Advanced methods for image reconstruction in fMRI

Jeffrey A. Fessler

EECS Department The University of Michigan

Regional Symposium on MRI Sep. 28, 2007

Acknowledgements: Doug Noll, Brad Sutton,

Outline

- MR image reconstruction problem description
- Overview of image reconstruction methods
- Model-based image reconstruction
- Iterations and computation (NUFFT etc.)
- Regularization
- Myths about iterative reconstruction
- Field inhomogeneity correction
- Parallel (sensitivity encoded) imaging

Image reconstruction toolbox:

http://www.eecs.umich.edu/~fessler

Why Iterative Image Reconstruction?

- Statistical modeling may reduce noise
- Incorporate prior information, *e.g.*:
 - support constraints
 - (piecewise) smoothness
 - phase constraints
- No density compensation needed
- "Non-Fourier" physical effects such as field inhomogeneity
- Incorporation of coil sensitivity maps
- Improved results for under-sampled trajectories (?)

• ...

("Avoiding k-space interpolation" is not a compelling reason!)

Primary drawbacks of Iterative Methods

- Choosing regularization parameter(s)
- Algorithm speed

Example: Iterative Reconstruction under ΔB_0

Introduction to Reconstruction

Standard MR Image Reconstruction

MR k-space data Reconstructed Image

Cartesian sampling in k-space. An inverse FFT. End of story. Commercial MR system quotes 400 FFTs (256²) per second.

Non-Cartesian MR Image Reconstruction

"k-space" data $\mathbf{y} = (y_1, \dots, y_M)$

 $\underset{f(\vec{r})}{\text{image}}$

k-space trajectory: $\vec{\kappa}(t) = (k_x(t), k_y(t))$ spatial coordinates: $\vec{r} \in \mathbb{R}^{\bar{d}}$

Textbook MRI Measurement Model

Ignoring *lots* of things, the standard measurement model is:

 $y_i = s(t_i) + \text{noise}_i, \qquad i = 1, \dots, M$ $s(t) = \int f(\vec{r}) e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r} = F(\vec{\kappa}(t)).$

 \vec{r} : spatial coordinates $\vec{\kappa}(t)$: k-space trajectory of the MR pulse sequence $f(\vec{r})$: object's unknown transverse magnetization $F(\vec{\kappa})$: Fourier transform of $f(\vec{r})$. We get noisy samples of this! $e^{-i2\pi\vec{\kappa}(t)\cdot\vec{r}}$ provides spatial information \Longrightarrow Nobel Prize

Goal of image reconstruction: find $f(\vec{r})$ from measurements $\{y_i\}_{i=1}^M$.

The unknown object $f(\vec{r})$ is a continuous-space function, but the recorded measurements $\mathbf{y} = (y_1, \dots, y_M)$ are finite.

Under-determined (ill posed) problem \implies no canonical solution.

All MR scans provide only "partial" k-space data.

Image Reconstruction Strategies

Continuous-continuous formulation

Pretend that a continuum of measurements are available:

$$F(\vec{\kappa}) = \int f(\vec{r}) \,\mathrm{e}^{-\imath 2\pi \vec{\kappa} \cdot \vec{r}} \,\mathrm{d}\vec{r} \,.$$

The "solution" is an inverse Fourier transform:

$$f(\vec{r}) = \int F(\vec{\kappa}) \,\mathrm{e}^{\imath 2\pi\vec{\kappa}\cdot\vec{r}} \,\mathrm{d}\,\vec{\kappa}.$$

Now discretize the integral solution:

$$\hat{f}(\vec{r}) = \sum_{i=1}^{M} F(\vec{\kappa}_i) e^{i2\pi\vec{\kappa}_i \cdot \vec{r}} w_i \approx \sum_{i=1}^{M} y_i w_i e^{i2\pi\vec{\kappa}_i \cdot \vec{r}},$$

where w_i values are "sampling density compensation factors." Numerous methods for choosing w_i values in the literature. For Cartesian sampling, using $w_i = 1/N$ suffices, and the summation is an inverse FFT. For non-Cartesian sampling, replace summation with gridding.

