Iterative methods for image formation in MRI

Jeffrey A. Fessler

EECS Department
The University of Michigan

Univ. of Wisconsin, Milwaukee
Oct. 11, 2007

Acknowledgements: Doug Noll, Brad Sutton,
MRI: excellent soft tissue contrast, and no ionizing radiation. (But, expensive, slow, big, small bone signal...)

X-ray CT
www.gehealthcare.com

MRI
www.cis.rit.edu
Outline

- MR imaging physics
- MR image reconstruction introduction (k-space, FFT, gridding, density compensation)
- Model-based reconstruction overview
- Iterations and computation (NUFFT etc.)
- Regularization
- Field inhomogeneity correction
- Parallel (sensitivity encoded) imaging
- Iterative methods for RF pulse design
Physics
Time evolution (phenomenological) of local magnetization $\mathbf{M}(\mathbf{r}, t)$:

$$\frac{d\mathbf{M}}{dt} = \mathbf{M} \times \gamma \mathbf{B} - \frac{\mathbf{M}_x \mathbf{i} + \mathbf{M}_y \mathbf{j}}{T_2} - \frac{(\mathbf{M}_z - \mathbf{M}_0) \mathbf{k}}{T_1}$$

Precession
Relaxation
Equilibrium
Bloch Equation and Imaging

\[
\frac{dM(r,t)}{dt} = M(r,t) \times \gamma \mathbf{B}(r,t) - \frac{M_x i + M_y j}{T_2(r)} - \frac{(M_z - M_0(r)) k}{T_1(r)}
\]

Image properties depend on:

- Spin (Hydrogen) density \(M_0(r)\)
- Longitudinal (spin-lattice) relaxation \(T_1(r)\)
- Transverse (spin-spin) relaxation \(T_2(r)\)
- Chemical shift
 (resonant frequency of H is \(\approx 3.5\) ppm lower in fat than in water)

Applied field \(\mathbf{B}(r,t)\) includes three components we can control:

- Main field \(B_0\)
- RF field \(\mathbf{B}_1(t)\)
- Field gradients \(r \cdot \mathbf{G}(t) = xG_x(t) + yG_y(t) + zG_z(t)\)

\[
\mathbf{B}(r,t) = B_0 + \mathbf{B}_1(t) + r \cdot \mathbf{G}(t) k
\]
Systems view of MRI

Applied field $B(r,t)$ → Patient → magnetization pattern $M(r,t)$ → RF coil(s) (Faraday induction) → received signal $s_r(t)$ → demodulate (Larmor frequency) → baseband signal $s(t)$ → sample (A/D) → recorded data y_i, $i = 1, \ldots, M$ → reconstruction algorithm → displayed image $f(\vec{r})$

Research areas:
- design of RF pulses / gradient waveforms (many possibilities!)
- coil design
- reconstruction algorithm development
Introduction to Reconstruction
Standard MR Image Reconstruction

MR k–space data Reconstructed Image

Cartesian sampling in k-space. An inverse FFT. End of story.

Commercial MR system quotes 400 FFTs (256^2) per second.
K-space Sampling Strategies

- Cartesian
- Truncated
- Partial
- Under-sampled
- Variable density
- Non-Cartesian
Non-Cartesian MR Image Reconstruction

"k-space"

$k_x \times k_y \Rightarrow$ image
Example: Iterative Reconstruction under ΔB_0
Example: Iterative RF Pulse Design
Textbook MRI Measurement Model

Ignoring *lots* of things:

\[y_i = s(t_i) + \text{noise}_i, \quad i = 1, \ldots, M \]

\[s(t) = \int f(\vec{r}) e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} \, d\vec{r}, \]

where \(\vec{r} \) denotes spatial position, and \(\vec{\kappa}(t) \) denotes the "k-space trajectory" of the MR pulse sequence, determined by user-controllable magnetic field gradients.

\(e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} \) provides spatial information \(\implies \) Nobel Prize

- MRI measurements are (roughly) samples of the Fourier transform \(F(\vec{\kappa}) \) of the object’s *transverse magnetization* \(f(\vec{r}) \).
- Basic image reconstruction problem:

 recover \(f(\vec{r}) \) from measurements \(\{y_i\}_{i=1}^M \).

Inherently under-determined (ill posed) problem

\(\implies \) no canonical solution.
Image Reconstruction Strategies

The unknown object $f(\vec{r})$ is a continuous-space function, but the recorded measurements $\mathbf{y} = (y_1, \ldots, y_M)$ are finite.

Options?

