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The Broad Perspective

Tour de Sauvabelin
(302 steps to platform at 30m+)

[copyrighted picture]

[copyrighted picture]
http://www.tour-de-sauvabelin-lausanne.ch
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The Ends

X-ray CT MRI
www.gehealthcare.com www.cis.rit.edu

MRI: excellent soft tissue contrast, and no ionizing radiation.
(But, expensive, slow, big, small bone signal...)
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Overview

Two inverse problems in MRI
• RF pulse design (spatially selective)
• Image reconstruction
◦ Nonuniform fast Fourier transform (NUFFT)
◦ Regularization issues (compressed sensing etc.)

Image reconstruction toolbox:
http://www.eecs.umich.edu/∼fessler
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NMR / MRI History (Abbreviated)
• 1946. NMR phenomenon discovered independently by
◦ Felix Bloch (Stanford)
◦ Edward Purcell (Harvard)

• 1952. Nobel prize in physics to F. Bloch and E. Purcell

• 1966. Richard Ernst and W. Anderson develop Fourier transform spectroscopy

• NMR spectroscopy used in physics and chemistry

• 1971. Ray Damadian discriminates malignant tumors from normal tissue
by NMR spectroscopy

• 1973. Paul Lauterbur and Peter Mansfield (independently) add magnetic field gradients,
making images

• 1991. Nobel prize in chemistry to R. Ernst for NMR spectroscopy contributions

• 2002. Nobel prize in chemistry to Kurt Wüthrich for using NMR spectroscopy
to determine 3D structure of biological macromolecules in solution

• 2003. Nobel prize in medicine to P. Lauterbur and Sir P. Mansfield!

• 2005. Researchers apply compressed sensing / sparsity ideas to MRI
Medical imaging conferences very dense with related papers since...
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Physics
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MRI Scanner

www.magnet.fsu.edu



8

Bloch Equation - Overview

Nuclei with odd number of protons or neutrons (e.g., 1H) have nu-
clear spin angular momentum. These magnetic moments tend to
align with an applied magnetic field, and collectively the spins in-
duce local magnetization.

The (phenomenological) Bloch Equation describes the
time evolution of local magnetization MMM(rrr, t):

d MMM
dt

= MMM×γBBB −
Mxiii +My jjj

T2
−

(Mz−M0)kkk
T1

Precession ↑
Relaxation ↑ ↑
Equilibrium ↑
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Bloch Equation and Imaging
d MMM(rrr, t)

dt
= MMM(rrr, t)×γBBB(rrr, t) −

Mxiii +My jjj

T2(rrr)
−

(Mz−M0(rrr))kkk
T1(rrr)

Image properties depend on:
• Steady-state magnetization M0(rrr) ∝ spin (Hydrogen) density
• Longitudinal (spin-lattice) relaxation T1(rrr)

• Transverse (spin-spin) relaxation T2(rrr)

• Chemical shift
(resonant frequency of H is ≈ 3.5 ppm lower in fat than in water)

Applied field BBB(rrr, t) includes three components we can control:
• Main field B0 (static)
• RF field BBB1(t)

• Field gradients rrr ·GGG(t) = xGx(t)+yGy(t)+zGz(t)

BBB(rrr, t) = B0+BBB1(t)+ rrr ·GGG(t)kkk
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Systems view of MRI

Applied
field

BBB(rrr, t)
→Patient →

magnetization
pattern
MMM(rrr, t)

→
RF coil(s)
(Faraday
induction)

→
received

signal
sr(t)

→
demodulate

(Larmor
frequency)

→
baseband

signal
s(t)

→
sample
(A/D) →

recorded
data

yi, i = 1, . . . ,M

→
reconstruction

algorithm →
displayed

image
f (~r)

Research areas:
• design of RF pulses / gradient waveforms (many possibilities!)
• coil design
• contrast agents
• reconstruction algorithm development / data processing



11

Inverse Problem 1:
RF Pulse Design
for “Excitation”
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RF Pulse Design: Forward Model

Forward model:

Applied field
BBB(rrr, t) = B0︸︷︷︸

main
+BBB1(t)

︸ ︷︷ ︸

RF

+ rrr ·GGG(t)kkk
︸ ︷︷ ︸

gradients
→

Patient
(Bloch

equation)
→

magnetization
pattern
MMM(rrr, t)

Rewriting Bloch equation:
d
dt

MMM(rrr, t) = MMM(rrr, t)×γBBB(rrr, t)−TTT [MMM(rrr, t)−MMM(rrr,0)]

where TTT =





1/T2(rrr) 0 0
0 1/T2(rrr) 0
0 0 1/T1(rrr)



 .