Continuous-discrete formulation

Use many-to-one linear model:

$$\mathbf{y} = \mathcal{A}f + \mathbf{\epsilon}$$
, where $\mathcal{A} : \mathcal{L}_2(\mathbb{R}^{\bar{d}}) \to \mathbb{C}^M$.

Minimum norm solution (*cf.* "natural pixels"):

$$\min_{\hat{f}} \left\| \hat{f} \right\| \text{ subject to } \mathbf{y} = \mathcal{A} \hat{f}$$

$$\hat{f} = \mathcal{A}^* (\mathcal{A}\mathcal{A}^*)^{-1} \mathbf{y} = \sum_{i=1}^M c_i \mathrm{e}^{-\imath 2\pi \vec{\kappa}_i \cdot \vec{r}}, \text{ where } \mathcal{A}\mathcal{A}^* \mathbf{c} = \mathbf{y}.$$

• Discrete-discrete formulation Assume parametric model for object:

$$f(\vec{r}) = \sum_{j=1}^N f_j p_j(\vec{r}).$$

Estimate parameter vector $\mathbf{f} = (f_1, \dots, f_N)$ from data vector \mathbf{y} .

Model-Based Image Reconstruction: Overview

Model-Based Image Reconstruction

MR signal equation with more complete physics:

$$s(t) = \int f(\vec{r}) s^{\operatorname{coil}}(\vec{r}) e^{-\iota \omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$
$$y_i = s(t_i) + \operatorname{noise}_i, \qquad i = 1, \dots, M$$

- $s^{\text{coil}}(\vec{r})$ Receive-coil sensitivity pattern(s) (for SENSE)
- $\omega(\vec{r})$ Off-resonance frequency map (due to field inhomogeneity / magnetic susceptibility)
- $R_2^*(\vec{r})$ Relaxation map

Other physical factors (?)

- Eddy current effects; in $\vec{\kappa}(t)$
- Concomitant gradient terms
- Chemical shift
- Motion

Goal?

(it depends)

Field Inhomogeneity-Corrected Reconstruction

$$s(t) = \int f(\vec{r}) s^{\operatorname{coil}}(\vec{r}) e^{-\iota \omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Goal: reconstruct $f(\vec{r})$ given field map $\omega(\vec{r})$. (Assume all other terms are known or unimportant.)

Motivation

Essential for functional MRI of brain regions near sinus cavities!

(Sutton et al., ISMRM 2001; T-MI 2003)

Sensitivity-Encoded (SENSE) Reconstruction

$$s(t) = \int f(\vec{r}) s^{\operatorname{coil}}(\vec{r}) e^{-\iota \omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Goal: reconstruct $f(\vec{r})$ given sensitivity maps $s^{coil}(\vec{r})$. (Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction "easily."

(Sutton et al., ISMRM 2001, Olafsson et al., ISBI 2006)

Joint Estimation of Image and Field-Map

$$s(t) = \int f(\vec{r}) s^{\operatorname{coil}}(\vec{r}) e^{-\iota \mathbf{\omega}(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Goal: estimate *both* the image $f(\vec{r})$ and the field map $\omega(\vec{r})$ (Assume all other terms are known or unimportant.)

Analogy: joint estimation of emission image and attenuation map in PET.

(Sutton *et al.*, ISMRM Workshop, 2001; ISBI 2002; ISMRM 2002; ISMRM 2003; MRM 2004)

The Kitchen Sink

$$s(t) = \int f(\vec{r}) s^{\operatorname{coil}}(\vec{r}) e^{-\iota \mathbf{\omega}(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Goal: estimate image $f(\vec{r})$, field map $\omega(\vec{r})$, and relaxation map $R_2^*(\vec{r})$

Requires "suitable" k-space trajectory.

