Image reconstruction for MRI: to FFT or not?

Jeffrey A. Fessler

EECS Department

The University of Michigan

Mar. 16, 2006
ECE Department, Michigan State University

Acknowledgements: Doug Noll, Brad Sutton, Chunyu Yip, Will Grissom

Outline

- MR image reconstruction
- Model-based reconstruction
- Iterations and computation (NUFFT etc.)
- Regularization approach
- Examples

MR Image Reconstruction

"k-space"

image

Example: Iterative Reconstruction under ΔB_{0}

Example: Iterative Pulse Sequence Design

G/cm

Textbook MRI Measurement Model

Ignoring lots of things:

$$
\begin{gathered}
y_{i}=s\left(t_{i}\right)+\text { noise }_{i}, \quad i=1, \ldots, N \\
s(t)=\int f(\vec{r}) \mathrm{e}^{-12 \pi \vec{k}(t) \cdot \vec{r}} \mathrm{~d} \vec{r},
\end{gathered}
$$

where \vec{r} denotes spatial position, and
$\vec{k}(t)$ denotes the " k -space trajectory" of the MR pulse sequence, determined by user-controllable magnetic field gradients.
$\mathrm{e}^{-2 \pi \pi \bar{k}(t) \cdot \vec{r}}$ provides spatial information \Longrightarrow Nobel Prize

- MRI measurements are (roughly) samples of the Fourier transform $F(\vec{k})$ of the object's transverse magnetization $f(\vec{r})$.
- Basic image reconstruction problem: recover $f(\vec{r})$ from measurements $\left\{y_{i}\right\}_{i=1}^{N}$.

Inherently under-determined (ill posed) problem
\Longrightarrow no canonical solution.

Image Reconstruction Strategies

The unknown object $f(\vec{r})$ is a continuous-space function, but the recorded measurements $y=\left(y_{1}, \ldots, y_{N}\right)$ are finite.

Options?

- Continuous-discrete formulation using many-to-one linear model:

$$
y=\mathscr{A} f+\boldsymbol{\varepsilon} .
$$

Minimum norm solution (cf. "natural pixels"):

$$
\begin{gathered}
\min _{\hat{f}}\|\hat{f}\| \text { subject to } \boldsymbol{y}=\boldsymbol{A} \hat{f} \\
\hat{f}=\mathscr{A}^{*}\left(\mathcal{A} \mathfrak{A}^{*}\right)^{-1} \boldsymbol{y}=\sum_{i=1}^{N} c_{i} \mathrm{e}^{-2 \pi \pi \bar{k}(t) \cdot \vec{r}}, \text { where } \boldsymbol{A} \mathcal{A}^{*} \boldsymbol{c}=\boldsymbol{y} .
\end{gathered}
$$

- Discrete-discrete formulation

Assume parametric model for object:

$$
f(\vec{r})=\sum_{j=1}^{M} f_{j} b_{j}(\vec{r}) .
$$

- Continuous-continuous formulation

Pretend that a continuum of measurements are available:

$$
F(\vec{k})=\int f(\vec{r}) \mathrm{e}^{-i 2 \pi \vec{k} \cdot \vec{r}} \mathrm{~d} \vec{r},
$$

vs samples $y_{i}=F\left(\vec{k}_{i}\right)+\varepsilon_{i}$.
The "solution" is an inverse Fourier transform:

$$
f(\vec{r})=\int F(\vec{k}) \mathrm{e}^{\imath 2 \pi \vec{k} \cdot \vec{r}} \mathrm{~d} \vec{k} .
$$

Now discretize the integral solution (two approximations!):

$$
\hat{f}(\vec{r})=\sum_{i=1}^{N} F\left(\vec{k}_{i}\right) \mathrm{e}^{i 2 \pi \vec{k} \cdot \vec{r}} w_{i} \approx \sum_{i=1}^{N} y_{i} \mathrm{e}^{i 2 \pi \vec{k} \cdot \vec{r}} w_{i},
$$

where w_{i} values are "sampling density compensation factors." Numerous methods for choosing w_{i} value in the literature.

