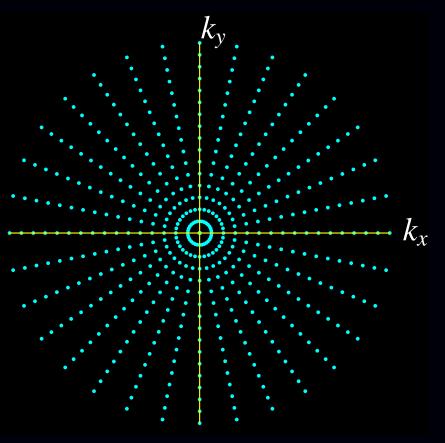
Cartesian sampling in k-space. An inverse FFT. End of story.

Commercial MR system quotes 400 FFTs (256²) per second.

Non-Cartesian MR Image Reconstruction

"k-space" data $\mathbf{y} = (y_1, \dots, y_M)$

image $f(\vec{r})$



k-space trajectory:

$$\vec{\kappa}(t) = (k_x(t), k_y(t))$$

spatial coordinates:

$$ec{r} \in \mathbb{R}^{ar{d}}$$

Textbook MRI Measurement Model

Ignoring lots of things, the standard measurement model is:

$$y_i = s(t_i) + \text{noise}_i, \qquad i = 1, ..., M$$

$$s(t) = \int f(\vec{r}) e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r} = F(\vec{\kappa}(t)).$$

 \vec{r} : spatial coordinates

 $\vec{\kappa}(t)$: k-space trajectory of the MR pulse sequence

 $f(\vec{r})$: object's unknown transverse magnetization

 $F(\vec{\kappa})$: Fourier transform of $f(\vec{r})$. We get noisy samples of this!

 $e^{-i2\pi \vec{\kappa}(t)\cdot\vec{r}}$ provides spatial information \Longrightarrow Nobel Prize

Goal of image reconstruction: find $f(\vec{r})$ from measurements $\{y_i\}_{i=1}^M$.

The unknown object $f(\vec{r})$ is a continuous-space function, but the recorded measurements $\mathbf{y} = (y_1, \dots, y_M)$ are finite.

Under-determined (ill posed) problem \Longrightarrow no canonical solution.

All MR scans provide only "partial" k-space data.

Image Reconstruction Strategies

Continuous-continuous formulation

Pretend that a continuum of measurements are available:

$$F(\vec{\mathbf{k}}) = \int f(\vec{r}) e^{-i2\pi \vec{\mathbf{k}} \cdot \vec{r}} d\vec{r}.$$

The "solution" is an inverse Fourier transform:

$$f(\vec{r}) = \int F(\vec{\kappa}) e^{i2\pi \vec{\kappa} \cdot \vec{r}} d\vec{\kappa}.$$

Now discretize the integral solution:

$$\hat{f}(\vec{r}) = \sum_{i=1}^{M} F(\vec{\kappa}_i) e^{i2\pi \vec{\kappa}_i \cdot \vec{r}} w_i \approx \sum_{i=1}^{M} y_i w_i e^{i2\pi \vec{\kappa}_i \cdot \vec{r}},$$

where w_i values are "sampling density compensation factors." Numerous methods for choosing w_i values in the literature.

For Cartesian sampling, using $w_i = 1/N$ suffices, and the summation is an inverse FFT. For non-Cartesian sampling, replace summation with gridding.

Continuous-discrete formulation

Use many-to-one linear model:

$$\mathbf{y} = \mathcal{A} f + \mathbf{\varepsilon}$$
, where $\mathcal{A} : \mathcal{L}_2(\mathbb{R}^{\bar{d}}) \to \mathbb{C}^M$.

Minimum norm solution (cf. "natural pixels"):

$$\min_{\hat{f}} \|\hat{f}\|_2 \text{ subject to } \mathbf{y} = \mathcal{A} \hat{f}$$

$$\hat{f} = \mathcal{A}^* (\mathcal{A} \mathcal{A}^*)^{-1} \mathbf{y} = \sum_{i=1}^M c_i \mathrm{e}^{-\imath 2\pi \vec{\kappa}_i \cdot \vec{r}}, \text{ where } \mathcal{A} \mathcal{A}^* \mathbf{c} = \mathbf{y}.$$

Discrete-discrete formulation

Assume parametric model for object:

$$f(\vec{r}) = \sum_{j=1}^{N} f_j p_j(\vec{r}).$$

Estimate parameter vector $\mathbf{f} = (f_1, \dots, f_N)$ from data vector \mathbf{y} .

Why Iterative Image Reconstruction?

- "Non-Fourier" physical effects such as field inhomogeneity
- Incorporate prior information, *e.g.*:
 - support constraints
 - (piecewise) smoothness
 - phase constraints
- No density compensation needed
- Statistical modeling may reduce noise

Primary drawbacks of Iterative Methods

- Algorithm speed
- Complexity, e.g., choosing regularization parameter(s)

Model-Based Image Reconstruction

MR signal equation with more complete physics:

$$s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-i\omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$
$$y_i = s(t_i) + \text{noise}_i, \qquad i = 1, \dots, M$$

- $s^{\text{coil}}(\vec{r})$ Receive-coil sensitivity pattern(s) (for SENSE)
- $\omega(\vec{r})$ Off-resonance frequency map (due to field inhomogeneity / magnetic susceptibility)
- $R_2^*(\vec{r})$ Relaxation map

Other physical factors (?)

- Eddy current effects; in $\vec{\kappa}(t)$
- Concomitant gradient terms
- Chemical shift
- Motion

Goal?

(it depends)

Field Inhomogeneity-Corrected Reconstruction

$$s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-i\omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Goal: reconstruct $f(\vec{r})$ given field map $\omega(\vec{r})$. (Assume all other terms are known or unimportant.)

Motivation

Essential for functional MRI of brain regions near sinus cavities!

(Sutton et al., ISMRM 2001; T-MI 2003)

Sensitivity-Encoded (SENSE) Reconstruction

$$s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-\iota \omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Goal: reconstruct $f(\vec{r})$ given sensitivity maps $s^{\text{coil}}(\vec{r})$. (Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction "easily."

(Sutton et al., ISMRM 2001, Olafsson et al., ISBI 2006)

Joint Estimation of Image and Field-Map

$$s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-i\omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Goal: estimate both the image $f(\vec{r})$ and the field map $oldsymbol{\omega}(\vec{r})$ (Assume all other terms are known or unimportant.)

Analogy:

joint estimation of emission image and attenuation map in PET.

(Sutton *et al.*, ISMRM Workshop, 2001; ISBI 2002; ISMRM 2002; ISMRM 2003; MRM 2004)

The Kitchen Sink

$$s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-i\omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Goal: estimate image $f(\vec{r})$, field map $\omega(\vec{r})$, and relaxation map $R_2^*(\vec{r})$

Requires "suitable" k-space trajectory.

(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)

Estimation of Dynamic Rate Maps

$$s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-i\omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Goal: estimate dynamic field map $\omega(\vec{r})$ and "BOLD effect" $R_2^*(\vec{r})$ given baseline image $f(\vec{r})$ in fMRI.

Motion...

Model-Based Image Reconstruction: Details

Basic Signal Model

$$y_i = s(t_i) + \varepsilon_i, \qquad \mathsf{E}[y_i] = s(t_i) = \int f(\vec{r}) \, \mathrm{e}^{-\imath 2\pi \, \vec{\kappa}_i \cdot \vec{r}} \, \mathrm{d}\vec{r}$$

Goal: reconstruct $f(\vec{r})$ from $\mathbf{y} = (y_1, \dots, y_M)$.