- **Continuous-discrete formulation** using many-to-one linear model:

 \[\mathbf{y} = \mathbf{A} f + \mathbf{\epsilon}. \]

 Minimum norm solution (cf. "natural pixels"):

 \[
 \min_{\hat{f}} \| \hat{f} \| \quad \text{subject to} \quad \mathbf{y} = \mathbf{A} \hat{f}
 \]

 \[
 \hat{f} = \mathbf{A}^* (\mathbf{A} \mathbf{A}^*)^{-1} \mathbf{y} = \sum_{i=1}^{M} c_i e^{-i2\pi \vec{k}_i \cdot \vec{r}}, \quad \text{where} \quad \mathbf{A} \mathbf{A}^* \mathbf{c} = \mathbf{y}.
 \]

- **Discrete-discrete formulation**

 Assume parametric model for object:

 \[
 f(\vec{r}) = \sum_{j=1}^{N} f_j p_j(\vec{r}).
 \]
Continuous-continuous formulation

Pretend that a continuum of measurements are available:

\[F(\vec{\kappa}) = \int f(\vec{r}) e^{-i2\pi \vec{\kappa} \cdot \vec{r}} \, d\vec{r}, \]

vs samples \(y_i = F(\vec{\kappa}_i) + \epsilon_i \), where \(\vec{\kappa}_i \triangleq \vec{\kappa}(t_i) \).

The “solution” is an inverse Fourier transform:

\[f(\vec{r}) = \int F(\vec{\kappa}) e^{i2\pi \vec{\kappa} \cdot \vec{r}} \, d\vec{\kappa}. \]

Now discretize the integral solution (two approximations!):

\[\hat{f}(\vec{r}) = \sum_{i=1}^{M} F(\vec{\kappa}_i) e^{i2\pi \vec{\kappa}_i \cdot \vec{r}} w_i \approx \sum_{i=1}^{M} y_i w_i e^{i2\pi \vec{\kappa}_i \cdot \vec{r}}, \]

where \(w_i \) values are “sampling density compensation factors.”

Numerous methods for choosing \(w_i \) value in the literature.

For Cartesian sampling, using \(w_i = 1/N \) suffices,

and the summation is an inverse FFT.
Conventional MR Image Reconstruction

1. Interpolate measurements onto rectilinear grid ("gridding")
2. Apply inverse FFT to estimate samples of $f(\vec{r})$
Gridding Approach 1: Pull from K nearest

Gridding by pulling from 10 nearest
Gridding Approach 2: Pull from neighborhood

Gridding by pulling from within neighborhood
Gridding Approach 3: Push to neighborhood

Gridding by pushing onto neighborhood
Gridding Approaches

Ignore noise: \(y_i = F(\vec{k}_i) \)

Pull:
for each Cartesian grid point, use weighted average of nonuniform k-space samples within some neighborhood
- Does not require density compensation
- Requires cumbersome search/indexing to find neighbors

Push:
each nonuniform k-space sample onto a Cartesian neighborhood

\[
\hat{F}(\vec{k}) = \sum_{i=1}^{M} y_i w_i C(\vec{k} - \vec{k}_i)
\]

- \(C(\vec{k}) \) denotes the *gridding kernel*, typically separable Kaiser-Bessel
- “\(\ast \)” denotes convolution.
- \(\delta(\cdot) \) denotes the Dirac impulse
- density compensation factors \(w_i \) essential
Post-iFFT Gridding Correction

Gridding as convolution in k-space:

$$\hat{F}(\vec{k}) = \sum_{i=1}^{M} y_i w_i C(\vec{k} - \vec{k}_i) = C(\vec{k}) \ast \sum_{i=1}^{M} y_i w_i \delta(\vec{k} - \vec{k}_i).$$

Inverse FT reconstruction:

$$\hat{f}_{\text{initial}}(\vec{r}) = \mathcal{F}^{-1}\left\{ \hat{F}(\vec{k}) \right\} = c(\vec{r}) \sum_{i=1}^{M} y_i w_i e^{-t2\pi \vec{k}_i \cdot \vec{r}}.$$

Post-correction:

$$\hat{f}_{\text{final}}(\vec{r}) = \frac{\hat{f}_{\text{initial}}(\vec{r})}{c(\vec{r})}.$$
Gridding Kernels and Post-corrections

Convolution kernels

- Kaiser–Bessel, J=4, β=18.5547
- Sinc

Post-gridding correction functions
Density Compensation

\[f(\vec{r}) = \int F(\vec{k}) e^{i2\pi \vec{k} \cdot \vec{r}} d\vec{k} \approx \sum_{i=1}^{M} y_i e^{i2\pi \vec{k}_i \cdot \vec{r}} w_i. \]

- Voronoi cell area

- Jacobians

 Norton, IEEE T-MI, 1987

- Jackson’s area density

 Jackson, IEEE T-MI, 1991

- Iterative methods

 Pipe and Menon, MRM, 2000

- ...