Conventional MR Image Reconstruction

1. Interpolate measurements onto rectilinear grid ("gridding")
2. Apply inverse FFT to estimate samples of $f(\vec{r})$

Limitations of Gridding Reconstruction

1. Artifacts/inaccuracies due to interpolation
2. Contention about sample density "weighting"
3. Oversimplifications of Fourier transform signal model:

- Magnetic field inhomogeneity
- Magnetization decay (T_{2})
- Eddy currents

4. Sensitivity encoding ?
5. ...

Model-Based Image Reconstruction

MR signal equation with more complete physics:

$$
\begin{gathered}
s(t)=\int f(\vec{r}) s_{\text {coil }}(\vec{r}) \mathrm{e}^{-l o(\vec{r}) t} \mathrm{e}^{-R_{2}^{2}(\vec{r}) t} \mathrm{e}^{-22 \pi \vec{\pi} k t \cdot \vec{\cdot}} \mathrm{~d} \vec{r} \\
y_{i}=s\left(t_{i}\right)+\text { noise }_{i}, \quad i=1, \ldots, N
\end{gathered}
$$

- $s_{\text {coil }}(\vec{r})$ Receive-coil sensitivity pattern(s) (for SENSE)
- $\omega(\vec{r})$ Off-resonance frequency map (due to field inhomogeneity / magnetic susceptibility)
- $R_{2}^{*}(\vec{r})$ Relaxation map

Other factors (?)

- Eddy current effects; in $\vec{k}(t)$
- Concomitant gradient terms
- Chemical shift
- Motion

Field Inhomogeneity-Corrected Reconstruction

$$
s(t)=\int f(\vec{r}) s_{\text {coil }}(\vec{r}) \mathrm{e}^{-l \omega(\vec{r}) t} \mathrm{e}^{-R_{2}^{*}(\vec{r}) t} \mathrm{e}^{-12 \pi \vec{k}(t) \cdot \vec{r}} \mathrm{~d} \vec{r}
$$

Goal: reconstruct $f(\vec{r})$ given field map $\omega(\vec{r})$. (Assume all other terms are known or unimportant.)

Motivation

Essential for functional MRI of brain regions near sinus cavities!
(Sutton et al., ISMRM 2001; T-MI 2003)

Sensitivity-Encoded (SENSE) Reconstruction

$$
s(t)=\int f(\vec{r}) s_{\operatorname{coil}}(\vec{r}) \mathrm{e}^{-l o(\vec{r}) t} \mathrm{e}^{-R_{2}^{2}(\vec{r}) t} \mathrm{e}^{-22 \pi \vec{k} \vec{k}) \cdot \vec{r}} \mathrm{~d} \vec{r}
$$

Goal: reconstruct $f(\vec{r})$ given sensitivity maps $s_{\text {coil }}(\vec{r})$. (Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction "easily."
(Sutton et al., ISMRM 2001, Olafsson et al., ISBI 2006)

Joint Estimation of Image and Field-Map

$$
s(t)=\int f(\vec{r}) s_{\mathrm{coil}}(\vec{r}) \mathrm{e}^{-i \infty(\vec{r}) t} \mathrm{e}^{-R_{2}^{*}(\vec{r}) t} \mathrm{e}^{-i 2 \pi \vec{k}(t) \cdot \vec{r}} \mathrm{~d} \vec{r}
$$

Goal: estimate both the image $f(\vec{r})$ and the field map $\omega(\vec{r})$ (Assume all other terms are known or unimportant.)