Series expansion of unknown object:

$$f(\vec{r}) \approx \sum_{j=1}^{N} f_j p(\vec{r} - \vec{r}_j)$$
 — usually 2D rect functions.

Substituting into signal model yields

$$\begin{split} \mathsf{E}[y_i] &= \int \left[\sum_{j=1}^N f_j \, p(\vec{r} - \vec{r}_j) \right] \mathrm{e}^{-\imath 2\pi \vec{\kappa}_i \cdot \vec{r}} \mathrm{d}\vec{r} = \sum_{j=1}^N \left[\int p(\vec{r} - \vec{r}_j) \, \mathrm{e}^{-\imath 2\pi \vec{\kappa}_i \cdot \vec{r}} \mathrm{d}\vec{r} \right] f_j \\ &= \sum_{i=1}^N a_{ij} f_j, \qquad a_{ij} = P(\vec{\kappa}_i) \, \mathrm{e}^{-\imath 2\pi \vec{\kappa}_i \cdot \vec{r}_j}, \qquad p(\vec{r}) \stackrel{\mathrm{FT}}{\Longleftrightarrow} P(\vec{\kappa}). \end{split}$$

Discrete-discrete measurement model with system matrix $\mathbf{A} = \{a_{ij}\}$:

$$|y = Af + \varepsilon.|$$

Goal: estimate coefficients (pixel values) $f = (f_1, ..., f_N)$ from y.

Least-Squares Estimation

Estimate object by minimizing a simple cost function:

$$\hat{\boldsymbol{f}} = \underset{\boldsymbol{f} \in \mathbb{C}^N}{\operatorname{arg \, min}} \Psi(\boldsymbol{f}), \qquad \Psi(\boldsymbol{f}) = \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{f}\|^2$$

- data fit term $\|\mathbf{y} \mathbf{A}\mathbf{f}\|^2$ corresponds to negative log-likelihood of Gaussian distribution
- Equivalent to maximum-likelihood (ML) estimation

Issues:

- computing minimizer rapidly
- stopping iteration (?)
- image quality

Iterative Minimization by Conjugate Gradients

Choose initial guess $f^{(0)}$ (e.g., fast conjugate phase / gridding). Iteration (unregularized):

$$egin{aligned} oldsymbol{g}^{(n)} &= oldsymbol{
aligned} oldsymbol{\psi}(oldsymbol{f}^{(n)}) &= oldsymbol{A}'(oldsymbol{A}oldsymbol{f}^{(n)} - oldsymbol{y}) & ext{gradient} \ oldsymbol{p}^{(n)} &= oldsymbol{P}oldsymbol{g}^{(n)}, oldsymbol{p}^{(n)} igar) & ext{precondition} \ oldsymbol{q}^{(n)} &= oldsymbol{p}^{(n)}, oldsymbol{p}^{(n)} igar) & ext{search direction} \ oldsymbol{v}^{(n)} &= oldsymbol{A}oldsymbol{d}^{(n)} & ext{step size} \ oldsymbol{f}^{(n+1)} &= oldsymbol{f}^{(n)} + lpha_n oldsymbol{d}^{(n)} & ext{update} \end{aligned}$$

Bottlenecks: computing $\mathbf{A}\mathbf{f}^{(n)}$ and $\mathbf{A}'\mathbf{r}$.

- A is too large to store explicitly (not sparse)
- Even if A were stored, directly computing Af is O(MN) per iteration, whereas FFT is only $O(M \log M)$.

Computing Af Rapidly

$$[\mathbf{A}\mathbf{f}]_i = \sum_{j=1}^N a_{ij} f_j = P(\vec{\kappa}_i) \sum_{j=1}^N e^{-i2\pi \vec{\kappa}_i \cdot \vec{r}_j} f_j, \qquad i = 1, \dots, M$$

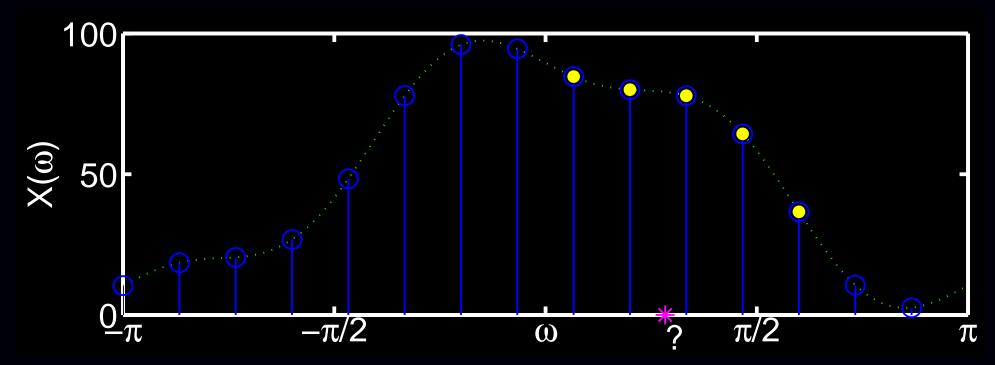
- Pixel locations $\{\vec{r}_j\}$ are uniformly spaced
- k-space locations $\{\vec{\kappa}_i\}$ are unequally spaced

⇒ needs nonuniform fast Fourier transform (NUFFT)

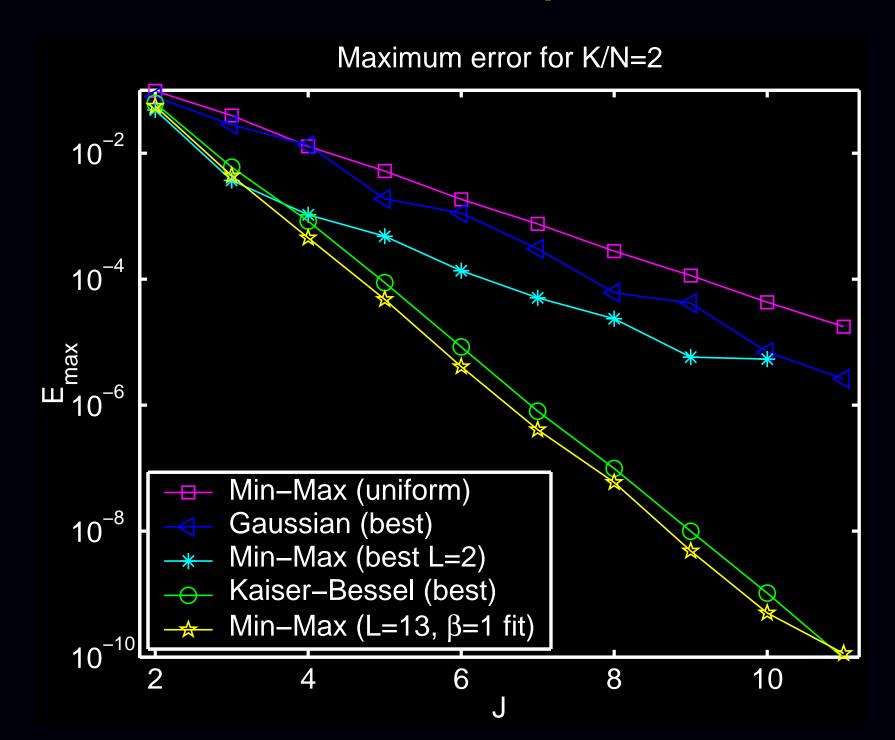
NUFFT (Type 2)

- Compute over-sampled FFT of equally-spaced signal samples
- Interpolate onto desired unequally-spaced frequency locations
- Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator
- Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator and min-max optimized Kaiser-Bessel interpolator.