Tradeoffs between simplicity and accuracy.
Voronoi Cell Area
Limitations of Gridding Reconstruction

1. Artifacts/inaccuracies due to interpolation
2. Contention about sample density “weighting”
3. Oversimplifications of Fourier transform signal model:
 - Magnetic field inhomogeneity
 - Magnetization decay \((T_2) \)
 - Eddy currents
3. ...
4. Sensitivity encoding ?
5. ...

(But it is faster than iterative methods...)
Model-Based Image Reconstruction: Overview
Model-Based Image Reconstruction

MR signal equation with more complete physics:

\[
s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-i \omega(\vec{r}) t} e^{-R^*_2(\vec{r}) t} e^{-i 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}
\]

\[y_i = s(t_i) + \text{noise}_i, \quad i = 1, \ldots, M\]

- \(s^{\text{coil}}(\vec{r})\): Receive-coil sensitivity pattern(s) (for SENSE)
- \(\omega(\vec{r})\): Off-resonance frequency map (due to field inhomogeneity / magnetic susceptibility)
- \(R^*_2(\vec{r})\): Relaxation map

Other physical factors (?)
- Eddy current effects; in \(\vec{\kappa}(t)\)
- Concomitant gradient terms
- Chemical shift
- Motion

Goal?
(it depends)
Field Inhomogeneity-Corrected Reconstruction

\[s(t) = \int f(\vec{r}) s_{\text{coil}}(\vec{r}) e^{-i\omega(\vec{r})t} e^{-R^*(\vec{r})t} e^{-i2\pi \kappa(t) \cdot \vec{r}} \, d\vec{r} \]

Goal: reconstruct \(f(\vec{r}) \) given field map \(\omega(\vec{r}) \).
(Assume all other terms are known or unimportant.)

Motivation
Essential for functional MRI of brain regions near sinus cavities!

(Sutton *et al.*, ISMRM 2001; T-MI 2003)
Sensitivity-Encoded (SENSE) Reconstruction

\[s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-i \omega(\vec{r}) t} e^{-R^*(\vec{r}) t} e^{-i 2\pi \bar{\kappa}(t) \cdot \vec{r}} d\vec{r} \]

Goal: reconstruct \(f(\vec{r}) \) given sensitivity maps \(s^{\text{coil}}(\vec{r}) \).
(Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction “easily.”

(Sutton et al., ISMRM 2001, Olafsson et al., ISBI 2006)
Joint Estimation of Image and Field-Map

\[s(t) = \int f(\vec{r}) S^{\text{coil}}(\vec{r}) e^{-i\omega(\vec{r})t} e^{-R^*_{2}(\vec{r}) t} e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r} \]

Goal: estimate both the image \(f(\vec{r}) \) and the field map \(\omega(\vec{r}) \) (Assume all other terms are known or unimportant.)

Analogy:
joint estimation of emission image and attenuation map in PET.

(Sutton et al., ISMRM Workshop, 2001; ISBI 2002; ISMRM 2002; ISMRM 2003; MRM 2004)
The Kitchen Sink

\[s(t) = \int f(\vec{r}) s^{\text{coil}}(\vec{r}) e^{-i\omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-i2\pi\vec{\kappa}(t) \cdot \vec{r}} \, d\vec{r} \]

Goal: estimate image \(f(\vec{r}) \), field map \(\omega(\vec{r}) \), \textit{and} relaxation map \(R_2^*(\vec{r}) \)

Requires “suitable” k-space trajectory.

(Sutton \textit{et al.}, ISMRM 2002; Twieg, MRM, 2003)
Estimation of Dynamic Maps

\[s(t) = \int f(\vec{r}) \ s^{\text{coil}}(\vec{r}) \ e^{-i\omega(\vec{r})t} \ e^{-R_2^*(\vec{r})t} \ e^{-i2\pi \bar{\kappa}(t) \cdot \vec{r}} \ d\vec{r} \]

Goal: estimate **dynamic** field map \(\omega(\vec{r}) \) and “BOLD effect” \(R_2^*(\vec{r}) \) given baseline image \(f(\vec{r}) \) in fMRI.

Motion...
Model-Based Image Reconstruction: Details
Back to Basic Signal Model

\[s(t) = \int f(\vec{r}) e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r} \]

Goal: reconstruct \(f(\vec{r}) \) from \(\mathbf{y} = (y_1, \ldots, y_M) \), where \(y_i = s(t_i) + \varepsilon_i \).