RF pulse design goals: find RF waveform B1(t), 0≤ t ≤ t1 that
induces some desired magnetization pattern MMMd(rrr, t1) at pulse end.
This is a “noiseless” inverse problem.
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RF Pulse Design: Inverse Problem

Problem is typically over-determined, so apply LS approach:

argmin
{B1(n∆t)}

∑
rrr

∣
∣MMM(rrr, t1)−MMMd(rrr, t1)

∣
∣2

subject to constraints:
• RF amplitude, bandwidth (hardware)
• RF power deposition (patient safety)

Challenge: no general solution to Bloch equation
=⇒ forward model requires numerical methods
=⇒ inverse problem slow (fine grid sampling in rrr)
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RF Excitation: Applications

(Exciting all spins is relatively easy, cf. NMR spectroscopy)

• slice selection (1D)
• spatially selective excitation (2D and 3D)
◦ imaging small regions
◦ compensating for undesired spin phase evolution (fMRI)
◦ compensating for nonuniform coil sensitivity (high field)
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RF Excitation: Slice Selection
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RF Excitation: Slice Selection

z z

z z
M M

MM

Before Excitation After 90  Excitation
o

xy xy

zz

Here, forward model simplifies to (roughly speaking) a Fourier
transform relationship between RF pulse B1(t) and slice profile.

Practical RF design methods exist. (Pauly et al., IEEE T-MI, Mar. 1991)

(Uses Parks-McClellan FIR filter design technique.)
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RF Excitation: Spatially Selective

Excite only spins within some region of interest

Challenges:
• Computation
• Magnetic field inhomogeneity
• Coil field pattern nonuniformity
• Multiple coils
• Joint design of RF pulse B1(t) and gradient waveforms GGG(t)

This is an active research area.
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Multiple-coil RF Pulse Design Example

Grissom et al., MRM, Sep. 2006
Approach: linearization,
nonuniform FFT, iterative CG



19

Example: Iterative RF Pulse Design

Tailored RF pulses for through-plane dephasing compensation

Yip et al., MRM, Nov. 2006

Uses fast-kz excitation k-space

trajectory with a few kx,ky phase

encodes.

Challenges: patient specific, requiring “on line” computation,
design of excitation k-space trajectory.
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Inverse Problem 2:
MR Image Reconstruction
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Example: Iterative Reconstruction under ∆B0
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Standard MR Image Reconstruction

MR k−space data Reconstructed Image

Cartesian sampling in k-space. An inverse FFT. End of story.

Commercial MR system quotes 400 FFTs (2562) per second.
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Non-Cartesian MR Image Reconstruction

“k-space” data image
yyy = (y1, . . . ,yM) f (~r)

kx

ky

=⇒
k-space trajectory: spatial coordinates:
~κ(t) = (kx(t),ky(t)) ~r ∈ R

d̄
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Textbook MRI Measurement Model

Ignoring lots of things, the standard measurement model is:
yi = s(ti)+noisei, i = 1, . . . ,M

s(t) =
Z

f (~r)e−ı2π~κ(t) ·~r d~r = F(~κ(t)) .

~r: spatial coordinates
~κ(t): k-space trajectory of the MR pulse sequence
f (~r): object’s unknown transverse magnetization
F(~κ): Fourier transform of f (~r). We get noisy samples of this!
e−ı2π~κ(t) ·~r provides spatial information =⇒ Nobel Prize

Goal of image reconstruction: find f (~r) from measurements {yi}
M
i=1.

The unknown object f (~r) is a continuous-space function,
but the recorded measurements yyy = (y1, . . . ,yM) are finite.

Under-determined (ill posed) problem =⇒ no canonical solution.

All MR scans provide only “partial” k-space data.
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Image Reconstruction Strategies

• Continuous-continuous formulation

Pretend that a continuum of measurements are available:

F(~κ) =
Z

f (~r)e−ı2π~κ ·~r d~r .

The “solution” is an inverse Fourier transform:

f (~r) =
Z

F(~κ)eı2π~κ ·~r d~κ .

Now discretize the integral solution:

f̂ (~r) =
M

∑
i=1

F(~κi)eı2π~κi ·~r wi ≈
M

∑
i=1

yiwi e
ı2π~κi ·~r ,

where wi values are “sampling density compensation factors.”
Numerous methods for choosing wi values in the literature.