Analogy: joint estimation of emission image and attenuation map in PET.
(Sutton et al., ISMRM Workshop, 2001; ISBI 2002; ISMRM 2002; ISMRM 2003; MRM 2004)

The Kitchen Sink

$$
s(t)=\int f(\vec{r}) s_{\operatorname{coil}}(\vec{r}) \mathrm{e}^{-l o(\vec{r}) t} \mathrm{e}^{-R_{2}^{2}(\vec{r}) t} \mathrm{e}^{-2 \pi \pi \vec{k}(t) \cdot \vec{r}} \mathrm{~d} \vec{r}
$$

Goal: estimate image $f(\vec{r})$, field map $\omega(\vec{r})$, and relaxation map $R_{2}^{*}(\vec{r})$
Requires "suitable" k-space trajectory.
(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)

Estimation of Dynamic Maps

$$
s(t)=\int f(\vec{r}) s_{\text {coil }}(\vec{r}) \mathrm{e}^{-\tau \omega(\vec{r}) t} \mathrm{e}^{-R_{2}^{z}(\vec{r}) t} \mathrm{e}^{-12 \pi \vec{k}(t) \cdot \vec{r}} \mathrm{~d} \vec{r}
$$

Goal: estimate dynamic field map $\omega(\vec{r})$ and "BOLD effect" $R_{2}^{*}(\vec{r})$ given baseline image $f(\vec{r})$ in fMRI.

Motion...

Back to Basic Signal Model

$$
s(t)=\int f(\vec{r}) \mathrm{e}^{-l 2 \pi \vec{k}(t) \cdot \vec{r}} \mathrm{~d} \vec{r}
$$

Goal: reconstruct $f(\vec{r})$ from $\boldsymbol{y}=\left(y_{1}, \ldots, y_{N}\right)$, where $y_{i}=s\left(t_{i}\right)+\varepsilon_{i}$.
Series expansion of unknown object:

$$
\begin{gathered}
f(\vec{r}) \approx \sum_{j=1}^{M} f_{j} b\left(\vec{r}-\vec{r}_{j}\right) \longleftarrow \text { usually 2D rect functions. } \\
y_{i} \approx \int\left[\sum_{j=1}^{M} f_{j} b\left(\vec{r}-\vec{r}_{j}\right)\right] \mathrm{e}^{-22 \pi \vec{k}\left(t_{i}\right) \cdot \vec{r}} \mathrm{~d} \vec{r}=\sum_{j=1}^{M}\left[\int b\left(\vec{r}-\vec{r}_{j}\right) \mathrm{e}^{-12 \pi \vec{k}\left(t_{i}\right) \cdot \vec{r}} \mathrm{~d} \vec{r}\right] f_{j} \\
=\sum_{j=1}^{M} a_{i j} f_{j}, \quad a_{i j}=B\left(\vec{k}\left(t_{i}\right)\right) \mathrm{e}^{-i 2 \pi \vec{k}\left(t_{i}\right) \cdot \vec{r}_{j}}, \quad b(\vec{r}) \stackrel{\mathrm{FT}}{\Longleftrightarrow} B(\vec{k}) .
\end{gathered}
$$

Discrete-discrete measurement model with system matrix $\boldsymbol{A}=\left\{a_{i j}\right\}$:

$$
y=\boldsymbol{A} f+\boldsymbol{\varepsilon}
$$

Goal: estimate coefficients (pixel values) $\boldsymbol{f}=\left(f_{1}, \ldots, f_{M}\right)$ from \boldsymbol{y}.