(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)

Estimation of Dynamic Maps

$$s(t) = \int f(\vec{r}) s^{\operatorname{coil}}(\vec{r}) e^{-\iota \mathbf{\omega}(\vec{r})t} e^{-\frac{R_2^*(\vec{r})t}{2}} e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Goal: estimate dynamic field map $\omega(\vec{r})$ and "BOLD effect" $R_2^*(\vec{r})$ given baseline image $f(\vec{r})$ in fMRI.

Motion...

Model-Based Image Reconstruction: Details

Basic Signal Model

$$y_i = s(t_i) + \varepsilon_i, \qquad \mathsf{E}[y_i] = s(t_i) = \int f(\vec{r}) e^{-i2\pi \vec{\kappa}_i \cdot \vec{r}} d\vec{r}$$

Goal: reconstruct $f(\vec{r})$ from $\mathbf{y} = (y_1, \dots, y_M)$.

Series expansion of unknown object:

$$f(\vec{r}) \approx \sum_{j=1}^{N} f_j p(\vec{r} - \vec{r}_j) \longleftarrow$$
 usually 2D rect functions.

Substituting into signal model yields

$$\mathsf{E}[y_i] = \int \left[\sum_{j=1}^N f_j p(\vec{r} - \vec{r}_j)\right] \mathrm{e}^{-\imath 2\pi \vec{\kappa}_i \cdot \vec{r}} \mathrm{d}\vec{r} = \sum_{j=1}^N \left[\int p(\vec{r} - \vec{r}_j) \,\mathrm{e}^{-\imath 2\pi \vec{\kappa}_i \cdot \vec{r}} \mathrm{d}\vec{r}\right] f_j$$
$$= \sum_{j=1}^N a_{ij} f_j, \qquad a_{ij} = P(\vec{\kappa}_i) \,\mathrm{e}^{-\imath 2\pi \vec{\kappa}_i \cdot \vec{r}_j}, \qquad p(\vec{r}) \stackrel{\text{FT}}{\Longleftrightarrow} P(\vec{\kappa}).$$

Discrete-discrete measurement model with system matrix $A = \{a_{ij}\}$:

$$y = Af + \varepsilon.$$

Goal: estimate coefficients (pixel values) $f = (f_1, \ldots, f_N)$ from y.

Small Pixel Size Need Not Matter

Profiles

Regularized Least-Squares Estimation

Estimate object by minimizing a cost function:

$$\hat{f} = \underset{f \in \mathbb{C}^N}{\operatorname{arg\,min}} \Psi(f), \qquad \Psi(f) = \|\mathbf{y} - \mathbf{A}f\|^2 + \alpha \mathsf{R}(f)$$

- data fit term $||y Af||^2$ corresponds to negative log-likelihood of Gaussian distribution
- regularizing term R(f) controls noise by penalizing roughness,

e.g.:
$$\mathsf{R}(f) \approx \int \|\nabla f\|^2 \mathrm{d}\vec{r}$$

- regularization parameter $\alpha > 0$ controls tradeoff between spatial resolution and noise
- Equivalent to Bayesian MAP estimation with prior $\propto e^{-\alpha R(\textbf{\textit{f}})}$

Issues:

- choosing R(f)
- \bullet choosing α
- computing minimizer rapidly.

Quadratic regularization

1D example: squared differences between neighboring pixel values:

$$\mathsf{R}(f) = \sum_{j=2}^{N} \frac{1}{2} |f_j - f_{j-1}|^2.$$

In matrix-vector notation, $R(f) = \frac{1}{2} ||Cf||^2$ where

$$oldsymbol{C} = egin{bmatrix} -1 & 1 & 0 & 0 & \dots & 0 \ 0 & -1 & 1 & 0 & \dots & 0 \ & & \ddots & \ddots & \ddots \ 0 & \dots & 0 & 0 & -1 & 1 \end{bmatrix}, \ {f so} \ oldsymbol{C} oldsymbol{f} = egin{bmatrix} f_2 - f_1 \ dots \ f_N - f_{N-1} \end{bmatrix}.$$

For 2D and higher-order differences, modify differencing matrix C.