For Cartesian sampling, using wi = 1/N suffices,
and the summation is an inverse FFT.
For non-Cartesian sampling, replace summation with gridding.
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• Continuous-discrete formulation

Use many-to-one linear model:

yyy = A f +εεε, where A : L2(R
d̄)→ C

M.

Minimum norm solution (cf. “natural pixels”):

min
f̂

∥
∥ f̂

∥
∥

2 subject to yyy=A f̂

f̂ = A ∗(A A ∗)−1yyy = ∑M
i=1ci e−ı2π~κi ·~r , where A A ∗ccc = yyy.

• Discrete-discrete formulation

Assume parametric model for object:

f (~r) =
N

∑
j=1

f j p j(~r) .

Estimate parameter vector fff = ( f1, . . . , fN) from data vector yyy.
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Why Iterative Image Reconstruction?

• “Non-Fourier” physical effects such as field inhomogeneity

• Incorporate prior information, e.g.:
• support constraints
• (piecewise) smoothness
• phase constraints

• No density compensation needed

• Statistical modeling may reduce noise

Primary drawbacks of Iterative Methods

• Algorithm speed

• Complexity, e.g., choosing regularization parameter(s)
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Model-Based Image Reconstruction: Overview
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Model-Based Image Reconstruction

MR signal equation with more complete physics:

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r) t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

yi = s(ti)+noisei, i = 1, . . . ,M

• scoil(~r) Receive-coil sensitivity pattern(s) (for SENSE)
• ω(~r) Off-resonance frequency map

(due to field inhomogeneity / magnetic susceptibility)
• R∗2(~r) Relaxation map

Other physical factors (?)
• Eddy current effects; in~κ(t)
• Concomitant gradient terms
• Chemical shift
• Motion

Goal?
(it depends)
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Field Inhomogeneity-Corrected Reconstruction

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r)t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

Goal: reconstruct f (~r) given field map ω(~r).
(Assume all other terms are known or unimportant.)

Motivation
Essential for functional MRI of brain regions near sinus cavities!

(Sutton et al., ISMRM 2001; T-MI 2003)
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Sensitivity-Encoded (SENSE) Reconstruction

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r) t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

Goal: reconstruct f (~r) given sensitivity maps scoil(~r).
(Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction “easily.”

(Sutton et al., ISMRM 2001, Olafsson et al., ISBI 2006)
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Joint Estimation of Image and Field-Map

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r)t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

Goal: estimate both the image f (~r) and the field map ω(~r)
(Assume all other terms are known or unimportant.)

Analogy:
joint estimation of emission image and attenuation map in PET.

(Sutton et al., ISMRM Workshop, 2001; ISBI 2002; ISMRM 2002;
ISMRM 2003; MRM 2004)
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The Kitchen Sink

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r)t e−R∗2(~r) t e−ı2π~κ(t) ·~r d~r

Goal: estimate image f (~r), field map ω(~r), and relaxation map R∗2(~r)

Requires “suitable” k-space trajectory.

(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)
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Estimation of Dynamic Rate Maps

s(t) =
Z

f (~r)scoil(~r)e−ıω(~r)t e−R∗2(~r)t e−ı2π~κ(t) ·~r d~r

Goal: estimate dynamic field map ω(~r) and “BOLD effect” R∗2(~r)
given baseline image f (~r) in fMRI.

Motion...

(Olafsson et al., IEEE T-MI 2008)
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Model-Based Image Reconstruction: Details
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Basic Signal Model

yi = s(ti)+ εi, E[yi] = s(ti) =
Z

f (~r)e−ı2π~κi ·~r d~r

Goal: reconstruct f (~r) from yyy = (y1, . . . ,yM).

Series expansion of unknown object:

f (~r)≈
N

∑
j=1

f j p(~r−~r j)←− usually 2D rect functions.

Substituting into signal model yields

E[yi] =
Z

[
N

∑
j=1

f j p(~r−~r j)

]

e−ı2π~κi ·~r d~r =
N

∑
j=1

[
Z

p(~r−~r j)e−ı2π~κi ·~r d~r

]

f j

=
N

∑
j=1

ai j f j, ai j = P(~κi)e−ı2π~κi ·~r j , p(~r)
FT
⇐⇒ P(~κ).