Small Pixel Size Does Not Matter

Profiles

Regularized Least-Squares Estimation

$$
\hat{\boldsymbol{f}}=\underset{\boldsymbol{f} \sim \mathbb{C} M}{\arg \min } \Psi(\boldsymbol{f}), \quad \Psi(\boldsymbol{f})=\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{f}\|^{2}+\alpha R(\boldsymbol{f})
$$

- data fit term $\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{f}\|^{2}$ corresponds to negative log-likelihood of Gaussian distribution
- regularizing roughness penalty term $R(f)$ controls noise

$$
R(f) \approx \int\|\nabla f\|^{2} \mathrm{~d} \vec{r}
$$

- regularization parameter $\alpha>0$ controls tradeoff between spatial resolution and noise (Fessler \& Rogers, IEEE T-IP, 1996)
- Equivalent to Bayesian MAP estimation with prior $\propto \mathrm{e}^{-\alpha R(f)}$

Quadratic regularization $R(\boldsymbol{f})=\|\boldsymbol{C f}\|^{2}$ leads to closed-form solution:

$$
\hat{f}=\left[\boldsymbol{A}^{\prime} \boldsymbol{A}+\alpha \boldsymbol{C}^{\prime} \boldsymbol{C}\right]^{-1} \boldsymbol{A}^{\prime} \boldsymbol{y}
$$

(a formula of limited practical use)

Iterative Minimization by Conjugate Gradients

Choose initial guess $f^{(0)}$ (e.g., fast conjugate phase / gridding). Iteration (unregularized):

$$
\begin{array}{ll}
\boldsymbol{g}^{(n)}=\nabla \Psi\left(\boldsymbol{f}^{(n)}\right)=\boldsymbol{A}^{\prime}\left(\boldsymbol{A} \boldsymbol{f}^{(n)}-\boldsymbol{y}\right) & \text { gradient } \\
\boldsymbol{p}^{(n)}=\boldsymbol{P} \boldsymbol{g}^{(n)} & \text { precondition } \\
\boldsymbol{\gamma}_{n}= \begin{cases}0, & n=0 \\
\frac{\left\langle\boldsymbol{g}^{(n)}, \boldsymbol{p}^{(n)}\right\rangle}{\left\langle\boldsymbol{g}^{(n-1)}, \boldsymbol{p}^{(n-1)},\right.}, n>0 & \\
\boldsymbol{d}^{(n)}=-\boldsymbol{p}^{(n)}+\boldsymbol{\gamma}_{n} \boldsymbol{d}^{(n-1)} & \text { search direction } \\
\boldsymbol{v}^{(n)}=\boldsymbol{A} \boldsymbol{d}^{(n)} \\
\boldsymbol{\alpha}_{n}=\left\langle\boldsymbol{d}^{(n)}-\boldsymbol{g}^{(n)}\right\rangle /\left\langle\boldsymbol{A} \boldsymbol{f}^{(n)}, \boldsymbol{A} \boldsymbol{f}^{(n)}\right\rangle & \text { step size } \\
\boldsymbol{f}^{(n+1)}=\boldsymbol{f}^{(n)}+\alpha_{n} \boldsymbol{d}^{(n)} & \text { update }\end{cases}
\end{array}
$$

Bottlenecks: computing $A f$ and $A^{\prime} y$.

- A is too large to store explicitly (not sparse)
- Even if A were stored, directly computing $A f$ is $O(N M)$ per iteration, whereas FFT is only $O(N \log N)$.

Computing Af Rapidly

$$
[\boldsymbol{A} \boldsymbol{f}]_{i}=\sum_{j=1}^{M} a_{i j} f_{j}=B\left(\vec{k}\left(t_{i}\right)\right) \sum_{j=1}^{M} \mathrm{e}^{-i 2 \pi \vec{k}\left(t_{i}\right) \cdot \vec{r}_{j}} f_{j}, \quad i=1, \ldots, N
$$

- Pixel locations $\left\{\vec{r}_{j}\right\}$ are uniformly spaced
- k-space locations $\left\{\vec{k}\left(t_{i}\right)\right\}$ are unequally spaced
\Longrightarrow needs nonuniform fast Fourier transform (NUFFT)

NUFFT (Type 2)

- Compute over-sampled FFT of equally-spaced signal samples
- Interpolate onto desired unequally-spaced frequency locations
- Dutt \& Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator
- Fessler \& Sutton, IEEE T-SP, 2003, min-max interpolator and min-max optimized Kaiser-Bessel interpolator. NUFFT toolbox: http://www.eecs.umich.edu/~fessler/code