 NUFFT toolbox: http://www.eecs.umich.edu/~fessler/code



Worst-Case NUFFT Interpolation Error



NUFFT Interpolation

Ideal interpolator would be (impractical) sinc-like (Dirichlet kernel)

In practice, we use finite-support frequency-domain interpolators; these have nonuniform spatial response.

Spatial "scaling" of the signal before FFT is necessary to compensate for imperfect interpolation.

Open problem: determining optimal scaling function. (Reciprocal of Fourier transform of Kaiser-Bessel function works reasonably well.)

Further Acceleration using Toeplitz Matrices

Cost-function gradient:

$$m{g}^{(n)} = m{A}'(m{A}m{f}^{(n)} - m{y}) \ = m{T}m{f}^{(n)} - m{b},$$

where

$$T \triangleq A'A, \qquad b \triangleq A'y.$$

In the absence of field inhomogeneity, the Gram matrix T is Toeplitz:

$$\left[\mathbf{A}'\mathbf{A}\right]_{jk} = \sum_{i=1}^{M} \left|P(\vec{\kappa}_i)\right|^2 e^{-\imath 2\pi \vec{\kappa}_i \cdot (\vec{r}_j - \vec{r}_k)}.$$

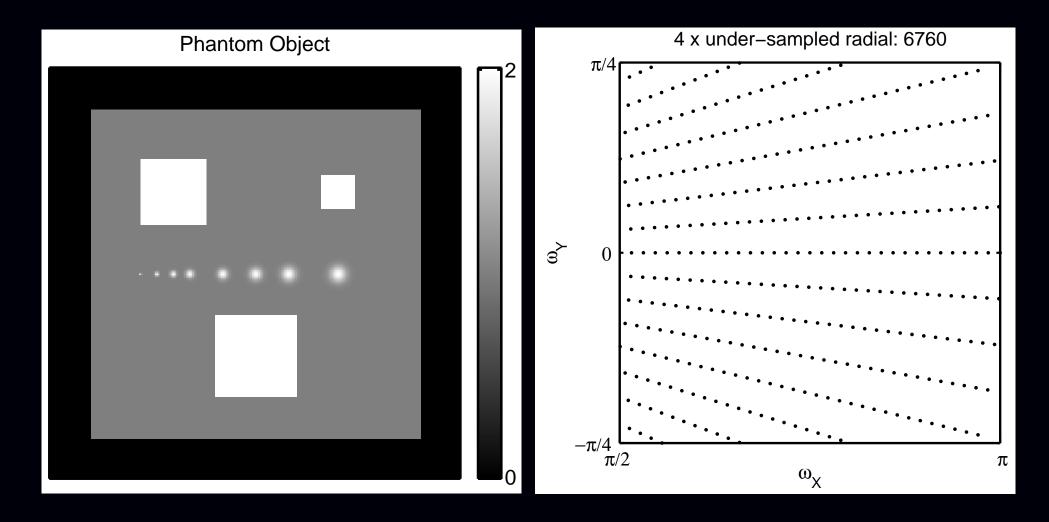
Computing $Tf^{(n)}$ requires an ordinary (2× over-sampled) FFT. (Chan & Ng, SIAM Review, 1996)

In 2D: block Toeplitz with Toeplitz blocks (BTTB).

Precomputing the first column of \overline{T} and b requires a couple NUFFTs. (Wajer, ISMRM 2001, Eggers ISMRM 2002, Liu ISMRM 2005)

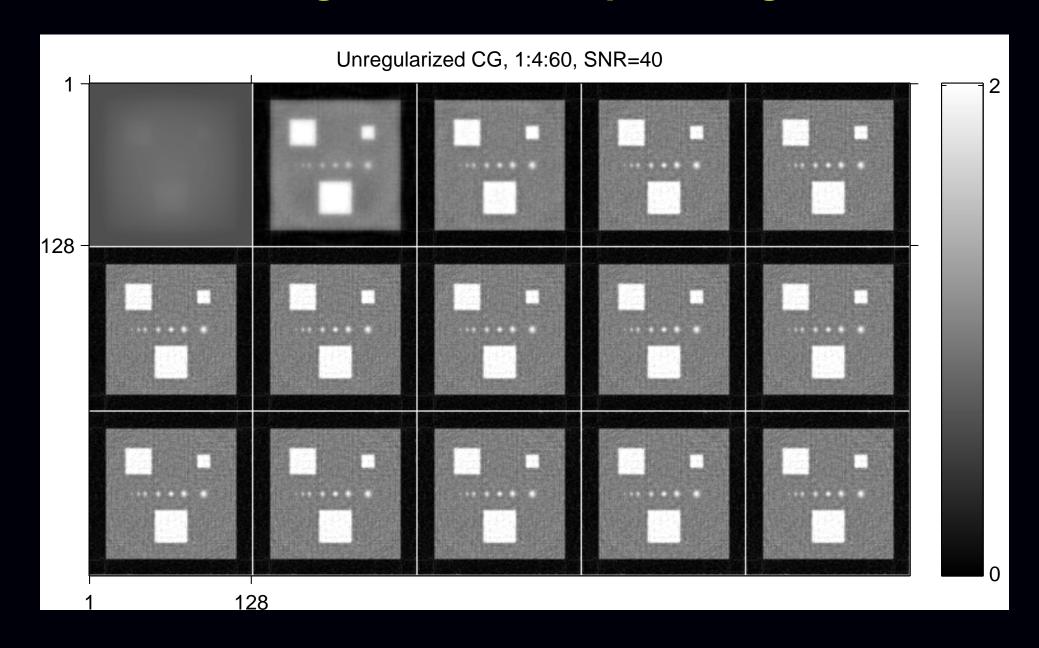
This formulation seems ideal for "hardware" FFT systems.

Unregularized Example: Simulated Data



4× under-sampled radial k-space data Analytical k-space data generation

Unregularized Example: Images



Iterations 1:4:60 of unregularized CG reconstruction

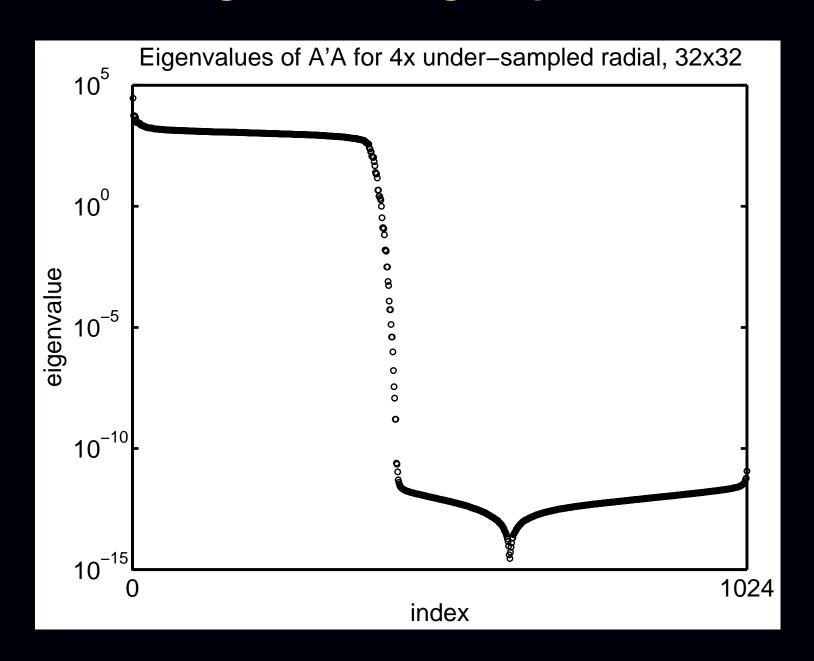
Unregularized Example: Movie

(movie in pdf)