Series expansion of unknown object:

\[f(\vec{r}) \approx \sum_{j=1}^{N} f_j p(\vec{r} - \vec{r}_j) \quad \text{← usually 2D rect functions.} \]

\[y_i \approx \int \left[\sum_{j=1}^{N} f_j p(\vec{r} - \vec{r}_j) \right] e^{-i2\pi \vec{\kappa}_i \cdot \vec{r}} d\vec{r} = \sum_{j=1}^{N} \left[\int p(\vec{r} - \vec{r}_j) e^{-i2\pi \vec{\kappa}_i \cdot \vec{r}} d\vec{r} \right] f_j \]

\[= \sum_{j=1}^{N} a_{ij} f_j, \quad a_{ij} = P(\vec{\kappa}_i) e^{-i2\pi \vec{\kappa}_i \cdot \vec{r}_j}, \quad p(\vec{r}) \overset{\text{FT}}{\iff} P(\vec{\kappa}). \]

Discrete-discrete measurement model with system matrix \(\mathbf{A} = \{a_{ij}\} \):

\[\mathbf{y} = \mathbf{A} \mathbf{f} + \mathbf{\varepsilon}. \]

Goal: estimate coefficients (pixel values) \(\mathbf{f} = (f_1, \ldots, f_N) \) from \(\mathbf{y} \).
Small Pixel Size Need Not Matter

N=32

N=64

N=128

N=256

N=512
Profiles

![Graph showing profiles with horizontal position in mm and |f(x,0)| on the y-axis. The graph includes different line styles for N=32, N=64, N=128, N=256, and N=512, with the true profile also marked.]
Regularized Least-Squares Estimation

\[\hat{f} = \arg \min_{f \in \mathbb{C}^N} \Psi(f), \quad \Psi(f) = \|y - Af\|^2 + \alpha R(f) \]

- data fit term \(\|y - Af\|^2\) corresponds to negative log-likelihood of Gaussian distribution
- regularizing roughness penalty term \(R(f)\) controls noise
 \[R(f) \approx \int \|\nabla f\|^2 \, d\vec{r} \]
- regularization parameter \(\alpha > 0\) controls tradeoff between spatial resolution and noise (Fessler & Rogers, IEEE T-IP, 1996)
- Equivalent to Bayesian MAP estimation with prior \(\propto e^{-\alpha R(f)}\)

Quadratic regularization \(R(f) = \|Cf\|^2\) leads to closed-form solution:

\[\hat{f} = \left[A'A + \alpha C'C \right]^{-1} A'y \]

(a formula of limited practical use)
Choosing the Regularization Parameter

\[
\hat{f} = \left[A'A + \alpha C'C \right]^{-1} A'y
\]

\[
E\left[\hat{f} \right] = \left[A'A + \alpha C'C \right]^{-1} A'E[y]
\]

\[
E\left[\hat{f} \right] = \underbrace{\left[A'A + \alpha C'C \right]^{-1} A'A f}_{\text{blur}}
\]

\(A'A\) and \(C'C\) are Toeplitz \(\implies\) blur is approximately shift-invariant.

Frequency response of blur:

\[
L(\omega) = \frac{H(\omega)}{H(\omega) + \alpha R(\omega)}
\]

where \(H = \text{FFT}(A'A e_j)\) (lowpass) and \(R = \text{FFT}(C'C e_j)\) (highpass)

Adjust \(\alpha\) to achieve desired spatial resolution.
Spatial Resolution Example

Spiral k-space trajectory, FWHM of PSF is 1.2 pixels
Spatial Resolution Example: Profiles
Iterative Minimization by Conjugate Gradients

Choose initial guess $f^{(0)}$ (e.g., fast conjugate phase / gridding).

Iteration (unregularized):

\[
\begin{align*}
 g^{(n)} &= \nabla \Psi(f^{(n)}) = A'(Af^{(n)} - y) \quad \text{gradient} \\
 p^{(n)} &= Pg^{(n)} \quad \text{precondition} \\
 \gamma_n &= \begin{cases} 0, & n = 0 \\
 \frac{\langle g^{(n)}, p^{(n)} \rangle}{\langle g^{(n-1)}, p^{(n-1)} \rangle}, & n > 0 \end{cases} \\
 d^{(n)} &= -p^{(n)} + \gamma_n d^{(n-1)} \quad \text{search direction} \\
 v^{(n)} &= Ad^{(n)} \\
 \alpha_n &= \frac{\langle d^{(n)}, -g^{(n)} \rangle}{\langle Af^{(n)}, Af^{(n)} \rangle} \quad \text{step size} \\
 f^{(n+1)} &= f^{(n)} + \alpha_n d^{(n)} \quad \text{update}
\end{align*}
\]

Bottlenecks: computing Af and $A'y$.