Discrete-discrete measurement model with system matrix AAA= {ai j}:

yyy = AAA fff + εεε.
Goal: estimate coefficients (pixel values) fff = ( f1, . . . , fN) from yyy.
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Least-Squares Estimation

Estimate object by minimizing a simple cost function:

f̂ff = argmin
fff∈CN

Ψ( fff ), Ψ( fff ) = ‖yyy−AAA fff‖2

• data fit term ‖yyy−AAA fff‖2

corresponds to negative log-likelihood of Gaussian distribution
• Equivalent to maximum-likelihood (ML) estimation

Issues:
• computing minimizer rapidly
• stopping iteration (?)
• image quality
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Iterative Minimization by Conjugate Gradients

Choose initial guess fff (0) (e.g., fast conjugate phase / gridding).
Iteration (unregularized):

ggg(n) = ∇Ψ
(

fff (n)
)

= AAA′(AAAfff (n)−yyy) gradient
ppp(n) = PPPggg(n) precondition

γn =







0, n = 0
〈ggg(n), ppp(n)〉

〈ggg(n−1), ppp(n−1)〉
, n > 0

ddd(n) =−ppp(n) + γnddd
(n−1) search direction

vvv(n) = AAAddd(n)

αn = 〈ddd(n),−ggg(n)〉/‖vvv(n)‖
2 step size

fff (n+1) = fff (n) +αnddd
(n) update

Bottlenecks: computing AAA fff (n) and AAA′ rrr.
• AAA is too large to store explicitly (not sparse)
• Even if AAA were stored, directly computing AAA fff is O(MN)

per iteration, whereas FFT is only O(M logM).
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Computing AAA fff Rapidly

[AAA fff ]i =
N

∑
j=1

ai j f j = P(~κi)
N

∑
j=1

e−ı2π~κi ·~r j f j, i = 1, . . . ,M

• Pixel locations {~r j} are uniformly spaced
• k-space locations {~κi} are unequally spaced

=⇒ needs nonuniform fast Fourier transform (NUFFT)
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NUFFT (Type 2)

• Compute over-sampled FFT of equally-spaced signal samples
• Interpolate onto desired unequally-spaced frequency locations
• Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator
• Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator

and min-max optimized Kaiser-Bessel interpolator.
NUFFT toolbox: http://www.eecs.umich.edu/∼fessler/code

0

50

100

π−π π/2−π/2 ω

X
(ω

)

?
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Worst-Case NUFFT Interpolation Error
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NUFFT Interpolation

Ideal interpolator would be (impractical) sinc-like (Dirichlet kernel)

In practice, we use finite-support frequency-domain interpolators;
these have nonuniform spatial response.

Spatial “scaling” of the signal before FFT is necessary
to compensate for imperfect interpolation.

Open problem: determining optimal scaling function.
(Reciprocal of Fourier transform of Kaiser-Bessel function works
reasonably well.)
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Further Acceleration using Toeplitz Matrices

Cost-function gradient:

ggg(n) = AAA′(AAA fff (n)−yyy)
= TTT fff (n)−bbb,

where
TTT , AAA′AAA, bbb , AAA′yyy.

In the absence of field inhomogeneity, the Gram matrix TTT is Toeplitz:
[
AAA′AAA

]

jk
=

M

∑
i=1

|P(~κi)|
2e−ı2π~κi ·(~r j−~rk) .

Computing TTT fff (n) requires an ordinary (2× over-sampled) FFT.
(Chan & Ng, SIAM Review, 1996)

In 2D: block Toeplitz with Toeplitz blocks (BTTB).

Precomputing the first column of TTT and bbb requires a couple NUFFTs.
(Wajer, ISMRM 2001, Eggers ISMRM 2002, Liu ISMRM 2005)

This formulation seems ideal for “hardware” FFT systems.
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Unregularized Example: Simulated Data

Phantom Object
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4× under-sampled radial k-space data
Analytical k-space data generation
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Unregularized Example: Images

Unregularized CG, 1:4:60, SNR=40
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Unregularized Example: Movie

(movie in pdf)


cg-unreg-4under-40db-60iter.avi
Media File (video/avi)
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Unregularized Example: RMS Error
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Complexity: when to stop? A solution: regularization.
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Unregularized Eigenspectrum
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Regularized Example: Movie

(movie in pdf)


cg-hyp3-4under-40db-60iter.avi
Media File (video/avi)
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Regularized Example: Image Comparison

True | Unregularized | Edge preserving regularization
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Regularized Example: RMS Error
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Regularized Least-Squares Estimation

Estimate object by minimizing a regularized cost function:

f̂ff = argmin
fff∈CN

Ψ( fff ), Ψ( fff ) = ‖yyy−AAA fff‖2+αR( fff )

• data fit term ‖yyy−AAA fff‖2

corresponds to negative log-likelihood of Gaussian distribution
• regularizing term R( fff ) controls noise by penalizing roughness,

e.g. : R( fff )≈
Z

‖∇ f‖2d~r

• regularization parameter α > 0
controls tradeoff between spatial resolution and noise
• Equivalent to Bayesian MAP estimation with prior ∝ e−αR( fff )

Complexities:
• choosing R( f )

• choosing α
• computing minimizer rapidly.