Unregularized Example: RMS Error



Unregularized Eigenspectrum

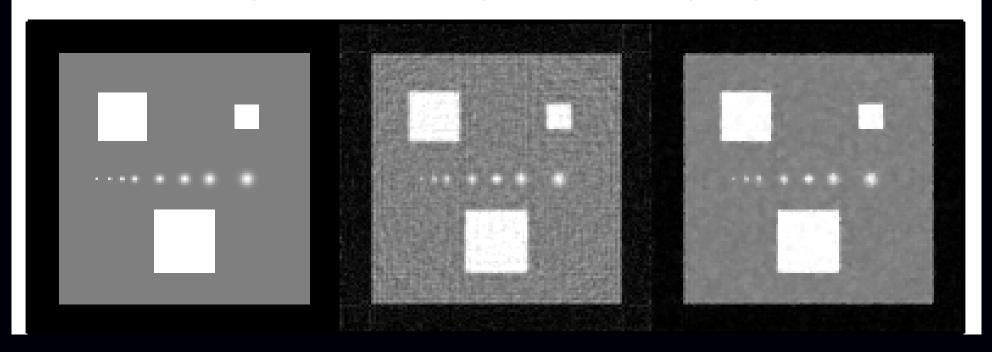


Regularized Example: Movie

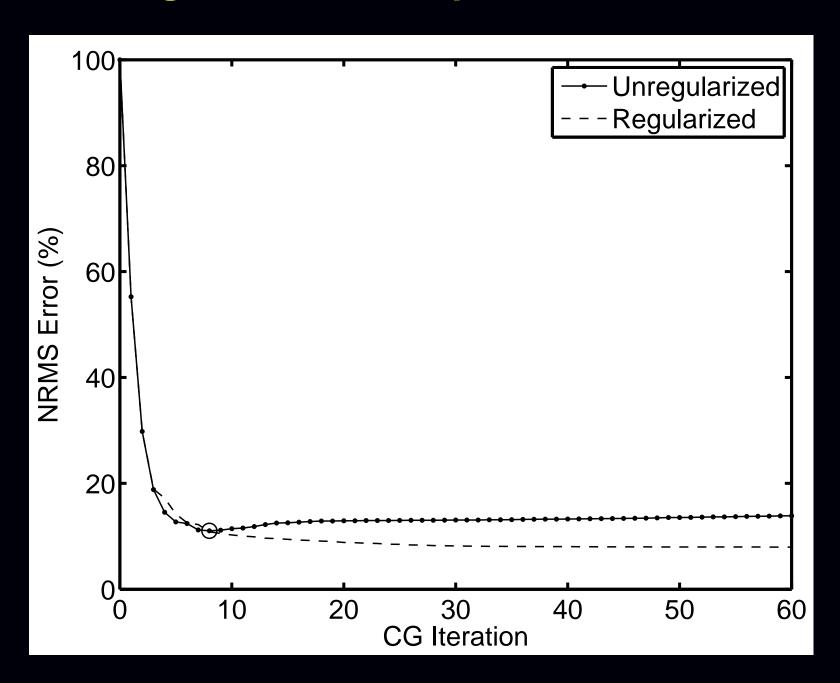
(movie in pdf)

Regularized Example: Image Comparison

True | Unregularized | Edge preserving regularization



Regularized Example: RMS Error



Regularized Least-Squares Estimation

Estimate object by minimizing a regularized cost function:

$$\hat{f} = \underset{f \in \mathbb{C}^N}{\operatorname{arg \, min}} \Psi(f), \qquad \Psi(f) = \|\mathbf{y} - \mathbf{A}f\|^2 + \alpha \mathbf{R}(f)$$

- data fit term $\|\mathbf{y} \mathbf{A}\mathbf{f}\|^2$ corresponds to negative log-likelihood of Gaussian distribution
- regularizing term R(f) controls noise by penalizing roughness,

e.g.:
$$R(\mathbf{f}) \approx \int \|\nabla f\|^2 d\vec{r}$$

- regularization parameter $\alpha>0$ controls tradeoff between spatial resolution and noise
- Equivalent to Bayesian MAP estimation with prior $\propto e^{-\alpha R(f)}$

Complexities:

- choosing R(f)
- choosing α
- computing minimizer rapidly.

Quadratic regularization

1D example: squared differences between neighboring pixel values:

$$R(f) = \sum_{j=2}^{N} \frac{1}{2} |f_j - f_{j-1}|^2.$$

In matrix-vector notation, $R(\mathbf{f}) = \frac{1}{2} ||\mathbf{C}\mathbf{f}||^2$ where

For 2D and higher-order differences, modify differencing matrix C.

Leads to closed-form solution:

$$\hat{f} = \underset{f}{\operatorname{arg min}} \|\mathbf{y} - \mathbf{A}\mathbf{f}\|^2 + \alpha \|\mathbf{C}\mathbf{f}\|^2$$
$$= \left[\mathbf{A}'\mathbf{A} + \alpha \mathbf{C}'\mathbf{C}\right]^{-1} \mathbf{A}'\mathbf{y}.$$

(a formula of limited practical use for computing \hat{f})

Choosing the Regularization Parameter

Spatial resolution analysis (Fessler & Rogers, IEEE T-IP, 1996):

$$\hat{f} = \left[A'A + \alpha C'C \right]^{-1} A'y$$
 $\mathsf{E} \left[\hat{f} \right] = \left[A'A + \alpha C'C \right]^{-1} A' \mathsf{E}[y]$
 $\mathsf{E} \left[\hat{f} \right] = \left[A'A + \alpha C'C \right]^{-1} A'A f$
blur

A'A and C'C are Toeplitz \Longrightarrow blur is approximately shift-invariant.

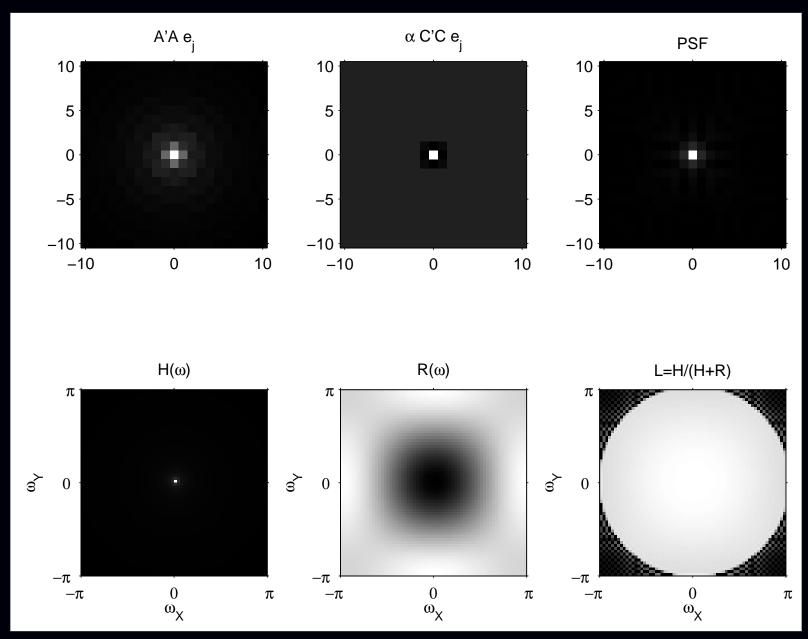
Frequency response of blur:

$$L(\omega) = \frac{H(\omega)}{H(\omega) + \alpha R(\omega)}$$

- $H(\omega_k) = \text{FFT}(A'A e_j)$ (lowpass)
- $R(\omega_k) = FFT(\mathbf{C}'\mathbf{C}e_j)$ (highpass)