Worst-Case NUFFT Interpolation Error

Further Acceleration using Toeplitz Matrices

Cost-function gradient:

$$
\begin{aligned}
\boldsymbol{g}^{(n)} & =\boldsymbol{A}^{\prime}\left(\boldsymbol{A} \boldsymbol{f}^{(n)}-\boldsymbol{y}\right) \\
& =\boldsymbol{T} \boldsymbol{f}^{(n)}-\boldsymbol{b},
\end{aligned}
$$

where

$$
T \triangleq A^{\prime} A, \quad b \triangleq A^{\prime} y .
$$

In the absence of field inhomogeneity, the matrix \boldsymbol{T} is Toeplitz. Computing $\boldsymbol{T} \boldsymbol{f}^{(n)}$ requires an ordinary ($2 \times$ over-sampled) FFT.

Precomputing the first column of \boldsymbol{T} and \boldsymbol{b} requires a couple NUFFTs. (Wajer, ISMRM 2001, Eggers ISMRM 2002, Liu ISMRM 2005)

In the presence of field inhomogeneity, the matrix \boldsymbol{T} is not Toeplitz.
But accurate approximations are feasible.
(Fessler et al., IEEE T-SP, Sep. 2005, brain imaging special issue)

Field inhomogeneity?

Combine NUFFT with min-max temporal interpolator (Sutton et al., IEEE T-MI, 2003)
(forward version of "time segmentation", Noll, T-MI, 1991)
Recall:

$$
s(t)=\int f(\vec{r}) \mathrm{e}^{-10(\vec{r}) t} \mathrm{e}^{-12 \pi \vec{k}(t) \cdot \vec{r}} \mathrm{~d} \vec{r}
$$

Temporal interpolation approximation (aka "time segmentation"):

$$
\mathrm{e}^{-l(\bar{T}) t} \approx \sum_{l=1}^{L} a_{l}(t) \mathrm{e}^{-l \omega(\vec{T}) \tau_{l}}
$$

for min-max optimized temporal interpolation functions $\left\{a_{l}(\cdot)\right\}_{l=1}^{L}$.

$$
s(t) \approx \sum_{l=1}^{L} a_{l}(t) \int\left[f(\vec{r}) \mathrm{e}^{-l \omega(\vec{r}) \tau_{l}}\right] \mathrm{e}^{-12 \pi \vec{k} \vec{k}) \cdot \vec{r}} \mathrm{~d} \vec{r}
$$

Linear combination of L NUFFT calls.

Field Corrected Reconstruction Example

Simulation using known field map $\omega(\vec{r})$.

No Correction

Slow Conjugate Phase

Fast Conjugate Phase

Slow lterative

Fast Iterative

Simulation Quantitative Comparison

- Computation time?
- NRMSE between \hat{f} and $f^{\text {ture }}$?

Reconstruction Method	Time (\mathbf{s})	NRMSE	NRMSE
	0.06	complex	magnitude
No Correction	4.35	0.22	
Full Conjugate Phase	4.07	0.31	0.19
Fast Conjugate Phase	0.33	0.32	0.19
Fast Iterative (10 iters)	2.20	0.04	0.04
Exact Iterative (10 iters)	128.16	0.04	0.04

Human Data: Field Correction

Joint Field-Map / Image Reconstruction

Dynamic field mapping using spiral-in / spiral-out sequence (Sutton et al., MRM, 2004).

(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.

Activation Results: Static vs Dynamic Field Maps

Functional results for the two reconstructions for 3 human subjects.
Reconstruction using the standard field map for (a) subject 1, (b) subject 2, and (c) subject 3.

Reconstruction using the jointly estimated field map for (d) subject 1 , (e) subject 2 , and (f) subject 3.