Leads to closed-form solution:

$$\hat{f} = \underset{f}{\operatorname{arg\,min}} \|\mathbf{y} - \mathbf{A}f\|^{2} + \alpha \|\mathbf{C}f\|^{2}$$
$$= \left[\mathbf{A}'\mathbf{A} + \alpha \mathbf{C}'\mathbf{C}\right]^{-1}\mathbf{A}'\mathbf{y}.$$

(a formula of limited practical use for computing \hat{f})

Choosing the Regularization Parameter

Spatial resolution analysis (Fessler & Rogers, IEEE T-IP, 1996):

$$\hat{f} = \left[\mathbf{A}'\mathbf{A} + \alpha \mathbf{C}'\mathbf{C} \right]^{-1}\mathbf{A}'\mathbf{y}$$
$$\mathsf{E}\left[\hat{f} \right] = \left[\mathbf{A}'\mathbf{A} + \alpha \mathbf{C}'\mathbf{C} \right]^{-1}\mathbf{A}'\mathsf{E}[\mathbf{y}]$$
$$\mathsf{E}\left[\hat{f} \right] = \underbrace{\left[\mathbf{A}'\mathbf{A} + \alpha \mathbf{C}'\mathbf{C} \right]^{-1}\mathbf{A}'\mathbf{A}}_{\mathsf{blur}}\mathbf{f}$$

A'A and C'C are Toeplitz \Longrightarrow blur is approximately shift-invariant.

Frequency response of blur:

$$L(\omega) = \frac{H(\omega)}{H(\omega) + \alpha R(\omega)}$$

- $H(\omega_k) = FFT(A'Ae_j)$ (lowpass)
- $R(\omega_k) = FFT(\mathbf{C}'\mathbf{C}e_j)$ (highpass)

Adjust α to achieve desired spatial resolution.

Spatial Resolution Example

Radial k-space trajectory, FWHM of PSF is 1.2 pixels

Spatial Resolution Example: Profiles

Resolution/noise tradeoffs

Noise analysis:

$$\operatorname{Cov}\left\{\hat{\boldsymbol{f}}\right\} = \left[\boldsymbol{A}'\boldsymbol{A} + \alpha\boldsymbol{C}'\boldsymbol{C}\right]^{-1}\boldsymbol{A}'\operatorname{Cov}\left\{\boldsymbol{y}\right\}\boldsymbol{A}\left[\boldsymbol{A}'\boldsymbol{A} + \alpha\boldsymbol{C}'\boldsymbol{C}\right]^{-1}$$

Using circulant approximations to A'A and C'C yields:

$$\mathsf{Var}\left\{ \widehat{f}_{j}
ight\} pprox \sigma_{arepsilon}^{2}\sum_{k}rac{H(\omega_{k})}{(H(\omega_{k})+lpha R(\omega_{k}))^{2}}$$

•
$$H(\omega_k) = FFT(A'Ae_j)$$
 (lowpass)

•
$$R(\omega_k) = FFT(\mathbf{C}'\mathbf{C}e_j)$$
 (highpass)

 \implies Predicting reconstructed image noise requires just 2 FFTs. (*cf.* gridding approach?)

Adjust α to achieve desired spatial resolution / noise tradeoff.

Resolution/Noise Tradeoff Example

In short: one can choose α rapidly and predictably for quadratic regularization.

Iterative Minimization by Conjugate Gradients

Choose initial guess $f^{(0)}$ (*e.g.*, fast conjugate phase / gridding). Iteration (unregularized):