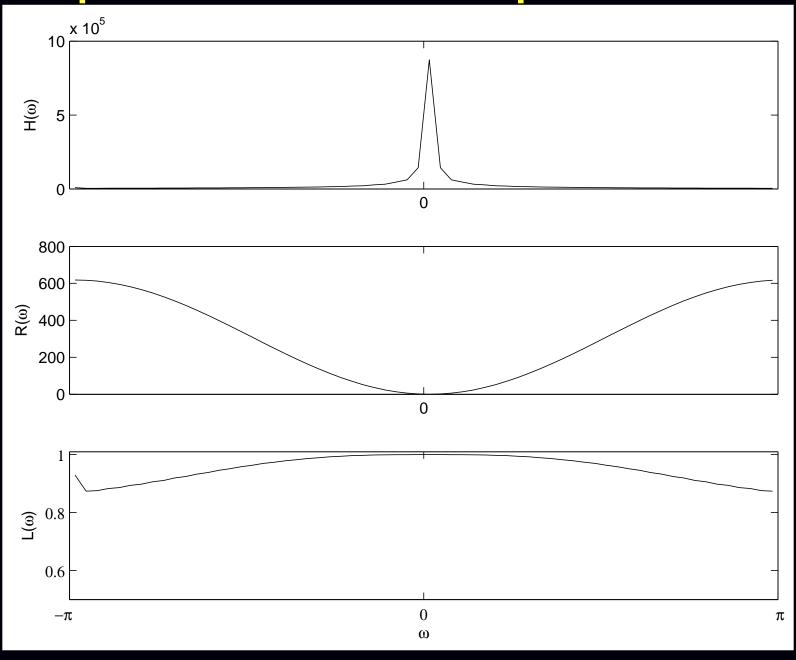
Adjust \(\alpha\) to achieve desired spatial resolution.

Spatial Resolution Example

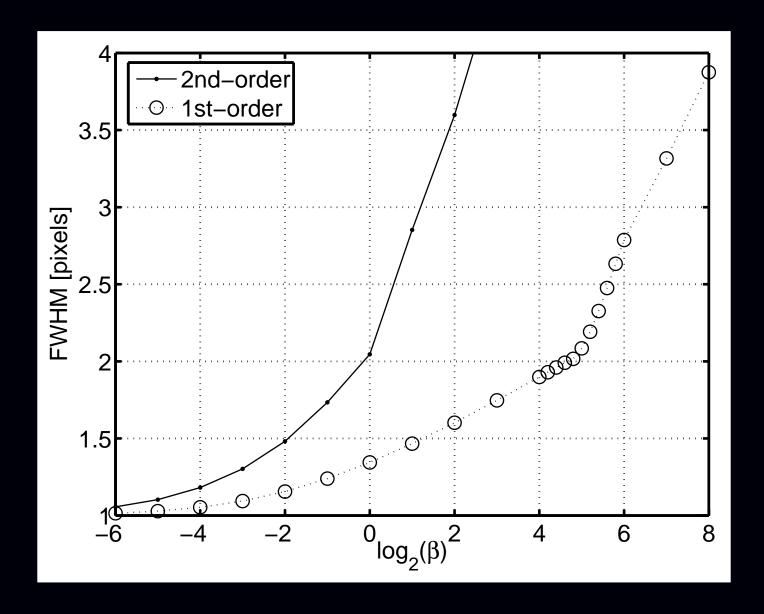


Radial k-space trajectory, FWHM of PSF is 1.2 pixels

Spatial Resolution Example: Profiles



Tabulating Spatial Resolution vs Regularization



Trajectory specific, but easily computed using a few FFTs Works only for quadratic regularization

Resolution/noise tradeoffs

Noise analysis:

$$\operatorname{Cov}\left\{\hat{\boldsymbol{f}}\right\} = \left[\boldsymbol{A}'\boldsymbol{A} + \boldsymbol{\alpha}\boldsymbol{C}'\boldsymbol{C}\right]^{-1}\boldsymbol{A}'\operatorname{Cov}\left\{\boldsymbol{y}\right\}\boldsymbol{A}\left[\boldsymbol{A}'\boldsymbol{A} + \boldsymbol{\alpha}\boldsymbol{C}'\boldsymbol{C}\right]^{-1}$$

Using circulant approximations to A'A and C'C yields:

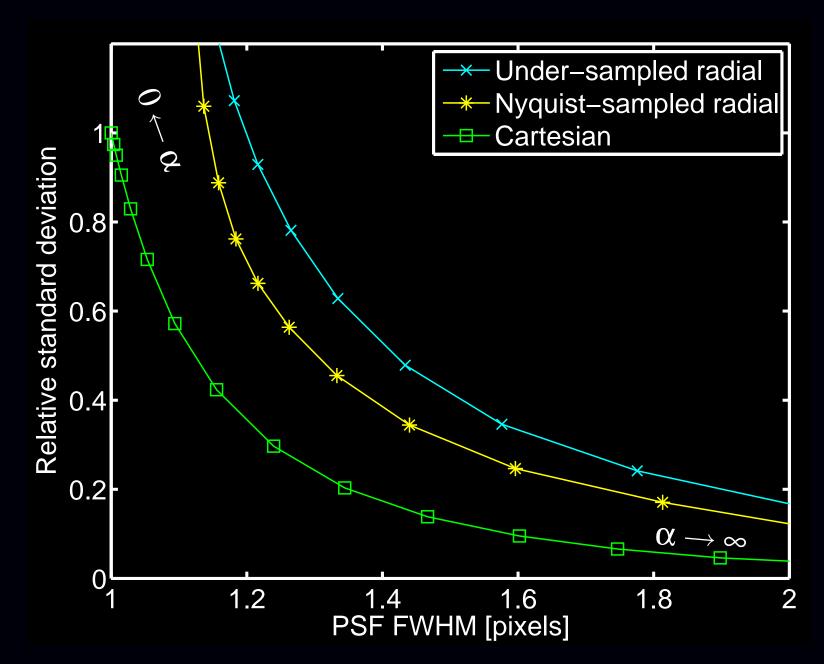
$$\mathsf{Var}ig\{\hat{f}_jig\}pprox oldsymbol{\sigma}_{oldsymbol{arepsilon}}^2 \sum_k rac{H(oldsymbol{\omega}_k)}{(H(oldsymbol{\omega}_k)+oldsymbol{lpha} R(oldsymbol{\omega}_k))^2}$$

- $H(\omega_k) = FFT(\mathbf{A}'\mathbf{A} e_j)$ (lowpass)
- $R(\omega_k) = FFT(\mathbf{C}'\mathbf{C}e_j)$ (highpass)

Predicting reconstructed image noise requires just 2 FFTs. (cf. gridding approach?)

Adjust α to achieve desired spatial resolution / noise tradeoff.

Resolution/Noise Tradeoff Example



In short: one can choose ox rapidly and predictably for quadratic regularization.

NUFFT with Field Inhomogeneity?