Number of pixels with correlation coefficients higher than thresholds for (g) subject 1 , (h) subject 2 , and (i) subject 3 .

Take home message: dynamic field mapping is possible, using iterative reconstruction as an essential tool.
(Standard field maps based on echo-time differences work poorly for spiral-in / spiral-out sequences due to phase discrepancies.)

Tracking Respiration-Induced Field Changes

Regularization

- Conventional regularization for MRI uses a roughness penalty for the complex voxel values:

$$
R(f) \approx \sum_{j=1}^{M}\left|f_{j}-f_{j-1}\right|^{2} \quad \text { (in 1D). }
$$

- Regularizes the real and imaginary image components equally.
- In some MR studies, including BOLD fMRI:
- magnitude of f_{j} carries the information of interest,
- phase of f_{j} should be spatially smooth.
- This a priori information is ignored by $R(f)$.
- Alternatives to $R(\boldsymbol{f})$:
- Constrain f to be real?
(Unrealistic: RF phase inhomogeneity, eddy currents, ...)
- Determine phase of f "somehow," then estimate its magnitude.
- Non-iteratively
- Iteratively
(Noll, Nishimura, Macovski, IEEE T-MI, 1991)
(Lee, Pauly, Nishimura, ISMRM, 2003)

Separate Magnitude/Phase Regularization

Decompose f into its "magnitude" m and phase \boldsymbol{x} :

$$
f_{j}(\boldsymbol{m}, \boldsymbol{x})=m_{j} \mathrm{e}^{\iota x_{j}}, \quad m_{j} \in \mathbb{R}, \quad x_{j} \in \mathbb{R}, \quad j=1, \ldots, M .
$$

(Allow "magnitude" m_{j} to be negative.)
Proposed cost function with separate regularization of m and x :

$$
\Psi(m, x)=\|y-A f(m, x)\|^{2}+\gamma R_{1}(m)+\beta R_{2}(x) .
$$

Choose $\beta \gg \gamma$ to strongly smooth phase estimate.
Joint estimation of magnitude and phase via regularized LS:

$$
(\hat{\boldsymbol{m}}, \hat{\boldsymbol{x}})=\underset{m \in \mathbb{R}^{M}, x \in \mathbb{R}^{M}}{\arg \min } \Psi(\boldsymbol{m}, \boldsymbol{x})
$$

Ψ is not convex \Longrightarrow need good initial estimates $\left(\boldsymbol{m}^{(0)}, \boldsymbol{x}^{(0)}\right)$.

Alternating Minimization

Magnitude Update:

$$
\boldsymbol{m}^{\mathrm{new}}=\underset{m \in \mathbb{R}^{M}}{\arg \min } \Psi\left(\boldsymbol{m}, \boldsymbol{x}^{\mathrm{old}}\right)
$$

Phase Update:

$$
\boldsymbol{x}^{\text {new }}=\underset{x \in \mathbb{R}^{M}}{\arg \min } \Psi\left(\boldsymbol{m}^{\text {new }}, \boldsymbol{x}\right),
$$

Since $f_{j}=m_{j} \mathrm{e}^{\mathrm{e} x_{j}}$ is linear in m_{j}, the magnitude update is easy. Apply a few iterations of slightly modified CG algorithm (constrain m to be real)

But $f_{j}=m_{j} \mathrm{e}^{\iota x_{j}}$ is highly nonlinear in \boldsymbol{x}. Complicates "argmin."
Steepest descent?

$$
\boldsymbol{x}^{(n+1)}=\boldsymbol{x}^{(n)}-\lambda \nabla_{x} \Psi\left(\boldsymbol{m}^{\mathrm{old}}, \boldsymbol{x}^{(n)}\right) .
$$

Choosing the stepsize λ is difficult.

