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Statistical X-ray CT image reconstruction
µ̂ = argmax

µ≥0
Φ(y,µ) = argmax

µ≥0
L(y,µ)−βR(µ), R(µ) = ∑

k
ψ([Cµ]k).

• Edge-preserving penalty functions, such as “hyperbola” penalty: ψ(t) = δ2(
√

1+(t/δ)2−1).
• How to choose the regularization parameter δ? based on the noise level!

• Too small δ: preserve noise!
• Too large δ: smooth out the details!

• A statistical reconstruction example with same β but different δ values.
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Covariance approximation: the matrix method

• For tomography, the measurements y = [y1, . . . ,yn]
′ have indepen-

dent Poisson distributions.

• An accurate covariance approximation has been derived in (Fessler,
IEEE T-IP, 1996) for penalized likelihood estimators.

Cov{µ̂} ≈ (A′
WA+βR)−1

A
′
WA(A′

WA+βR)−1, (1)

• A: the system matrix

• W = diag(ȳ)

• R: the Hessian matrix of roughness penalty
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Variance approximation: the FFT method

• The matrix method described in the previous slide has been used in
various applications, (Qi 2001, Stayman 2004).

• Circulant approximation and FFTs are usually used in practical com-
putation for shift-invariant imaging systems.

Var{µ j} ≈ ∑
k

F (A′WAe j)k
[F (A′WAe j)k +F (Re j)k]2

, (2)

where F is a Fourier Transform and e j is the jth unit vector.

• Convenient for evaluating the variance at a few image locations of
interest.
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Drawbacks of the FFT method
• The FFT method provides accurate variance/standard deviation pre-

diction at some image location interested.

• The computation of this FFT approximation is expensive for realis-
tic image size when the variance must be computed for all pixels,
particularly for shift-variant systems like fan-beam tomography.

• It needs one FFT for each pixel.

• Goal: faster variance approximation without losing accuracy.
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Continuous-space covariance approximation

• Go back to continuous space from discrete space! With the same
philosophy in (Fessler,1996), one can derive the continuous-space
covariance operator K µ̂,

K µ̂ = Cov{µ̂} ≈ (A∗W A +R )−1A∗W A(A∗W A +R )−1,

• A : the projection operator

• W : the fan-beam weighting operator, (W p)(s,β) = w(s,β)p(s,β)

• R : the regularization operator
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Fourier covariance approximation

• Consider an impulse object δ j(x,y) = δ(x − x j,y− y j). Using local
Fourier-domain analysis, the local covariance operator can be ex-
pressed as

K µ̂ = F −1
(

H j(ρ,Φ)

[H j(ρ,Φ)+R j(ρ,Φ)]2

)

F , (3)

with respect to some image location (x j,y j).

• A∗W A : the Gram operator

• F : the Fourier operator

• H j(ρ,Φ): the local frequency response of the Gram operator A ∗W Aδ j

• R j(ρ,Φ): the local frequency response of R δ j
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Continuous-space variance approximation

• The variance at location (x j,y j) can then be expressed as an integral
in the frequency domain,

Var{µ̂ j} =
Z 2π

0

Z ∞

0

H j(ρ,Φ)

[H j(ρ,Φ)+R(ρ,Φ)]2
ρdρdΦ .

• The local frequency response of the Gram operator can be found by
taking local Fourier transform of A∗W Aδ j:

H j(ρ,Φ) , H(ρ,Φ;x j,y j) =
1
|ρ|

w j(Φ).

• w j(ϕ) , w(ϕ;x j,y j) = w(s′,β′)J(s′)
∣

∣

∣

ϕ′=ϕ
+ w(s′,β′)J(s′)

∣

∣

∣

ϕ′=ϕ−π
: the fan-

beam angular dependent weighting function
• w(s′,β′): the data statistics
• J(s): the determinant of the Jacobian matrix of transforming from

the fan-beam coordinates to parallel-beam coordinates
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Fourier domain variance integral

• Using “local Fourier analysis”, the variance of µ̂ j at location (x j,y j)
can be approximated analytically as

Var{µ̂ j} ≈
Z 2π

0

Z ∞

0

w j(Φ)/ |ρ|
(w j(Φ)/ |ρ|+βR j(ρ,Φ))2ρdρdΦ,

• The parallel-beam geometry is just a special case with the angular
weighting function only consisting of the data statistics.

• Discretize this integral and evaluate it for a variance map!
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Quadratic R(ρ,Φ) is approximately separable

• Consider quadratic penalty, whose R(ρ,Φ) is approximately separa-
ble in ρ and Φ,

R j(ρ,Φ) ≈ (2πρ)2R̃ j(Φ).

• The variance approximation on previous slide becomes

Var{µ̂ j} ≈
Z 2π

0

Z ρmax

0

w j(Φ)
|ρ|

(

w j(Φ)
|ρ| +β(2πρ)2R̃ j(Φ)

)2ρdρ (4)

=
ρ3

max
3

Z 2π

0

1
[

w j(Φ)+β4π2ρ3
maxR̃ j(Φ)

]2 dΦ,

for a quadratic penalty function.
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Computation of analytical variance estimation

• The computation of w j(Φ) for all pixels only requires the same com-
putation time as one backprojection.

• The variance prediction integral can be evaluated by a finite sum-
mation with correctly chosen ρmax.

• The analytical prediction requires much less computation than the
FFT method and thus is practical for realistic tomography image
size.
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Example: standard quadratic penalty

• Consider a standard quadratic penalty s.t. R̃ j(Φ) = R̃ j is indepen-
dent of Φ. R j is chosen to match the resolution of PULS (penalized
unweighted least square) reconstruction with the same β.

• The variance approximation in this case is of a very simple form:

Var{µ̂ j} ≈
ρ3

max
3

Z 2π

0

1
[

w j(Φ)+β4π2ρ3
maxR̃ j

]2 dΦ . (5)
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QPL reconstruction simulation
• 3rd-generation GE CT scanner.
• 128x128 Zubal phantom, 400 iterations of PL-IOT (incremental optimization transfer algo-

rithm, Ahn 2004), 450 realizations.
• FBP and PL-IOT reconstruction(β = 212) have matched resolution: FWHM = 1.76 pixels

i.e., 6.0mm

                true phantom         PL−IOT reconstruction    FBP with matched resolution

   0

1260

                            prediction              PL−IOT empirical    FBP w/ matched resol (divided by 4)

  0

1.5
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Standard deviation image prediction results

• Vertical Profiles
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Standard deviation image prediction results

• Horizontal profiles
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Future work

• Evaluate the performance of the proposed method on the modified
quadratic penalty which leads to nearly uniform and isotropic spatial
resolution (Shi, 2005).

• Investigate how to apply this prediction in choosing the regulariza-
tion parameter, possibly a locally-varied δ in edge-preserving regu-
larization.

• Investigate how well the proposed method can perform in covari-
ance matrix prediction.

• Generalize the method to 3D cone beam CT.