Combine NUFFT with min-max temporal interpolator (Sutton *et al.*, IEEE T-MI, 2003) (forward version of "time segmentation", Noll, T-MI, 1991)

Recall signal model including field inhomogeneity:

$$s(t) = \int f(\vec{r}) e^{-i\mathbf{o}(\vec{r})t} e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}.$$

Temporal interpolation approximation (aka "time segmentation"):

$$e^{-\iota \omega(\vec{r})t} \approx \sum_{l=1}^{L} a_l(t) e^{-\iota \omega(\vec{r})\tau_l}$$

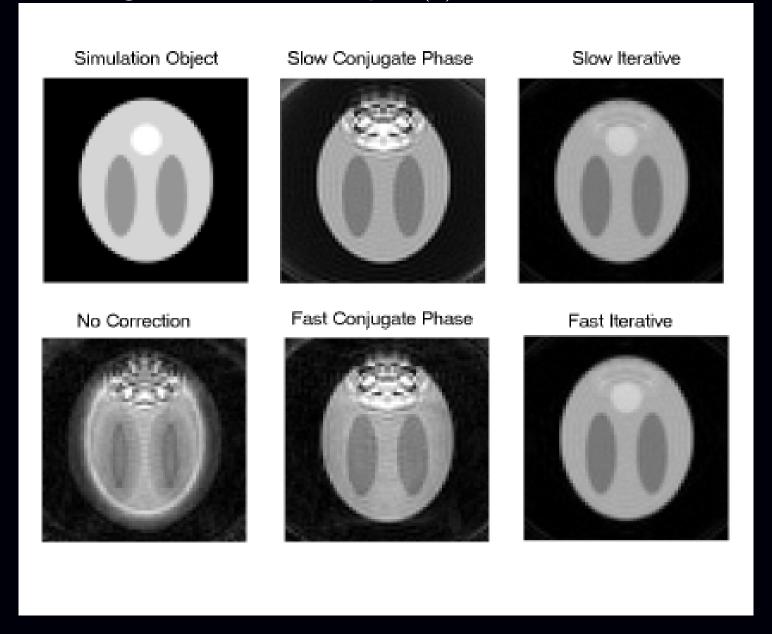
for min-max optimized temporal interpolation functions $\{a_l(\cdot)\}_{l=1}^L$.

$$s(t) \approx \sum_{l=1}^{L} a_l(t) \int \left[f(\vec{r}) e^{-\iota \omega(\vec{r}) \tau_l} \right] e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Linear combination of *L* NUFFT calls.

Field Corrected Reconstruction Example

Simulation using known field map $\omega(\vec{r})$.

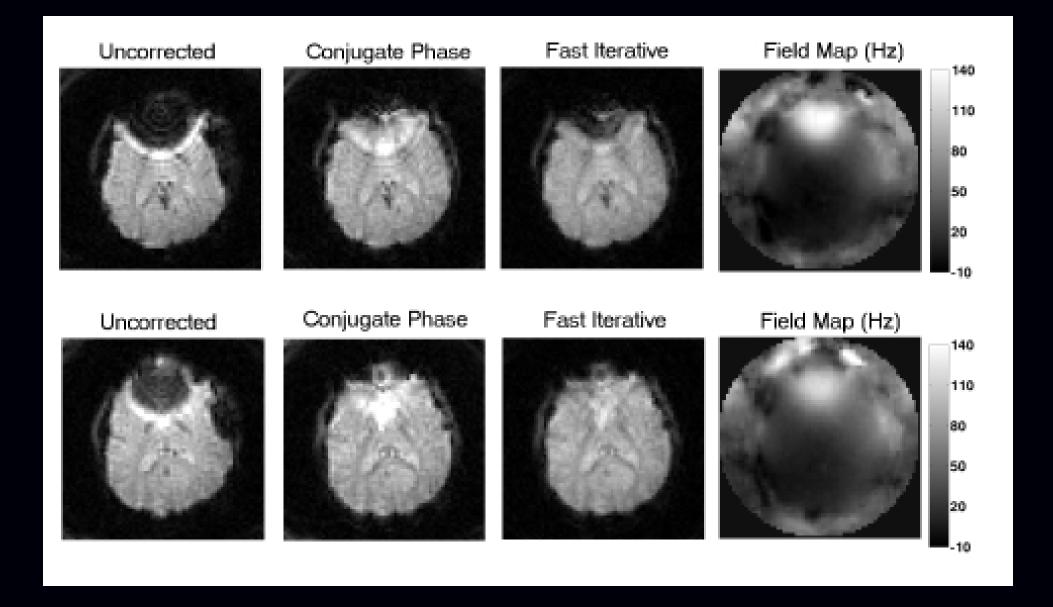


Simulation Quantitative Comparison

- Computation time?
- NRMSE between \hat{f} and f^{true} ?

Reconstruction Method	Time (s)	NRMSE	NRMSE
		complex	magnitude
No Correction	0.06	1.35	0.22
Full Conjugate Phase	4.07	0.31	0.19
Fast Conjugate Phase	0.33	0.32	0.19
Fast Iterative (10 iters)	2.20	0.04	0.04
Exact Iterative (10 iters)	128.16	0.04	0.04

Human Data: Field Correction



Joint Field-Map / Image Reconstruction

Signal model:

$$y_i = s(t_i) + \varepsilon_i, \qquad s(t) = \int f(\vec{r}) e^{-i\omega(\vec{r})t} e^{-i2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}.$$

After discretization:

$$\mathbf{y} = \mathbf{A}(\mathbf{\omega})\mathbf{f} + \mathbf{\varepsilon}, \qquad a_{ij}(\mathbf{\omega}) = P(\vec{\kappa}_i) e^{-\imath \omega_j t_i} e^{-\imath 2\pi \vec{\kappa}_i \cdot \vec{r}_j}.$$

Joint estimation via regularized (nonlinear) least-squares:

$$(\hat{\boldsymbol{f}}, \hat{\boldsymbol{\omega}}) = \underset{\boldsymbol{f} \in \mathbb{C}^N, \boldsymbol{\omega} \in \mathbb{R}^N}{\operatorname{arg min}} \|\boldsymbol{y} - \boldsymbol{A}(\boldsymbol{\omega})\boldsymbol{f}\|^2 + \beta_1 R_1(\boldsymbol{f}) + \beta_2 R_2(\boldsymbol{\omega}).$$

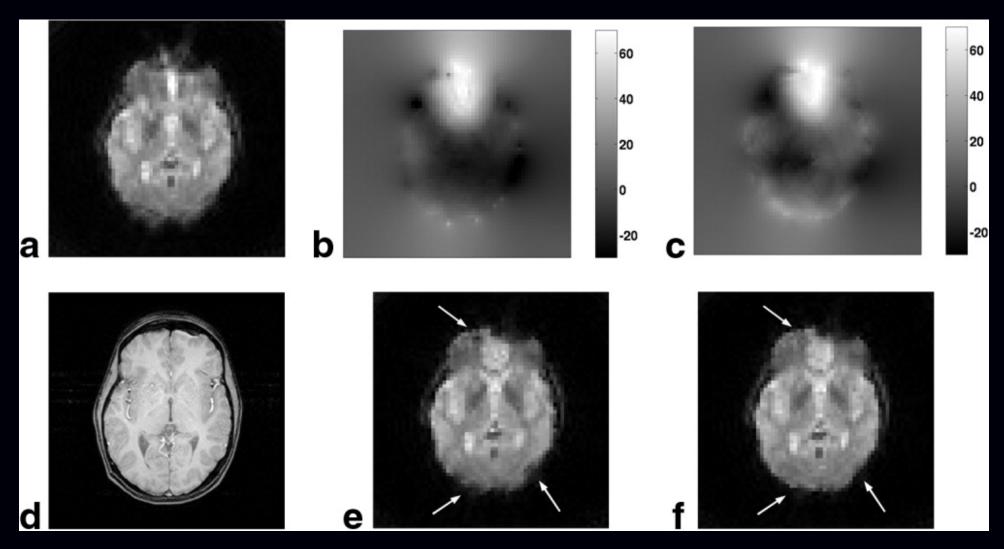
Alternating minimization:

- Using current estimate of fieldmap $\hat{\omega}$, update \hat{f} using CG algorithm.
- Using current estimate \hat{f} of image, update fieldmap $\hat{\omega}$ using gradient descent.

Use spiral-in / spiral-out sequence or "racetrack" EPI.