$$\begin{split} \boldsymbol{g}^{(n)} &= \boldsymbol{\nabla} \Psi(\boldsymbol{f}^{(n)}) = \boldsymbol{A}'(\boldsymbol{A}\boldsymbol{f}^{(n)} - \boldsymbol{y}) \text{ gradient precondition} \\ \boldsymbol{p}^{(n)} &= \boldsymbol{P}\boldsymbol{g}^{(n)} & n = 0 \\ \boldsymbol{\gamma}_{n} &= \begin{cases} 0, & n = 0 \\ \frac{\langle \boldsymbol{g}^{(n)}, \boldsymbol{p}^{(n)} \rangle}{\langle \boldsymbol{g}^{(n-1)}, \boldsymbol{p}^{(n-1)} \rangle}, & n > 0 \end{cases} \\ \boldsymbol{d}^{(n)} &= -\boldsymbol{p}^{(n)} + \boldsymbol{\gamma}_{n}\boldsymbol{d}^{(n-1)} & \text{search direction} \\ \boldsymbol{v}^{(n)} &= \boldsymbol{A}\boldsymbol{d}^{(n)} \\ \boldsymbol{\alpha}_{n} &= \langle \boldsymbol{d}^{(n)}, -\boldsymbol{g}^{(n)} \rangle / ||\boldsymbol{v}^{(n)}||^{2} & \text{step size} \\ \boldsymbol{f}^{(n+1)} &= \boldsymbol{f}^{(n)} + \boldsymbol{\alpha}_{n}\boldsymbol{d}^{(n)} & \text{update} \end{cases} \end{split}$$

Bottlenecks: computing $Af^{(n)}$ and A'r.

- A is too large to store explicitly (not sparse)
- Even if *A* were stored, directly computing *Af* is *O*(*MN*) per iteration, whereas FFT is only *O*(*M*log*M*).

Computing Af Rapidly

$$[\boldsymbol{A}\boldsymbol{f}]_i = \sum_{j=1}^N a_{ij}f_j = P(\vec{\kappa}_i) \sum_{j=1}^N e^{-\imath 2\pi \vec{\kappa}_i \cdot \vec{r}_j} f_j, \qquad i = 1, \dots, M$$

• Pixel locations $\{\vec{r}_j\}$ are uniformly spaced

• k-space locations $\{\vec{\kappa}_i\}$ are unequally spaced

⇒ needs nonuniform fast Fourier transform (NUFFT)

NUFFT (Type 2)

- Compute over-sampled FFT of equally-spaced signal samples
- Interpolate onto desired unequally-spaced frequency locations
- Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator
- Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator and min-max optimized Kaiser-Bessel interpolator. NUFFT toolbox: http://www.eecs.umich.edu/~fessler/code

Worst-Case NUFFT Interpolation Error

Further Acceleration using Toeplitz Matrices

Cost-function gradient:

$$egin{aligned} m{g}^{(n)} &= m{A}'(m{A}m{f}^{(n)}-m{y}) \ &= m{T}m{f}^{(n)}-m{b}, \end{aligned}$$

where

$$T \triangleq A'A, \qquad b \triangleq A'y.$$

In the absence of field inhomogeneity, the Gram matrix *T* is Toeplitz:

$$\left[\boldsymbol{A}^{\prime}\boldsymbol{A}\right]_{jk} = \sum_{i=1}^{M} \left| P(\vec{\kappa}_{i}) \right|^{2} \mathrm{e}^{-\imath 2\pi \vec{\kappa}_{i} \cdot (\vec{r}_{j} - \vec{r}_{k})}$$

Computing $Tf^{(n)}$ requires an ordinary (2× over-sampled) FFT. (Chan & Ng, SIAM Review, 1996) In 2D: block Toeplitz with Toeplitz blocks (BTTB).

Precomputing the first column of *T* and *b* requires a couple NUFFTs. (Wajer, ISMRM 2001, Eggers ISMRM 2002, Liu ISMRM 2005)

This formulation seems ideal for "hardware" FFT systems.

Toeplitz Acceleration

Example: 256^2 image. radial trajectory, $2 \times$ angular under-sampling.

(Iterative provides reduced aliasing energy.)