53

Quadratic regularization

1D example: squared differences between neighboring pixel values:

R( f ) =
N

∑
j=2

1
2
| f j− f j−1|

2 .

In matrix-vector notation, R( fff ) = 1
2‖CCC fff‖2 where

CCC =







−1 1 0 0 . . . 0
0 −1 1 0 . . . 0

. . . . . .
0 . . . 0 0 −1 1







, so CCC fff =





f2− f1
...

fN− fN−1



 .

For 2D and higher-order differences, modify differencing matrix CCC.

Leads to closed-form solution:

f̂ff = argmin
fff
‖yyy−AAA fff‖2+α‖CCC fff‖2

=
[
AAA′AAA+αCCC′CCC

]−1
AAA′yyy.

(a formula of limited practical use for computing f̂ff )



54

Choosing the Regularization Parameter

Spatial resolution analysis (Fessler & Rogers, IEEE T-IP, 1996):

f̂ff =
[
AAA′AAA+αCCC′CCC

]−1
AAA′yyy

E

[

f̂ff
]

=
[
AAA′AAA+αCCC′CCC

]−1
AAA′E[yyy]

E

[

f̂ff
]

=
[
AAA′AAA+αCCC′CCC

]−1
AAA′AAA

︸ ︷︷ ︸

blur

fff

AAA′AAA and CCC′CCC are Toeplitz =⇒ blur is approximately shift-invariant.

Frequency response of blur:

L(ω) =
H(ω)

H(ω)+αR(ω)

• H(ωk) = FFT(AAA′AAAej) (lowpass)
• R(ωk) = FFT(CCC′CCCej) (highpass)

Adjust α to achieve desired spatial resolution.
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Spatial Resolution Example
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Spatial Resolution Example: Profiles
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Tabulating Spatial Resolution vs Regularization
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Trajectory specific, but easily computed using a few FFTs
Works only for quadratic regularization
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Resolution/noise tradeoffs

Noise analysis:

Cov

{

f̂ff
}

=
[
AAA′AAA+αCCC′CCC

]−1
AAA′Cov{yyy}AAA

[
AAA′AAA+αCCC′CCC

]−1

Using circulant approximations to AAA′AAA and CCC′CCC yields:

Var
{

f̂ j

}
≈ σ2

ε ∑
k

H(ωk)

(H(ωk)+αR(ωk))2

• H(ωk) = FFT(AAA′AAAej) (lowpass)
• R(ωk) = FFT(CCC′CCCej) (highpass)

=⇒ Predicting reconstructed image noise requires just 2 FFTs.
(cf. gridding approach?)

Adjust α to achieve desired spatial resolution / noise tradeoff.
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Resolution/Noise Tradeoff Example
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In short: one can choose α rapidly and predictably for quadratic regularization.
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NUFFT with Field Inhomogeneity?

Combine NUFFT with min-max temporal interpolator
(Sutton et al., IEEE T-MI, 2003)
(forward version of “time segmentation”, Noll, T-MI, 1991)

Recall signal model including field inhomogeneity:

s(t) =
Z

f (~r)e−ıω(~r)t e−ı2π~κ(t) ·~r d~r .

Temporal interpolation approximation (aka “time segmentation”):

e−ıω(~r) t ≈
L

∑
l=1

al(t)e−ıω(~r)τl

for min-max optimized temporal interpolation functions {al(·)}
L
l=1.

s(t)≈
L

∑
l=1

al(t)
Z [

f (~r)e−ıω(~r)τl

]

e−ı2π~κ(t) ·~r d~r

Linear combination of L NUFFT calls.
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Field Corrected Reconstruction Example

Simulation using known field map ω(~r).
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Simulation Quantitative Comparison

• Computation time?

• NRMSE between f̂ff and fff true?