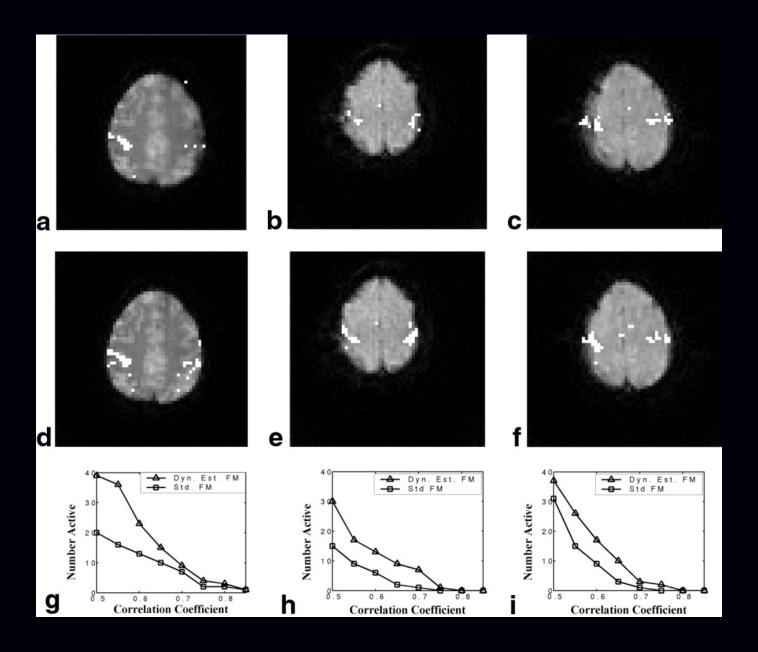
(Sutton et al., MRM, 2004)

Joint Estimation Example



(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.

Activation Results: Static vs Dynamic Field Maps



Functional results for the two reconstructions for 3 human subjects.

Reconstruction using the standard field map for (a) subject 1, (b) subject 2, and (c) subject 3.

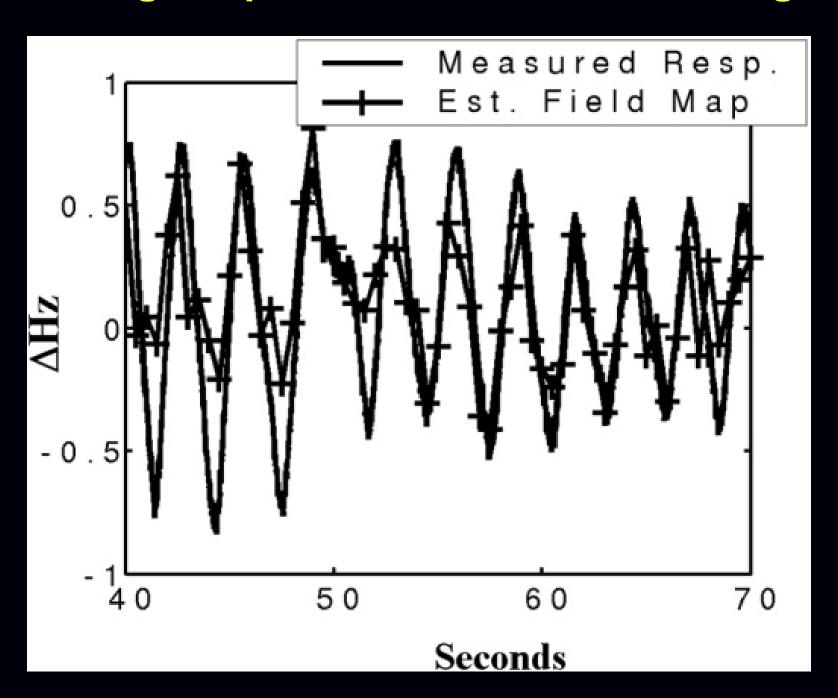
Reconstruction using the jointly estimated field map for (d) subject 1, (e) subject 2, and (f) subject 3.

Number of pixels with correlation coefficients higher than thresholds for (g) subject 1, (h) subject 2, and (i) subject 3.

Take home message: dynamic field mapping is possible, using iterative reconstruction as an essential tool.

(Standard field maps based on echo-time differences work poorly for spiral-in / spiral-out sequences due to phase discrepancies.)

Tracking Respiration-Induced Field Changes



Nonquadratic Regularization

Quadratic regularization is simple and reduces noise but impairs spatial resolution.

Nonquadratic regularization attempts to circumvent this tradeoff

Edge-preserving regularization has been investigated some for MRI:

$$R(f) = \sum_{j=2}^{N} \frac{1}{2} \psi(f_j - f_{j-1}),$$

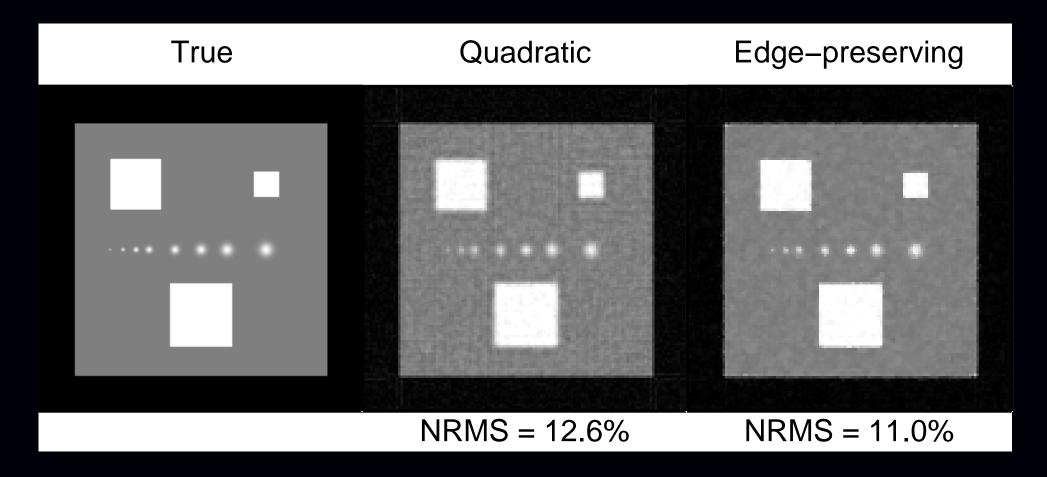
where ψ rises less rapidly than a parabola, e.g., a hyperbola:

$$\psi(t) = \sqrt{1 + (t/\delta)^2}.$$

Challenges

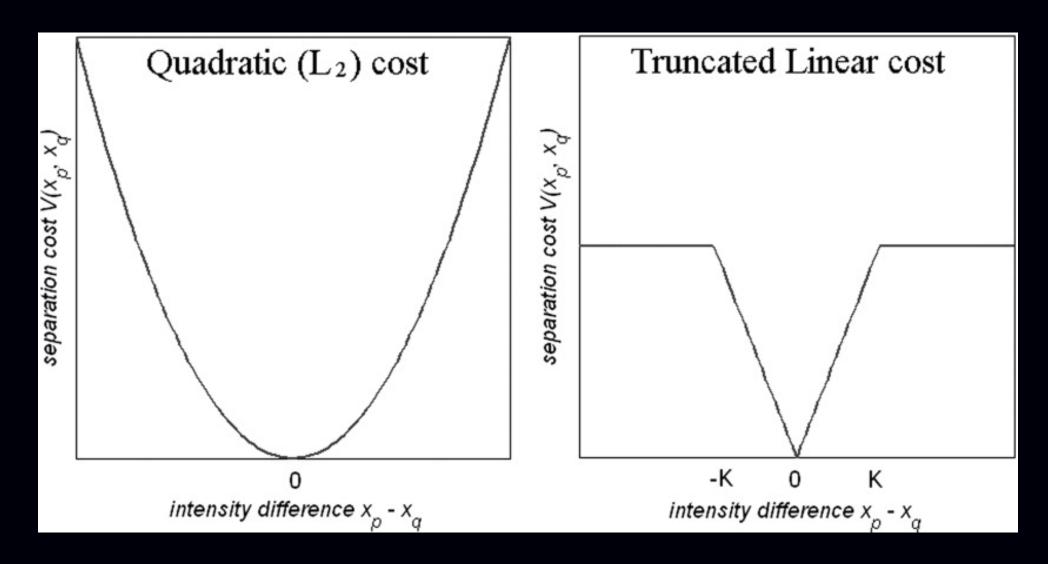
- choosing regularization parameter(s)
- characterizing nonlinear reconstruction results

