Model-based MR image reconstruction with compensation for through-plane field inhomogeneity

Jeffrey A. Fessler EECS Dept. The University of Michigan

Douglas C. Noll BME Dept. The University of Michigan

> ISBI Apr. 14, 2007

Acknowledgements: Will Grissom, Valur Olafsson, Brad Sutton, Chun-yu Yip

Introduction

- Magnetic field inhomogeneity (ΔB_0) can cause blur/distortion in MR images if uncorrected
- Existing correction methods have drawbacks
 - Assume field map constant within each voxel Sutton, Noll, Fessler, IEEE T-MI, Feb. 2003
 Fessler, et al., IEEE T-SP, Sep. 2005
 - Apply only to particular trajectories, e.g., spirals
 Noll, Fessler, Sutton, IEEE T-MI, Mar. 2005
 - Use slow iterative method based on piecewise-linear model Sutton, Noll, Fessler, ISMRM, 2004

Goal:

- account for within-voxel field inhomogeneity (piecewise-linear model
- allow arbitrary trajectories
- provide accelerated (iterative) algorithm

Review of "conventional" MR signal model

Baseband MR signal:

$$s(t) = \iint f(x, y, z_0) e^{-\iota \omega(x, y, z_0)t} e^{-\iota 2\pi [k_{\mathbf{X}}(t)x + k_{\mathbf{Y}}(t)y]} dx dy$$

- z_0 : axial center of the slice.
- f(x,y,z): transverse magnetization of object (unknown).
- $\omega(x, y, z_0)$: off-resonance frequency map for slice z_0 . Field map: $\omega = \gamma \Delta B_0$, assumed known.
- $(k_{\rm X}(t), k_{\rm Y}(t))$: k-space trajectory of the (2D) scan.

Goal: estimate $f(x, y, z_0)$ from M noisy signal samples:

$$y_i = s(t_i) + \varepsilon_i, \qquad i = 1, \ldots, M,$$

 $\boldsymbol{\varepsilon}_i$: zero-mean, complex, white gaussian noise.

Conventional discretization

Finite-series expansions of object and field map using rect functions:

$$f(x, y, z_0) = \sum_{j=1}^N f_j b(x - x_j, y - y_j)$$
$$\omega(x, y, z_0) = \sum_{j=1}^N \omega_j b(x - x_j, y - y_j)$$

- b(x,y) = rect₂(^x/_Δ, ^y/_Δ) denotes the object basis function (square pixels of dimension Δ)
- (x_j, y_j) : center of the *j*th basis function translate
- f_j : object pixel values
- ω_j : field map values (assumed constant within each voxel)
- N: number of parameters (pixels)

Conventional discretized signal model

Combining

$$s(t) = \iint_{j=1}^{N} f(x, y, z_0) e^{-\iota \omega(x, y, z_0)t} e^{-\iota 2\pi [k_X(t)x + k_Y(t)y]} dx dy$$

$$f(x, y, z_0) = \sum_{j=1}^{N} f_j b(x - x_j, y - y_j)$$

$$\omega(x, y, z_0) = \sum_{j=1}^{N} \omega_j b(x - x_j, y - y_j)$$

$$y_i = s(t_i) + \varepsilon_i, \qquad i = 1, \dots, M$$

$$y = Af + \varepsilon$$

where $M \times N$ system matrix **A** has elements

$$a_{ij} = \operatorname{sinc}_2(k_{\mathrm{X}}(t_i)\Delta, k_{\mathrm{Y}}(t_i)\Delta) \quad e^{-\iota\omega_j t_i} \quad e^{-\iota 2\pi(k_{\mathrm{X}}(t_i)x_j + k_{\mathrm{Y}}(t_i)y_j)}$$

basis spectrum field inhomog. NUFFT

Conventional regularized LS reconstruction

$$\hat{f} = \underset{f \in \mathbb{C}^{N}}{\operatorname{arg\,min}} \Psi(f), \qquad \Psi(f) = \frac{1}{2} \underbrace{\|y - Af\|^{2}}_{\text{data fit}} + \underbrace{\beta R(f)}_{\text{regularize}}$$
onjugate gradient (CG) iterative algorithm, uses gradient:
$$\nabla \Psi(f) = A'(Af - y) + \beta \nabla R(f).$$