- A is too large to store explicitly (not sparse)
- Even if A were stored, directly computing Af is $O(MN)$ per iteration, whereas FFT is only $O(M \log M)$.
Computing Af Rapidly

$$[Af]_i = \sum_{j=1}^{N} a_{ij} f_j = P(\vec{k}_i) \sum_{j=1}^{N} e^{-i2\pi\vec{k}_i \cdot \vec{r}_j} f_j, \quad i = 1, \ldots, M$$

- Pixel locations $\{\vec{r}_j\}$ are uniformly spaced
- k-space locations $\{\vec{k}_i\}$ are unequally spaced

\implies needs nonuniform fast Fourier transform (NUFFT)
NUFFT (Type 2)

- Compute over-sampled FFT of equally-spaced signal samples
- Interpolate onto desired unequally-spaced frequency locations
- Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator

NUFFT toolbox: http://www.eecs.umich.edu/~fessler/code
Worst-Case NUFFT Interpolation Error

Maximum error for $K/N=2$

- Min−Max (uniform)
- Gaussian (best)
- Min−Max (best $L=2$)
- Kaiser−Bessel (best)
- Min−Max ($L=13, \beta=1$ fit)
Further Acceleration using Toeplitz Matrices

Cost-function gradient:
\[g^{(n)} = A'(Af^{(n)} - y) = Tf^{(n)} - b, \]

where
\[T \triangleq A'A, \quad b \triangleq A'y. \]

In the absence of field inhomogeneity, the Gram matrix \(T \) is Toeplitz:
\[[A'A]_{jk} = \sum_{i=1}^{M} |P(\vec{k}_i)|^2 e^{-i2\pi \vec{k}_i \cdot (\vec{r}_j - \vec{r}_k)}. \]

Computing \(Tf^{(n)} \) requires an ordinary (2× over-sampled) FFT.

(Chan & Ng, SIAM Review, 1996)

In 2D: block Toeplitz with Toeplitz blocks (BTTB).

Precomputing the first column of \(T \) and \(b \) requires a couple NUFFTs.

This formulation seems ideal for “hardware” FFT systems.
NUFFT with Field Inhomogeneity?

Recall signal model including field inhomogeneity:

\[s(t) = \int f(\vec{r}) e^{-i\omega(\vec{r})t} e^{-i2\pi \vec{K}(t) \cdot \vec{r}} d\vec{r}. \]

Temporal interpolation approximation (aka “time segmentation”):

\[e^{-i\omega(\vec{r})t} \approx \sum_{l=1}^{L} a_l(t) e^{-i\omega(\vec{r})\tau_l} \]

for min-max optimized temporal interpolation functions \(\{a_l(\cdot)\}_{l=1}^{L} \).

\[s(t) \approx \sum_{l=1}^{L} a_l(t) \int \left[f(\vec{r}) e^{-i\omega(\vec{r})\tau_l} \right] e^{-i2\pi \vec{K}(t) \cdot \vec{r}} d\vec{r} \]

Linear combination of \(L \) NUFFT calls.
Field Corrected Reconstruction Example

Simulation using known field map $\omega(\vec{r})$.
Simulation Quantitative Comparison

- Computation time?
- NRMSE between \hat{f} and f^{true}?

<table>
<thead>
<tr>
<th>Reconstruction Method</th>
<th>Time (s)</th>
<th>NRMSE complex</th>
<th>NRMSE magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Correction</td>
<td>0.06</td>
<td>1.35</td>
<td>0.22</td>
</tr>
<tr>
<td>Full Conjugate Phase</td>
<td>4.07</td>
<td>0.31</td>
<td>0.19</td>
</tr>
<tr>
<td>Fast Conjugate Phase</td>
<td>0.33</td>
<td>0.32</td>
<td>0.19</td>
</tr>
<tr>
<td>Fast Iterative (10 iters)</td>
<td>2.20</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Exact Iterative (10 iters)</td>
<td>128.16</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Acceleration using Toeplitz Approximations

In the presence of field inhomogeneity, the system matrix is:

\[a_{ij} = P(\mathbf{k}_i) e^{-i\omega(\mathbf{r}_j)t_i} e^{-i2\pi \mathbf{k}_i \cdot \mathbf{r}_j} \]

The Gram matrix \(\mathbf{T} = \mathbf{A}'\mathbf{A} \) is \textit{not} Toeplitz:

\[[\mathbf{A}'\mathbf{A}]_{jk} = \sum_{i=1}^{M} |P(\mathbf{k}_i)|^2 e^{-i2\pi \mathbf{k}_i \cdot (\mathbf{r}_j - \mathbf{r}_k)} e^{-i(\omega(\mathbf{r}_j) - \omega(\mathbf{r}_k))t_i}. \]

Approximation ("time segmentation"):

\[e^{-i(\omega(\mathbf{r}_j) - \omega(\mathbf{r}_k))t_i} \approx \sum_{l=1}^{L} b_{il} e^{-i(\omega(\mathbf{r}_j) - \omega(\mathbf{r}_k))\tau_l} \]

\[\mathbf{T} = \mathbf{A}'\mathbf{A} \approx \sum_{l=1}^{L} \mathbf{D}'_l \mathbf{T}_l \mathbf{D}_l, \quad \mathbf{D}_l \triangleq \text{diag}\left\{ e^{-i\omega(\mathbf{r}_j)\tau_l} \right\} \]

Each \(\mathbf{T}_l \) is Toeplitz \(\implies \mathbf{T} \mathbf{f} \) using \(L \) pairs of FFTs.