Optimization Transfer

Surrogate Functions

To minimize a cost function $\Phi(\boldsymbol{x})$, choose surrogate functions $\phi^{(n)}(\boldsymbol{x})$ that satisfy the following majorization conditions:

$$
\begin{aligned}
\phi^{(n)}\left(\boldsymbol{x}^{(n)}\right) & =\Phi\left(\boldsymbol{x}^{(n)}\right) \\
\phi^{(n)}(\boldsymbol{x}) & \geq \Phi(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in \mathbb{R}^{M} .
\end{aligned}
$$

Iteratively minimize the surrogates as follows:

$$
\boldsymbol{x}^{(n+1)}=\underset{\boldsymbol{x}^{(n)} \in \mathbb{R}^{M}}{\arg \min } \phi^{(n)}(\boldsymbol{x}) .
$$

This will decrease Φ monotonically; $\Phi\left(\boldsymbol{x}^{(n+1)}\right) \leq \Phi\left(\boldsymbol{x}^{(n)}\right)$.
The art is in the design of surrogates.
Tradeoffs:

- complexity
- computation per iteration
- convergence rate / number of iterations.

Surrogate Functions for MR Phase

$$
\mathrm{L}(\boldsymbol{x}) \triangleq\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{f}(\boldsymbol{m}, \boldsymbol{x})\|^{2}=\sum_{i=1}^{N} \mathrm{~h}_{i}\left([\boldsymbol{A} \boldsymbol{f}(\boldsymbol{m}, \boldsymbol{x})]_{i}\right)
$$

where $h_{i}(t) \triangleq\left|y_{i}-t\right|^{2}$ is convex.
Extending De Pierro (IEEE T-MI, 1995), for $\pi_{i j} \geq 0$ and $\sum_{j=1}^{M} \pi_{i j}=1$:

$$
[\boldsymbol{A} \boldsymbol{f}(\boldsymbol{m}, \boldsymbol{x})]_{i}=\sum_{j=1}^{M} b_{i j} \mathrm{e}^{\imath x_{j}}=\sum_{j=1}^{M} \pi_{i j}\left[\frac{b_{i j}}{\pi_{i j}}\left(\mathrm{e}^{i x_{j}}-\mathrm{e}^{l x_{j}^{(n)}}\right)+\bar{y}_{i}^{(n)}\right],
$$

where $b_{i j} \triangleq a_{i j} m_{j}, \bar{y}_{i}^{(n)} \triangleq\left[\boldsymbol{A} \boldsymbol{f}\left(\boldsymbol{m}, \boldsymbol{x}^{(n)}\right)\right]_{i}$. Choose $\pi_{i j} \geq 0$ and $\sum_{j=1}^{M} \pi_{i j}=1$.
Since h_{i} is convex:

$$
\begin{aligned}
\mathrm{h}_{i}\left([\boldsymbol{A} \boldsymbol{f}(\boldsymbol{m}, \boldsymbol{x})]_{i}\right) & =\mathrm{h}_{i}\left(\sum_{j=1}^{M} \pi_{i j}\left[\frac{b_{i j}}{\pi_{i j}}\left(\mathrm{e}^{\iota x_{j}}-\mathrm{e}^{l x_{j}^{(n)}}\right)+\bar{y}_{i}^{(n)}\right]\right) \\
& \leq \sum_{j=1}^{M} \pi_{i j} \mathrm{~h}_{i}\left(\frac{b_{i j}}{\pi_{i j}}\left(\mathrm{e}^{l x_{j}}-\mathrm{e}^{\iota x_{j}^{(n)}}\right)+\bar{y}_{i}^{(n)}\right),
\end{aligned}
$$

with equality when $\boldsymbol{x}=\boldsymbol{x}^{(n)}$.