Toeplitz Acceleration

Method	A'Dy	b = A'y	T	20 iter	Total Time	NRMS (50dB)
Conj. Phase	0.3				0.3	7.8%
CG-NUFFT				12.5	12.5	4.1%
CG-Toeplitz		0.3	0.8	3.5	4.6	4.1%

- Toeplitz aproach reduces CPU time by more than $2 \times$ on conventional workstation (Xeon 3.4GHz)
- Eliminates k-space interpolations \implies ideal for FFT hardware
- No SNR compromise
- CG reduces NRMS error relative to CP, but $15 \times$ slower... (More dramatic improvements seen in fMRI when correcting for field inhomogeneity.)

NUFFT with Field Inhomogeneity?

Combine NUFFT with min-max temporal interpolator (Sutton *et al.*, IEEE T-MI, 2003) (forward version of "time segmentation", Noll, T-MI, 1991)

Recall signal model including field inhomogeneity:

$$s(t) = \int f(\vec{r}) e^{-\iota \mathbf{\Omega}(\vec{r})t} e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}.$$

Temporal interpolation approximation (aka "time segmentation"):

$$\mathrm{e}^{-\iota\,\boldsymbol{\omega}(\vec{r})\,t} \approx \sum_{l=1}^{L} a_l(t)\,\mathrm{e}^{-\iota\,\boldsymbol{\omega}(\vec{r})\,\boldsymbol{\tau}_l}$$

for min-max optimized temporal interpolation functions $\{a_l(\cdot)\}_{l=1}^L$.

$$s(t) \approx \sum_{l=1}^{L} a_l(t) \int \left[f(\vec{r}) e^{-\iota \omega(\vec{r}) \tau_l} \right] e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}$$

Linear combination of *L* NUFFT calls.

Field Corrected Reconstruction Example

Simulation using known field map $\omega(\vec{r})$.

No Correction

Slow Conjugate Phase

Fast Conjugate Phase

Slow Iterative

Fast Iterative

Simulation Quantitative Comparison

- Computation time?
- NRMSE between \hat{f} and f^{true} ?

Reconstruction Method	Time (s)	NRMSE	NRMSE		
		complex	magnitude		
No Correction	0.06	1.35	0.22		
Full Conjugate Phase	4.07	0.31	0.19		
Fast Conjugate Phase	0.33	0.32	0.19		
Fast Iterative (10 iters)	2.20	0.04	0.04		
Exact Iterative (10 iters)	128.16	0.04	0.04		

Human Data: Field Correction

Acceleration using Toeplitz Approximations

In the presence of field inhomogeneity, the system matrix is:

$$a_{ij} = P(\vec{\kappa}_i) e^{-\iota \omega(\vec{r}_j)t_i} e^{-\iota 2\pi \vec{\kappa}_i \cdot \vec{r}_j}$$

The Gram matrix T = A'A is *not* Toeplitz:

$$[\mathbf{A}'\mathbf{A}]_{jk} = \sum_{i=1}^{M} |P(\vec{\kappa}_i)|^2 e^{-\iota 2\pi \vec{\kappa}_i \cdot (\vec{r}_j - \vec{r}_k)} e^{-\iota \left(\mathbf{\omega}(\vec{r}_j) - \mathbf{\omega}(\vec{r}_k)\right)t_i}$$

Approximation ("time segmentation"):

Ea

$$e^{-\iota \left(\boldsymbol{\omega}(\vec{r}_{j})-\boldsymbol{\omega}(\vec{r}_{k})\right)t_{i}} \approx \sum_{l=1}^{L} b_{il} e^{-\iota \left(\boldsymbol{\omega}(\vec{r}_{j})-\boldsymbol{\omega}(\vec{r}_{k})\right)\tau_{l}}$$

$$\boldsymbol{T} = \boldsymbol{A}' \boldsymbol{A} \approx \sum_{l=1}^{L} \boldsymbol{D}_{l}' \boldsymbol{T}_{l} \boldsymbol{D}_{l}, \qquad \begin{array}{l} \boldsymbol{D}_{l} \triangleq \operatorname{diag} \left\{ e^{-\iota \boldsymbol{\omega}(\vec{r}_{j})\tau_{l}} \right\} \\ [\boldsymbol{T}_{l}]_{jk} \triangleq \sum_{i=1}^{M} |P(\vec{\kappa}_{i})|^{2} b_{il} e^{-\iota 2\pi \vec{\kappa}_{i} \cdot (\vec{r}_{j}-\vec{r}_{k})} \\ \end{array}$$
ch \boldsymbol{T}_{l} \text{ is Toeplitz} \Longrightarrow \boldsymbol{T} \boldsymbol{f} \text{ using } L \text{ pairs of FFTs.} \end{array}