(Fessler \textit{et al.}, IEEE T-SP, Sep. 2005, brain imaging special issue)
Toeplitz Results

Uncorrected Conj. Phase, L=6

CG–NUFFT L=6

CG–Toeplitz L=8
Toeplitz Acceleration

<table>
<thead>
<tr>
<th>Method</th>
<th>L</th>
<th>B,C</th>
<th>$A'Dy$</th>
<th>$b = A'y$</th>
<th>T_l</th>
<th>15 iter</th>
<th>Total Time</th>
<th>∞</th>
<th>50 dB</th>
<th>40 dB</th>
<th>30 dB</th>
<th>20 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conj. Phase</td>
<td>6</td>
<td>0.4</td>
<td>0.2</td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
<td>30.7</td>
<td>37.3</td>
<td>46.5</td>
<td>65.3</td>
<td>99.9</td>
</tr>
<tr>
<td>CG-NUFFT</td>
<td>6</td>
<td>0.4</td>
<td></td>
<td>5.0</td>
<td>5.4</td>
<td></td>
<td></td>
<td>5.6</td>
<td>16.7</td>
<td>26.5</td>
<td>43.0</td>
<td>70.4</td>
</tr>
<tr>
<td>CG-Toeplitz</td>
<td>8</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td>1.3</td>
<td>2.5</td>
<td></td>
<td>5.5</td>
<td>16.7</td>
<td>26.4</td>
<td>42.9</td>
<td>70.4</td>
</tr>
</tbody>
</table>

- Reduces CPU time by $2 \times$ on conventional workstation (Mac G5)
- No SNR compromise
- Eliminates k-space interpolations \Rightarrow ideal for FFT hardware
Joint Field-Map / Image Reconstruction

Signal model:

\[y_i = s(t_i) + \epsilon_i, \quad s(t) = \int f(\vec{r}) e^{-i\omega(\vec{r})t} e^{-i2\pi\vec{k}(t) \cdot \vec{r}} d\vec{r}. \]

After discretization:

\[y = A(\omega)f + \epsilon, \quad a_{ij}(\omega) = P(\vec{k}_i) e^{-i\omega j t_i} e^{-i2\pi\vec{k}_i \cdot \vec{r}_j}. \]

Joint estimation via regularized (nonlinear) least-squares:

\[(\hat{f}, \hat{\omega}) = \arg\min_{f \in \mathbb{C}^N, \omega \in \mathbb{R}^N} \| y - A(\omega)f \|^2 + \beta_1 R_1(f) + \beta_2 R_2(\omega). \]

Alternating minimization:

- Using current estimate of fieldmap \(\hat{\omega} \), update \(\hat{f} \) using CG algorithm.

- Using current estimate \(\hat{f} \) of image, update fieldmap \(\hat{\omega} \) using gradient descent.

Use spiral-in / spiral-out sequence or “racetrack” EPI.

(Sutton et al., MRM, 2004)
Joint Estimation Example

(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.
Activation Results: Static vs Dynamic Field Maps
Functional results for the two reconstructions for 3 human subjects.

Reconstruction using the standard field map for (a) subject 1, (b) subject 2, and (c) subject 3.

Reconstruction using the jointly estimated field map for (d) subject 1, (e) subject 2, and (f) subject 3.

Number of pixels with correlation coefficients higher than thresholds for (g) subject 1, (h) subject 2, and (i) subject 3.

Take home message: dynamic field mapping is possible, using iterative reconstruction as an essential tool. (Standard field maps based on echo-time differences work poorly for spiral-in / spiral-out sequences due to phase discrepancies.)
Tracking Respiration-Induced Field Changes
Regularization Variations
Regularization Revisited

- Conventional regularization for MRI uses a roughness penalty for the *complex* voxel values:

 \[
 R(f) \approx \sum_{j=1}^{N} |f_j - f_{j-1}|^2 \quad \text{(in 1D)}.
 \]

- Regularizes the real and imaginary image components equally.

- In some MR studies, including BOLD fMRI:
 - magnitude of \(f_j \) carries the information of interest,
 - phase of \(f_j \) should be spatially smooth.
 - This *a priori* information is ignored by \(R(f) \).

- Alternatives to \(R(f) \):
 - Constrain \(f \) to be real? (Unrealistic: RF phase inhomogeneity, eddy currents, ...)
 - Determine phase of \(f \) “somehow,” then estimate its magnitude.
 - Non-iteratively
 \[(\text{Noll, Nishimura, Macovski, IEEE T-MI, 1991})\]
 - Iteratively
 \[(\text{Lee, Pauly, Nishimura, ISMRM, 2003})\]
Separate Magnitude/Phase Regularization

Decompose f into its “magnitude” m and phase x:

$$f_j(m, x) = m_j e^{i x_j}, \quad m_j \in \mathbb{R}, \quad x_j \in \mathbb{R}, \quad j = 1, \ldots, N.$$
(Allow “magnitude” m_j to be negative.)