Computing Af requires

$$\sum_{j=1}^{N} a_{ij} f_j = \operatorname{sinc}_2(k_{\mathrm{X}}(t_i)\Delta, k_{\mathrm{Y}}(t_i)\Delta) \left[\sum_{j=1}^{N} \mathrm{e}^{-\imath \omega_j t_i} \mathrm{e}^{-\imath 2\pi (k_{\mathrm{X}}(t_i)x_j + k_{\mathrm{Y}}(t_i)y_j)} f_j \right].$$

Approximation (time segmentation, frequency segmentation, etc.):

$$\mathbf{e}^{-\iota \mathbf{\omega}_{j} t_{i}} \approx \sum_{l=1}^{L} b_{il} c_{lj}.$$

$$\left[\sum_{l=1}^{L} b_{il} \sum_{j=1}^{N} \mathbf{e}^{-\iota 2\pi (k_{\mathbf{X}}(t_{i}) x_{j} + k_{\mathbf{Y}}(t_{i}) y_{j})} (c_{lj} f_{j})\right]$$

INU

Inner sum becomes:

Extended signal model

Extension: account for non-ideal slice profile:

$$s(t) = \iiint h(z - z_0) f(x, y, z) e^{-\iota \omega(x, y, z)t} e^{-\iota 2\pi (k_X(t)x + k_Y(t)y)} dx dy dz.$$

Natural series expansion of object magnetization:

$$f(x,y,z) = \sum_{j=1}^{N} f_j b(x-x_j, y-y_j), \text{ for } z \approx z_0,$$

which treats the object magnetization as a constant across the slice, leading to usual (unavoidable?) partial volume effects.

Substituting and simplifying yields this "inconvenient" signal model:

$$s(t) = \sum_{j=1}^{N} f_j \iint b(x - x_j, y - y_j) e^{-i2\pi (k_X(t)x + k_Y(t)y)} \cdot \left[\int h(z - z_0) e^{-i\omega(x, y, z)t} dz \right] dx dy.$$

Field map series expansion

Piece-wise linear model for field map, with through-plane gradients:

$$\omega(x, y, z) = \sum_{j=1}^{N} \operatorname{rect}_{2}\left(\frac{x - x_{j}}{\Delta}, \frac{y - y_{j}}{\Delta}\right) \left(\omega_{j} + 2\pi g_{j}(z - z_{0})\right),$$

• (x_j, y_j) : in-plane center coordinates of the *j*th voxel

- ω_j : off-resonance frequency at center of the *j*th voxel [rad/s]
- g_j : field map through-plane gradient within the *j*th voxel [Hz / cm]
- Can generalize to include in-plane field-map gradients.

Determine $\{\omega_j\}$ and $\{g_j\}$ using regularized field map estimates (Fessler *et al.*, ISBI 2006) and central differences.

Extended signal model continued

Substituting field map series expansion into preceding signal model and simplifying yields:

$$s(t) = \iint \sum_{j=1}^{N} H(tg_j) f_j \operatorname{rect}_2\left(\frac{x - x_j}{\Delta}, \frac{y - y_j}{\Delta}\right) e^{-\iota \omega_j t} e^{-\iota 2\pi (k_{\mathrm{X}}(t)x + k_{\mathrm{Y}}(t)y)} dx dy$$

= $\operatorname{sinc}_2(k_{\mathrm{X}}(t)\Delta, k_{\mathrm{Y}}(t)\Delta) \cdot \sum_{j=1}^{N} H(tg_j) e^{-\iota \omega_j t} e^{-\iota 2\pi (k_{\mathrm{X}}(t)x_j + k_{\mathrm{Y}}(t)y_j)} f_j,$

where $h \stackrel{\mathrm{FT}}{\longleftrightarrow} H$.

- $H(tg_j)$ describes signal loss due to through-plane dephasing.
- $e^{-\iota \omega_j t}$ describes phase accumulation due to off-resonance.
- Simplifies to "conventional" signal model if no through-plane field gradients, *i.e.*, if $g_j = 0$.
- Presence of $H(tg_j)$ prohibits direct use of previous fast methods.
- How to form a fast algorithm?