(Fessler et al., IEEE T-SP, Sep. 2005, brain imaging special issue)

Toeplitz Results

Fieldmap: Brain

HZ

CG–NUFFT L=6 CG–Toeplitz L=8

Toeplitz Acceleration

		Precomputation					NRMS % vs SNR					
Method	L	B , C	A'Dy	$\boldsymbol{b}=\boldsymbol{A}'\boldsymbol{y}$	\boldsymbol{T}_l	15 iter	Total Time	∞	50 dB	40 dB	30 dB	20 dE
Conj. Phase	6	0.4	0.2				0.6	30.7	37.3	46.5	65.3	99.9
CG-NUFFT	6	0.4				5.0	5.4	5.6	16.7	26.5	43.0	70.4
CG-Toeplitz	8	0.4		0.2	0.6	1.3	2.5	5.5	16.7	26.4	42.9	70.4

• Reduces CPU time by $2 \times$ on conventional workstation (Mac G5)

- No SNR compromise
- Eliminates k-space interpolations \implies ideal for FFT hardware

Joint Field-Map / Image Reconstruction

Signal model:

$$y_i = s(t_i) + \varepsilon_i, \qquad s(t) = \int f(\vec{r}) e^{-\iota \Theta(\vec{r})t} e^{-\iota 2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}.$$

After discretization:

$$\mathbf{y} = \mathbf{A}(\mathbf{\omega})\mathbf{f} + \mathbf{\epsilon}, \qquad a_{ij}(\mathbf{\omega}) = P(\vec{\kappa}_i) e^{-\iota \omega_j t_i} e^{-\iota 2\pi \vec{\kappa}_i \cdot \vec{r}_j}.$$

Joint estimation via regularized (nonlinear) least-squares:

$$(\hat{\boldsymbol{f}}, \hat{\boldsymbol{\omega}}) = \underset{\boldsymbol{f} \in \mathbb{C}^N, \boldsymbol{\omega} \in \mathbb{R}^N}{\operatorname{arg\,min}} \|\boldsymbol{y} - \boldsymbol{A}(\boldsymbol{\omega})\boldsymbol{f}\|^2 + \beta_1 R_1(\boldsymbol{f}) + \beta_2 R_2(\boldsymbol{\omega}).$$

Alternating minimization:

- Using current estimate of fieldmap $\hat{\omega}$, update \hat{f} using CG algorithm.
- Using current estimate \hat{f} of image, update fieldmap $\hat{\omega}$ using gradient descent.

Use spiral-in / spiral-out sequence or "racetrack" EPI.

⁽Sutton *et al.*, MRM, 2004)

Joint Estimation Example

(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.

Activation Results: Static vs Dynamic Field Maps

Functional results for the two reconstructions for 3 human subjects.

Reconstruction using the standard field map for (a) subject 1, (b) subject 2, and (c) subject 3.

Reconstruction using the jointly estimated field map for (d) subject 1, (e) subject 2, and (f) subject 3.

Number of pixels with correlation coefficients higher than thresholds for (g) subject 1, (h) subject 2, and (i) subject 3.

Take home message: dynamic field mapping is possible, using iterative reconstruction as an essential tool. (Standard field maps based on echo-time differences work poorly for spiral-in / spiral-out sequences due to phase discrepancies.)