Reconstruction Method Time (s) NRMSE NRMSE
complex magnitude

No Correction 0.06 1.35 0.22
Full Conjugate Phase 4.07 0.31 0.19
Fast Conjugate Phase 0.33 0.32 0.19
Fast Iterative (10 iters) 2.20 0.04 0.04
Exact Iterative (10 iters) 128.16 0.04 0.04
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Human Data: Field Correction



64

Joint Field-Map / Image Reconstruction

Signal model:

yi = s(ti)+ εi, s(t) =
Z

f (~r)e−ıω(~r)t e−ı2π~κ(t) ·~r d~r .

After discretization:

yyy = AAA(ωωω) fff + εεε, ai j(ωωω) = P(~κi)e−ıω jti e−ı2π~κi ·~r j .

Joint estimation via regularized (nonlinear) least-squares:

( f̂ff , ω̂ωω) = argmin
fff∈CN,ωωω∈RN

‖yyy−AAA(ωωω) fff‖2+β1R1( fff )+β2R2(ωωω).

Alternating minimization:
• Using current estimate of fieldmap ω̂ωω,

update f̂ff using CG algorithm.

• Using current estimate f̂ff of image,
update fieldmap ω̂ωω using gradient descent.

Use spiral-in / spiral-out sequence or “racetrack” EPI.
(Sutton et al., MRM, 2004)
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Joint Estimation Example

(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.
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Activation Results: Static vs Dynamic Field Maps

Functional results for the two reconstructions for 3 human subjects.



Reconstruction using the standard field map
for (a) subject 1, (b) subject 2, and (c) subject 3.

Reconstruction using the jointly estimated field map
for (d) subject 1, (e) subject 2, and (f) subject 3.

Number of pixels with correlation coefficients higher than thresholds
for (g) subject 1, (h) subject 2, and (i) subject 3.

Take home message: dynamic field mapping is possible, using iter-
ative reconstruction as an essential tool.
(Standard field maps based on echo-time differences work poorly
for spiral-in / spiral-out sequences due to phase discrepancies.)
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Tracking Respiration-Induced Field Changes
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Nonquadratic Regularization

Quadratic regularization is simple and reduces noise but impairs
spatial resolution.

Nonquadratic regularization attempts to circumvent this tradeoff

Edge-preserving regularization has been investigated some for MRI:

R( f ) =
N

∑
j=2

1
2

ψ( f j− f j−1),

where ψ rises less rapidly than a parabola, e.g., a hyperbola:

ψ(t) =
√

1+(t/δ)2.

Challenges
• choosing regularization parameter(s)
• characterizing nonlinear reconstruction results
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Edge-Preserving Regularization Example

True Quadratic

NRMS = 12.6%

Edge−preserving

NRMS = 11.0%

TV-like convex regularization
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Nonconvex Edge-Preserving Regularization

Raj et al., MRM, Jan. 2007

Applied to MR parallel imaging (multiple receive coils)
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Compressed sensing

(A form of nonquadratic regularization)

Find a transformation ΨΨΨ in which ΨΨΨ fff is (hopefully) sparse.
Sparsity regularization: R( fff ) = ‖ΨΨΨ fff‖0 = ∑

k

1{[ΨΨΨ fff ]k6=0}

or: R( fff ) = ‖ΨΨΨ fff‖1 = ∑
k

|[ΨΨΨ fff ]k| .

Compelling for under-sampled k-space data, e.g., dynamic scans.

Challenges
• optimization

• possibly multiple minimizers of ‖yyy−AAA fff‖2+β‖ΨΨΨ fff‖1

• choosing regularization parameter(s)
• characterizing nonlinear reconstruction results

(Very active research are in signal and image processing currently)
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Sparsity

Lustig et al., MRM, Dec. 2007
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Summary

•Model-based / iterative reconstruction: much potential in MRI

• Quadratic regularization parameter selection is tractable

• Computation: reduced by tools like NUFFT / Toeplitz

• But optimization algorithm design remains important
(cf. Shepp and Vardi, 1982, PET)

• GPU: 100× acceleration (Haldar et al., Hansen et al., ISMRM 2008)

real-time interactive adjustment of regularization parameters

Some current challenges
• Nonquadratic regularization: analysis / design

Ahn and Leahy, IEEE T-MI, Mar. 2008

• Through-voxel field inhomogeneity gradients

•Motion / dynamics / partial k-space data

• Establishing diagnostic efficacy with clinical data...
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Image reconstruction toolbox:
http://www.eecs.umich.edu/∼fessler