Separable Surrogate Function

$$
\begin{aligned}
\mathrm{L}(\boldsymbol{x}) & =\sum_{i=1}^{N} \mathrm{~h}_{i}\left([\boldsymbol{A} \boldsymbol{f}(\boldsymbol{m}, \boldsymbol{x})]_{i}\right) \leq \sum_{i=1}^{N} \sum_{j=1}^{M} \pi_{i j} \mathrm{~h}_{i}\left(\frac{b_{i j}}{\pi_{i j}}\left(\mathrm{e}^{l x_{j}}-\mathrm{e}^{l x_{j}^{(n)}}\right)+\bar{y}_{i}^{(n)}\right) \\
& =\sum_{j=1}^{M} \underbrace{\sum_{i=1}^{N} \pi_{i j} \mathrm{~h}_{i}\left(\frac{b_{i j}}{\pi_{i j}}\left(\mathrm{e}^{l x_{j}}-\mathrm{e}^{l x_{j}^{(n)}}\right)+\bar{y}_{i}^{(n)}\right)}_{Q_{j}\left(x_{j} ; \boldsymbol{x}^{(n)}\right)} .
\end{aligned}
$$

Construct similar surrogates $\left\{S_{j}\right\}$ for (convex) roughness penalty...

$$
\text { Surrogate: } \phi^{(n)}(\boldsymbol{x})=\sum_{j=1}^{M} Q_{j}\left(x_{j} ; \boldsymbol{x}^{(n)}\right)+\beta S_{j}\left(x_{j} ; \boldsymbol{x}^{(n)}\right) .
$$

Parallelizable (simultaneous) update, with 1D minimizations:

$$
\boldsymbol{x}^{(n+1)}=\underset{\boldsymbol{x}^{(n)} \in \mathbb{R}^{M}}{\arg \min } \phi^{(n)}(\boldsymbol{x}) \Longrightarrow x_{j}^{(n+1)}=\underset{x_{j} \in \mathbb{R}}{\arg \min } Q_{j}\left(x_{j} ; \boldsymbol{x}^{(n)}\right)+\beta S_{j}\left(x_{j} ; \boldsymbol{x}^{(n)}\right) .
$$

Intrinsically guaranteed to monotonically decrease the cost function.

1D Minimization: cos + quadratic

$$
\begin{gathered}
\ldots Q_{j}\left(x_{j} ; \boldsymbol{x}^{(n)}\right)=-\left|r_{j}^{(n)}\right| \cos \left(x_{j}-x_{j}^{(n)}-\angle r_{j}^{(n)}\right), \\
r_{j}^{(n)}=\left(f_{j}^{(n)}\right)^{*}\left[\boldsymbol{A}^{\prime}\left(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}^{(n)}\right)\right]_{j}+\left|m_{j}\right|^{2} M \sum_{i=1}^{N} \mid \boldsymbol{B}\left(\left.\vec{k}\left(t_{i}\right)\right|^{2}\right.
\end{gathered}
$$

Simple 1D optimization transfer iterations...

Final Algorithm for Phase Update

Diagonally preconditioned gradient descent:

$$
\boldsymbol{x}^{(n+1)}=\boldsymbol{x}^{(n)}-\boldsymbol{D}\left(\boldsymbol{x}^{(n)}\right) \nabla \Phi\left(\boldsymbol{x}^{(n)}\right)
$$

where the diagonal matrix \boldsymbol{D} has elements that ensure Φ decreases monotonically.

Alternate between magnitude and phase updates...

Preliminary Simulation Example

Example: Iterative Pulse Sequence Design

(3D tailored RF pulses for through-plane dephasing compensation)

Multiple-coil Transmit Imaging Pulses (Mc-TIP)

Summary

- Iterative reconstruction: much potential in MRI
- Computation: reduced by tools like NUFFT / temporal interpolation;
combined with careful optimization algorithm design cf. Shepp and Vardi, 1982, PET
- Problems involving phase terms $\mathrm{e}^{\iota x}$ suitable for optimization transfer.

Future work

- Multiple receive coils (SENSE)
- Through-voxel field inhomogeneity gradients
- Motion (dynamic field maps...)
- Real data...

