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Nonrigid Image Registration

• Estimating geometric transformation that aligns objects in
two images

θ̂ = argmax
θ∈K

Φ(A(Tθ(·)),B(·))−βR (θ),

where, Tθ : R3 → R3 denotes a parametric nonrigid defor-
mation model, Φ(A(·),B(·)) is a similarity measure, K is a
constraint set, β is a regularization parameter and R (θ) is
a penalty function.



Image Registration Problem

• Deformation model

• Similarity measure

• Penalty functions and/or constraint set

• Optimization methods (unconstrained or constrained)



Deformation Model using B-spline functions

• Deformation model using parameters θ = (θx,θy,θz)

Tθ(x,y,z) = [x+ fθx(x,y,z),y+gθy(x,y,z),z+hθz(x,y,z)] , (1)

fθx(x,y,z) = ∑
i jk∈Kx
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where, θx,θy,θz are the unknown coefficients, Kx,Ky,Kz are
the sets of ”knot locations”, and Tx,Ty,Tz are expansion pa-
rameters.



Regularization and Invertibility

• The estimated deformation should be invertible.

• Jacobian determinants of the estimated deformation should
be nonzero everywhere (inverse function theorem).

• Jacobian determinants should be positive by the continu-
ity of the determinant (assuming there is a region without
deformation).

Goals: Constrain θ to ensure positive Jacobian determinants



Existing Methods- Unconstrained Optimization
with a Penalty Function

• Bending energy [’99 Rueckert et al.]

• Smoothness penalty [’03 Rohfling et al.]

• Exponential function of Jacobian determinant [’00 Kybic et
al.]

– Invertibility is not guaranteed.
–Regularization parameter tuning is required.
–Jacobian determinants between grid points can be nega-

tive even if those are positive at grid points.



Penalty function
• Quadratically penalize Jacobian determinants smaller than

threshold
EJ = ∑

i, j,k

eJ(xi,y j,zk), (2)

eJ(xi,y j,zk) =

{

0 if detJ(x,y,z) > Jt

(detJ(xi,y j,zk)− Jt)
2 otherwise,

where Jt is a threshold.

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

Jacobian determinant

e J



Existing Methods- Constrained Optimization
subject to Constraints Ensuring Positive Jacobian
Determinants

• Bounding gradients by 1/3 ensures positive Jacobian de-
terminants

• Bound coefficients to bound gradients by 1/3 -[’03 Rhode et
al.]

–Search space is too much restricted (large deformations
with small gradients are precluded.)

–Relationship between gradient bounds and Jacobian de-
terminants bounds would be more desirable



Proposed Approach

• Relate Jacobian determinants (local volume change) bounds
to displacement gradient bounds: Proposition 1

• Expand search space to include large deformation with small
gradients by bounding differences between two neighbor-
ing coefficients: Proposition 2

• Constrained optimization subject to polyhedral constraints
designed using Proposition 1 and 2



Search Space of 1D deformation

• Rhode’s constraint and proposed constraint

C_i

C_i+1

Ci+1 and Ci are two neighboring coefficients.



Jacobian Determinants and Gradient Bounds

Proposition 1. Suppose that
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• Derived using Kuhn-Tucker condition

• Rhode’s result is a special case for minimum detJ(x,y,z)
when k f = kg = kh.



Gradient Bounds and Constraints in Parameter
Space

Proposition 2. If
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• Bounds on differences between two consecutive parame-
ters (polyhedral convex set in parameter space).



Constrained Optimization

• Combining proposition 1 and 2 leads to polyhedral con-
straint set that bounds Jacobian determinants

H i = {θ ∈ X | 〈θ, fi〉 ≤ ci}, i = 1, . . . ,r (3)

K =
r

⋂

i=1

H i, (4)

where, X is the parameter space, r is the number of con-
straints, fi and ci are appropriate vectors and scalars.

• Proposed image registration method
θ̂ = argmax

θ∈K
Φ(A(Tθ(·)),B(·)), (5)



Gradient Projection Method

• Gradient projection method

θn+1 = PK (θn−α∇θΦ(A,B;θ)), (6)

where, K is the convex constraint set and PK denotes the
orthogonal projection onto the convex set K .

• Convergence is guaranteed, if α is chosen appropriately.

• In general, determining PK is challenging.



Dykstra’s Cyclic Projection Method

• Projection onto the intersection of convex sets can be com-
puted by cyclic projections onto the convex sets

• Computing a projection onto a half space is easy.

• Dykstra’s algorithm converges to PK geometrically.



Inhale/exhale Lung CT Registration

• Inhale/exhale CT images (64×36×10)

• Two synthetic deformations using sinusoidal basis function

• Constrained optimization method (gradient bound 1/3)

• Penalty based method using Jacobian determinants

Inhale CT image Exhale CT image



Simulation Results

• Number of B-splines: 30×16×8×3

• X-axis deformation evaluated at one slice
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Simulation Results

• Two synthetic deformations: small and large gradient
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Simulation Results

Characteristics of the estimated deformations

Synthetic deformation 1 Proposed EJ penalty Synthetic deformation 2 Proposed EJ penalty
min|J| 0.807 0.648 0.231 0.201 0.433 0.029
max|J| 1.324 1.398 1.939 1.457 1.912 3.887
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Experimental Results

• Inhale/Exhale CT registration for 8 patients

• Optimization parameter is tuned for PT01 (Registration af-
ter 150 iterations).

Lung CT registration results

(ρ is correlation coefficient between images)

PT01 PT02 PT03 PT04 PT05 PT06 PT07 PT08
ρ before registration0.701 0.678 0.852 0.722 0.888 0.755 0.956 0.930
ρ after registration 0.981 0.964 0.978 0.970 0.979 0.935 0.970 0.963

min|J| 0.332 0.277 0.444 0.295 0.337 0.180 0.428 0.413
max|J| 2.323 2.477 2.089 2.176 2.269 2.395 2.103 2.023



Summary

• Jacobian determinant penalty method yielded larger gradi-
ent deformation than truth.

• Different regularization parameters were required for differ-
ent images.

• Proposed method performed well but required additional
computation.



Future Work

• A priori information about gradient and Jacobian bound would
be desirable.

• How to validate the estimated deformation in practice?

• How to remove manual tuning procedure for optimization?

• Comparison study with interior point methods for optimiza-
tion