Proposed signal model

Proposed approximation:

$$H(t_i g_j) e^{-\iota \omega_j t_i} \approx \sum_{l=1}^L b_{il} c_{lj}, \qquad \begin{array}{l} i = 1, \dots, M \\ j = 1, \dots, N \end{array}.$$

Substituting into "inconvenient" signal model and simplifying yields:

$$s(t_i) \approx \sum_{l=1}^{L} b_{il} \operatorname{sinc}_2(k_x(t_i)\Delta, k_y(t_i)\Delta) \underbrace{\sum_{j=1}^{N} e^{-i2\pi(k_x(t_i)x_j + k_y(t_i)y_j)}(c_{lj}f_j)}_{\mathsf{NUFFT} \text{ (or FFT for EPI)}}.$$

With this form, multiplication with A or A' requires L NUFFT calls.

Thus CG-NUFFT requires $O(LN \log N)$ flops per iteration. (Same compute time per iteration as CG with off-resonance only.)

Key approximation

$$H(t_i g_j) e^{-\iota \omega_j t_i} \approx \sum_{l=1}^L b_{il} c_{lj}, \quad i.e., \quad H \approx BC$$

How to choose basis signals **B** and coefficients **C**?

(Alternate view: *C* is basis images and *B* is temporal interpolation.)

Brute force: principle components analysis (PCA) via SVD. Drawback: *N* and *M* huge.

Here, each (ω_j, g_j) pair corresponds to a signal $H(t_i g_j) e^{-\iota \omega_j t_i}$.

Solution: "parametric PCA:" apply PCA to a representative subset.

MR field map data

• Human brain MR field maps: Yip, Fessler, Noll, MRM, Nov. 2006.

• $64 \times 64 \times 40$, 24 cm transaxial FOV, $\Delta_z = 1$ mm

Histogram of (ω_j, g_j) pairs

(within the brain voxels exceeding 1% of the maximum magnitude value)

Histogram-based parametric PCA

Coarsely sampled bin centers $(\tilde{\omega}_k, \tilde{g}_k), k = 1, \dots, K \ll N$. These bin centers parameterize the "representative signals."

- For now, chosen to uniformly sample (ω, g) parameter space.
- Interesting question: how to optimize sampling?

Let w_k denote number of (ω_j, g_j) pairs in the *k*th bin.

Choose basis *B* via this weighted PCA problem:

$$\min_{\boldsymbol{B},\tilde{\boldsymbol{C}}}\sum_{k=1}^{K} w_k \sum_{i=1}^{M} \left| H(t_i \tilde{g}_k) e^{-\iota \tilde{\omega}_k t_i} - \sum_{l=1}^{L} b_{il} \tilde{c}_{lj} \right|^2$$

Solution for basis signals *B* uses SVD of $M \times K$ matrix, not $M \times N$. Similar approach for (ω, R_2^*) in Fessler, *et al.*, IEEE <u>T-SP</u>, Sep. 2005.

Example representative signals

- $H(t_i \tilde{g}_k) e^{-\iota \tilde{\omega}_k t_i}$
- $h(z) = \operatorname{rect}(z/\Delta_z) \xleftarrow{\mathrm{FT}} H(v) = \Delta_z \operatorname{sinc}(v\Delta_z)$
- $\Delta_z = 4 \text{ mm thick slice}$
- Typically 20-40 ms readout time for fMRI

Resulting basis functions

(Weighted SVD design, uniform sampling. Energy computed from C for entire 3D volume.)

Signal approximation illustrated $H(t_i g_j) e^{-\iota \omega_j t_i} \approx \sum_{l=1}^{L} b_{il} c_{lj}, \quad i.e., \quad H \approx BC$

(Designed for 20 msec readout with $T_E = 30$ msec.)

Simulation

- Simulation using (ω_j, g_j) maps shown below.
- EPI trajectory: 20 msec readout, $T_E = 30$ msec
- Data generated with exact signal model (noiseless)

Results

- Reconstructed by conventional inverse FFT. CPU time \ll 1 sec
- Reconstructed by CG with L = 5, off-resonance model only. 10 iteration CPU time = 2 sec
- Reconstructed by CG with L = 5, as proposed, 10 iteration CPU time = 2 sec
- Regularizaton parameter β chosen so that FWHM \approx 1.1 pixels

Summary

- Model-based approaches to MR reconstruction
- Account for physical effects such as off-resonance, through-plane susceptibility
- Improves image quality
- Fast algorithm compared to previous model-based approach
- Increased CPU time relative to classical inverse FFT

Future work

- In-plane field gradients
- Toeplitz approximation to A'A
- Real data
- Effects of errors in field map and its gradients
- Other k-space trajectories such as spiral-in