Edge-Preserving Regularization Example



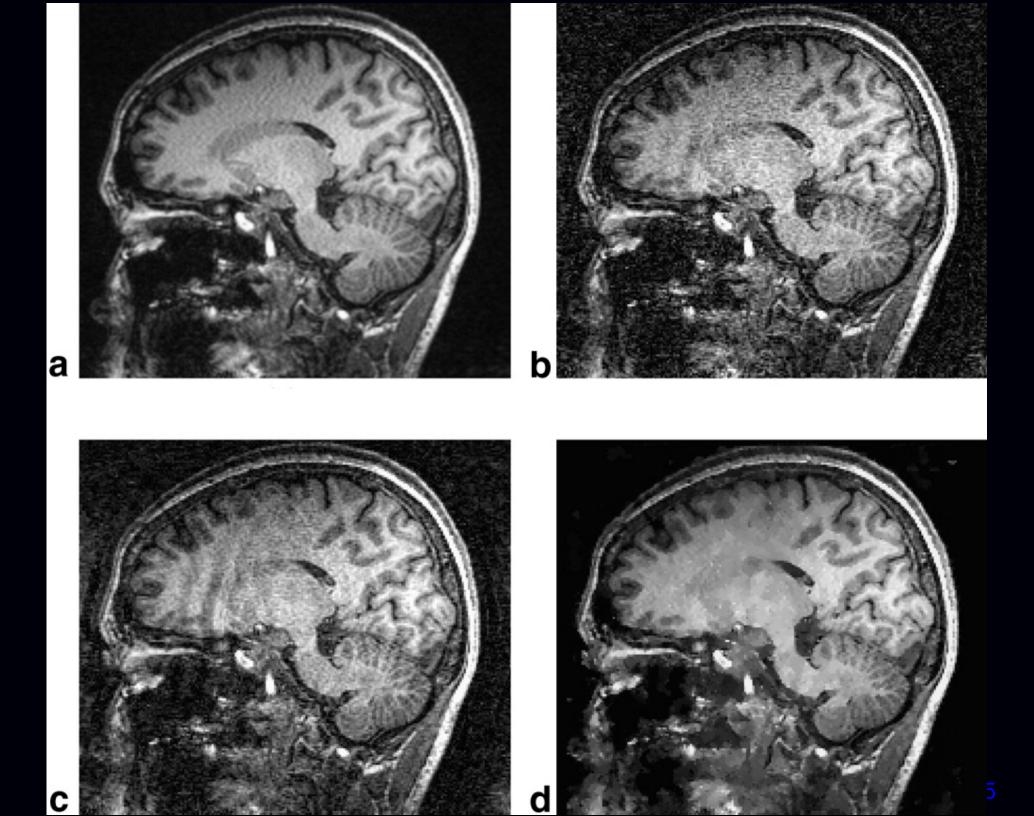
TV-like convex regularization

Nonconvex Edge-Preserving Regularization



Raj et al., MRM, Jan. 2007

Applied to MR parallel imaging (multiple receive coils)



Compressed sensing

(A form of nonquadratic regularization)

Find a transformation Ψ in which Ψf is (hopefully) sparse.

Sparsity regularization:
$$R(\mathbf{f}) = \|\mathbf{\Psi}\mathbf{f}\|_0 = \sum 1_{\{[\mathbf{\Psi}\mathbf{f}]_k \neq 0\}}$$

or:
$$R(f) = \|\mathbf{\Psi}f\|_1 = \sum_{k}^{k} |[\mathbf{\Psi}f]_k|$$
.

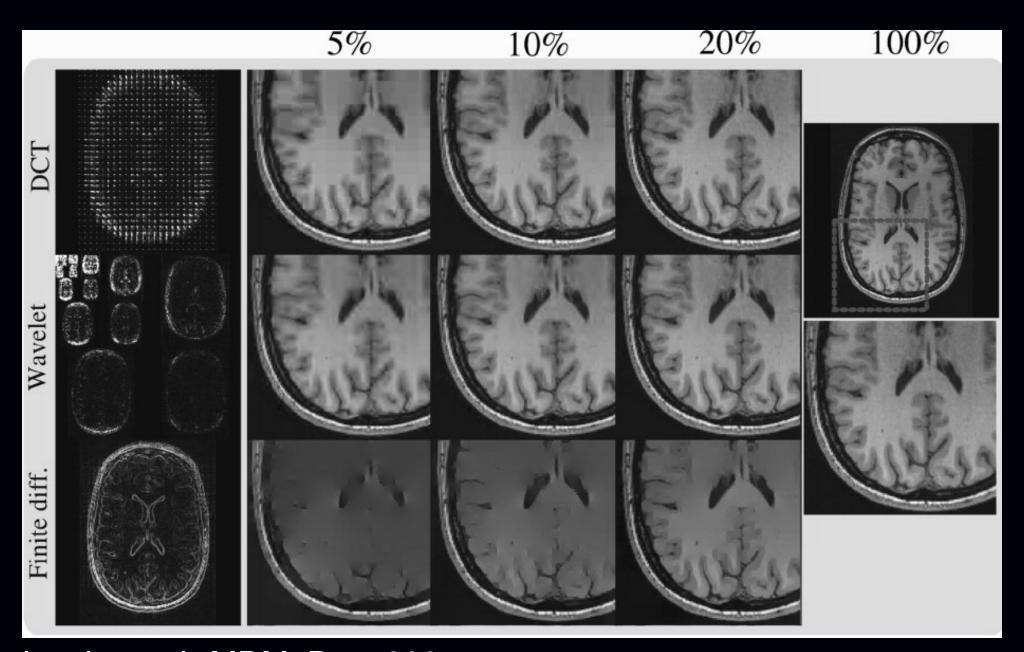
Compelling for under-sampled k-space data, e.g., dynamic scans.

Challenges

- optimization
- possibly multiple minimizers of $\|\mathbf{y} \mathbf{A}\mathbf{f}\|^2 + \beta \|\mathbf{\Psi}\mathbf{f}\|_1$
- choosing regularization parameter(s)
- characterizing nonlinear reconstruction results

(Very active research are in signal and image processing currently)

Sparsity



Lustig et al., MRM, Dec. 2007

Summary

- Model-based / iterative reconstruction: much potential in MRI
- Quadratic regularization parameter selection is tractable
- Computation: reduced by tools like NUFFT / Toeplitz
- But optimization algorithm design remains important (cf. Shepp and Vardi, 1982, PET)
- GPU: $100 \times$ acceleration (Haldar *et al.*, Hansen *et al.*, ISMRM 2008) real-time interactive adjustment of regularization parameters

Some current challenges

- Nonquadratic regularization: analysis / design
 Ahn and Leahy, IEEE T-MI, Mar. 2008
- Through-voxel field inhomogeneity gradients
- Motion / dynamics / partial k-space data
- Establishing diagnostic efficacy with clinical data...

Image reconstruction toolbox:

http://www.eecs.umich.edu/~fessler