Proposed cost function with separate regularization of m and x:

$$\Psi(m, x) = \|y - Af(m, x)\|^2 + \gamma R_1(m) + \beta R_2(x).$$

Choose $\beta \gg \gamma$ to strongly smooth phase estimate.

Joint estimation of magnitude and phase via regularized LS:

$$(\hat{m}, \hat{x}) = \arg\min_{m \in \mathbb{R}^N, x \in \mathbb{R}^N} \Psi(m, x)$$

Ψ is not convex \implies need good initial estimates $(m^{(0)}, x^{(0)})$.
Alternating Minimization

Magnitude Update:

\[m^{\text{new}} = \arg \min_{m \in \mathbb{R}^N} \Psi(m, x^{\text{old}}) \]

Phase Update:

\[x^{\text{new}} = \arg \min_{x \in \mathbb{R}^N} \Psi(m^{\text{new}}, x), \]

Since \(f_j = m_j e^{ix_j} \) is linear in \(m_j \), the magnitude update is easy. Apply a few iterations of slightly modified CG algorithm (constrain \(m \) to be real)

But \(f_j = m_j e^{ix_j} \) is highly nonlinear in \(x \). Complicates “argmin.”

Steepest descent?

\[x^{(n+1)} = x^{(n)} - \lambda \nabla_x \Psi(m^{\text{old}}, x^{(n)}) . \]

Choosing the stepsize \(\lambda \) is difficult.
Optimization Transfer
Surrogate Functions

To minimize a cost function $\Phi(x)$, choose surrogate functions $\phi^{(n)}(x)$ that satisfy the following *majorization* conditions:

$$
\phi^{(n)}(x^{(n)}) = \Phi(x^{(n)}) \\
\phi^{(n)}(x) \geq \Phi(x), \quad \forall x \in \mathbb{R}^N.
$$

Iteratively minimize the surrogates as follows:

$$
x^{(n+1)} = \arg \min_{x^{(n)} \in \mathbb{R}^N} \phi^{(n)}(x).
$$

This will decrease Φ monotonically; $\Phi(x^{(n+1)}) \leq \Phi(x^{(n)})$.

The art is in the design of surrogates.

Tradeoffs:
- complexity
- computation per iteration
- convergence rate / number of iterations.
Surrogate Functions for MR Phase

\[L(x) \triangleq \| y - Af(m, x) \|^2 = \sum_{i=1}^{M} h_i([Af(m, x)]_i), \]

where \(h_i(t) \triangleq |y_i - t|^2 \) is convex.

Extending De Pierro (IEEE T-MI, 1995), for \(\pi_{ij} \geq 0 \) and \(\sum_{j=1}^{N} \pi_{ij} = 1 \):

\[[Af(m, x)]_i = \sum_{j=1}^{N} b_{ij} e^{ix_j} = \sum_{j=1}^{N} \pi_{ij} \left[\frac{b_{ij}}{\pi_{ij}} \left(e^{ix_j} - e^{ix^{(n)}_j} \right) + \bar{y}_i^{(n)} \right], \]

where \(b_{ij} \triangleq a_{ij} m_j \), \(\bar{y}_i^{(n)} \triangleq [Af(m, x^{(n)})]_i \). Choose \(\pi_{ij} \geq 0 \) and \(\sum_{j=1}^{N} \pi_{ij} = 1 \).

Since \(h_i \) is convex:

\[
\begin{align*}
h_i([Af(m, x)]_i) &= h_i \left(\sum_{j=1}^{N} \pi_{ij} \left[\frac{b_{ij}}{\pi_{ij}} \left(e^{ix_j} - e^{ix^{(n)}_j} \right) + \bar{y}_i^{(n)} \right] \right) \\
&\leq \sum_{j=1}^{N} \pi_{ij} h_i \left(\frac{b_{ij}}{\pi_{ij}} \left(e^{ix_j} - e^{ix^{(n)}_j} \right) + \bar{y}_i^{(n)} \right),
\end{align*}
\]

with equality when \(x = x^{(n)} \).
Separable Surrogate Function

\[L(x) = \sum_{i=1}^{M} h_i([Af(m, x)]_i) \leq \sum_{i=1}^{M} \sum_{j=1}^{N} \pi_{ij} h_i \left(\frac{b_{ij}}{\pi_{ij}} \left(e^{ix_j} - e^{ix_j(n)} \right) + \bar{y}_i^{(n)} \right) \]

\[= \sum_{j=1}^{N} \sum_{i=1}^{M} \pi_{ij} h_i \left(\frac{b_{ij}}{\pi_{ij}} \left(e^{ix_j} - e^{ix_j(n)} \right) + \bar{y}_i^{(n)} \right) \underbrace{Q_j(x_j; x^{(n)})}_{\text{Q}}. \]

Construct similar surrogates \(\{S_j\} \) for (convex) roughness penalty...