Tracking Respiration-Induced Field Changes

Myths

- \bullet Choosing α is difficult
- Sample density weighting is desirable

Sampling density weighted LS

Some researchers recommend using a weighted LS cost function:

 $\Psi(\boldsymbol{f}) = \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{f}\|_{\boldsymbol{W}}^2$

where the weighting matrix W is related to the k-space sample density compensation factors (DCF).

Purported benefits:

- Faster convergence
- Better conditioning

But, Gauss-Markov theorem from statistical estimation theory states that lowest estimator variance is realized by choosing $W = \sigma_{\epsilon}^{-2}I$, the inverse of the data noise covariance.

Resolution/Noise Tradeoff: Example with Weighting

Don't just take it from me...

Figure 5. Reconstructed images for simulated spiral sampling of the noisy k-space of the SL phantom (60% noise) using conventional gridding (a), F-CG without (b) and with spiral DCF (c), and DING (d).

Fig. 5 of Gabr et al., MRM, Dec. 2006

Acceleration via Weighting?

Fig. 8 of Gabr et al., MRM, Dec. 2006. Zero initialization!

Acceleration via Initialization

Parallel Imaging

Sensitivity encoded (SENSE) imaging

Use multiple receive coils (requires multiple RF channels). Exploit spatial localization of sensitivity pattern of each coil.

Note: at 1.5T, RF is about 60MHz. \implies RF wavelength is about $3 \cdot 10^8$ m/s/ $60 \cdot 10^6$ Hz = 5 meters

Pruessmann et al., MRM, 1999

RF coil sensitivity patterns

SENSE Model

Multiple coil data:

 $y_{li} = s_l(t_i) + \varepsilon_{li}, \quad s_l(t) = \int f(\vec{r}) s_l^{\text{coil}}(\vec{r}) e^{-i2\pi \vec{\kappa}(t) \cdot \vec{r}} d\vec{r}, \quad l = 1, \dots, L = N_{\text{coil}}$

Goal: reconstruct $f(\vec{r})$ from coil data y_1, \dots, y_L "given" sensitivity maps $\{s_l^{\text{coil}}(\vec{r})\}_{l=1}^L$.

Benefit: reduced scan time.

Left: sum of squares; right: SENSE.

SENSE Reconstruction

Signal model:

$$s_l(t) = \int f(\vec{r}) \, s_l^{\text{coil}}(\vec{r}) \, \mathrm{e}^{-\imath 2\pi \vec{\kappa}(t) \cdot \vec{r}} \, \mathrm{d}\vec{r}$$

Discretized form:

$$\boldsymbol{y}_l = \boldsymbol{A}\boldsymbol{D}_l\boldsymbol{f} + \boldsymbol{\varepsilon}_l, \quad l = 1, \dots, L,$$

where A is the usual frequency/phase encoding matrix and D_l contains the sensitivity pattern of the *l*th coil: $D_l = \text{diag}\{s_l^{\text{coil}}(\vec{r}_j)\}$.

Regularized least-squares estimation:

$$\hat{\boldsymbol{f}} = \operatorname*{arg\,min}_{\boldsymbol{f}} \sum_{l=1}^{L} \|\boldsymbol{y}_l - \boldsymbol{A}\boldsymbol{D}_l\boldsymbol{f}\|^2 + \beta R(\boldsymbol{f}).$$

Can generalize to account for noise correlation due to coil coupling. Easy to apply CG algorithm, including Toeplitz/NUFFT acceleration.

For Cartesian SENSE, iterations are not needed. (Solve small system of linear equations for each voxel.)

Summary

- Iterative reconstruction: much potential in MRI
- Quadratic regularization parameter selection is tractable
- Computation: reduced by tools like NUFFT / Toeplitz
- But optimization algorithm design remains important (*cf.* Shepp and Vardi, 1982, PET)

Some current challenges

- Sensitivity pattern mapping for SENSE
- Through-voxel field inhomogeneity gradients
- Motion / dynamics / partial k-space data
- Establishing diagnostic efficacy with clinical data...

Image reconstruction toolbox:
http://www.eecs.umich.edu/~fessler