Surrogate: \(\phi^{(n)}(x) = \sum_{j=1}^{N} Q_j(x_j; x^{(n)}) + \beta S_j(x_j; x^{(n)}). \)

Parallelizable (simultaneous) update, with 1D minimizations:

\[x^{(n+1)} = \arg\min_{x^{(n)} \in \mathbb{R}^N} \phi^{(n)}(x) \implies x_j^{(n+1)} = \arg\min_{x_j \in \mathbb{R}} Q_j(x_j; x^{(n)}) + \beta S_j(x_j; x^{(n)}). \]

Intrinsically guaranteed to monotonically decrease the cost function.
1D Minimization: $\cos + \text{quadratic}$

\[
\ldots \quad Q_j(x_j; x^{(n)}) \equiv -|r_j^{(n)}| \cos \left(x_j - x_j^{(n)} - \angle r_j^{(n)} \right),
\]

\[
r_j^{(n)} = \left(f_j^{(n)} \right)^* \left[A'(y - Ax^{(n)}) \right]_j + |m_j|^2 N \sum_{i=1}^{M} |P(\vec{k}_i)|^2
\]

Simple 1D optimization transfer iterations...
Final Algorithm for Phase Update

Diagonally preconditioned gradient descent:

\[x^{(n+1)} = x^{(n)} - D(x^{(n)}) \nabla \Phi(x^{(n)}) \]

where the diagonal matrix \(D \) has elements that ensure \(\Phi \) decreases monotonically.

Alternate between magnitude and phase updates...
Preliminary Simulation Example
Parallel Imaging
Sensitivity encoded (SENSE) imaging

Use multiple receive coils (requires multiple RF channels). Exploit spatial localization of sensitivity pattern of each coil.

Note: at 1.5T, RF is about 60MHz.

⇒ RF wavelength is about \(\frac{3 \cdot 10^8 \text{m/s}}{60 \cdot 10^6 \text{Hz}} = 5 \text{ meters} \)

RF coil sensitivity patterns

Pruessmann et al., MRM, 1999
SENSE Model

Multiple coil data:

\[y_{li} = s_l(t_i) + \epsilon_{li}, \quad s_l(t) = \int f(\vec{r}) s_l^{\text{coil}}(\vec{r}) e^{-i2\pi \vec{K}(t) \cdot \vec{r}} \, d\vec{r}, \quad l = 1, \ldots, L = N_{\text{coil}} \]

Goal: reconstruct \(f(\vec{r}) \) from coil data \(y_1, \ldots, y_L \)

“given” sensitivity maps \(\{ s_l^{\text{coil}}(\vec{r}) \}_{l=1}^L \).

Benefit: reduced scan time.

Left: sum of squares; right: SENSE.
SENSE Reconstruction

Signal model:

\[s_l(t) = \int f(\vec{r}) s^\text{coil}_l(\vec{r}) e^{-i 2\pi \vec{k}(t) \cdot \vec{r}} \, d\vec{r} \]

Discretized form:

\[\mathbf{y}_l = A D_l \mathbf{f} + \mathbf{\epsilon}_l, \quad l = 1, \ldots, L, \]

where \(A \) is the usual frequency/phase encoding matrix and \(D_l \) contains the sensitivity pattern of the \(l \)th coil: \(D_l = \text{diag}\{s^\text{coil}_l(\vec{r}_j)\} \).

Regularized least-squares estimation:

\[\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} \sum_{l=1}^{L} \| \mathbf{y}_l - A D_l \mathbf{f} \|^2 + \beta R(\mathbf{f}). \]

Can generalize to account for noise correlation due to coil coupling. Easy to apply CG algorithm, including Toeplitz/NUFFT acceleration.

For Cartesian SENSE, iterations are not needed. (Solve small system of linear equations for each voxel.)
RF Pulse Design
Example: Iterative RF Pulse Design
(3D tailored RF pulses for through-plane dephasing compensation)
Multiple-coil Transmit Imaging Pulses (Mc-TIP)
Summary

- Iterative reconstruction: much potential in MRI
- Even nonlinear problems involving phase terms e^{ix} are tractable by using optimization transfer.
- Computation: reduced by tools like NUFFT / Toeplitz
- Optimization algorithm design remains important (cf. Shepp and Vardi, 1982, PET)

Some current challenges

- Sensitivity pattern mapping for SENSE
- Through-voxel field inhomogeneity gradients
- Motion / dynamics / partial k-space data
- Establishing diagnostic efficacy with clinical data...