Image Registration using Constrained Optimization

Jeongtae Kim and Jeffrey A. Fessler*
\dagger Information Electronics Dept., Ewha Womans University, Korea
* EECS Dept., The University of Michigan, Ann Arbor

SIAM Imaging Science Conference May 4, 2004

* This work was supported by NIH grant CA60711, PO1-CA59827 and RO1-CA81161.

Nonrigid Image Registration

- Estimating geometric transformation that aligns objects in two images

$$
\hat{\theta}=\arg \max _{\theta \in \mathcal{K}} \Phi\left(A\left(T_{\theta}(\cdot)\right), B(\cdot)\right)-\beta \mathcal{R}(\theta),
$$

where, $T_{\theta}: R^{3} \rightarrow R^{3}$ denotes a parametric nonrigid deformation model, $\Phi(A(\cdot), B(\cdot))$ is a similarity measure, \mathcal{K} is a constraint set, β is a regularization parameter and $\mathcal{R}(\theta)$ is a penalty function.

Image Registration Problem

- Deformation model
- Similarity measure
- Penalty functions and/or constraint set
- Optimization methods (unconstrained or constrained)

Deformation Model using B-spline functions

- Deformation model using parameters $\theta=\left(\theta^{x}, \theta^{y}, \theta^{z}\right)$

$$
\begin{align*}
T_{\theta}(x, y, z)= & \left.x+f_{\theta^{*}}(x, y, z), y+g_{\theta^{v}}(x, y, z), z+h_{\theta^{z}}(x, y, z)\right], \tag{1}\\
f_{\theta^{*}}(x, y, z) & =\sum_{i j k \in K_{x}} \theta_{i j k}^{x} \beta_{3}\left(\frac{x}{T_{x}}-i\right) \beta_{3}\left(\frac{y}{T_{y}}-j\right) \beta_{3}\left(\frac{z}{T_{z}}-k\right), \\
g_{\theta^{v}}(x, y, z) & =\sum_{i j \in K_{y}} \theta_{i j k}^{y} \beta_{3}\left(\frac{x}{T_{x}}-i\right) \beta_{3}\left(\frac{y}{T_{y}}-j\right) \beta_{3}\left(\frac{z}{T_{z}}-k\right), \\
h_{\theta^{z}}(x, y, z) & =\sum_{i j k \in K_{z}} \theta_{i j k}^{z} \beta_{3}\left(\frac{x}{T_{x}}-i\right) \beta_{3}\left(\frac{y}{T_{y}}-j\right) \beta_{3}\left(\frac{z}{T_{z}}-k\right) .
\end{align*}
$$

where, $\theta^{x}, \theta^{y}, \theta^{z}$ are the unknown coefficients, K_{x}, K_{y}, K_{z} are the sets of "knot locations", and T_{x}, T_{y}, T_{z} are expansion parameters.

Regularization and Invertibility

- The estimated deformation should be invertible.
- Jacobian determinants of the estimated deformation should be nonzero everywhere (inverse function theorem).
- Jacobian determinants should be positive by the continuity of the determinant (assuming there is a region without deformation).

Goals: Constrain θ to ensure positive Jacobian determinants

Existing Methods- Unconstrained Optimization with a Penalty Function

- Bending energy ['99 Rueckert et al.]
- Smoothness penalty ['03 Rohfling et al.]
- Exponential function of Jacobian determinant ['00 Kybic et al.]
- Invertibility is not guaranteed.
- Regularization parameter tuning is required.
- Jacobian determinants between grid points can be negative even if those are positive at grid points.

Penalty function

- Quadratically penalize Jacobian determinants smaller than threshold

$$
\begin{gather*}
E_{J}=\sum_{i, j, k} e_{J}\left(x_{i}, y_{j}, z_{k}\right), \tag{2}\\
e_{J}\left(x_{i}, y_{j}, z_{k}\right)= \begin{cases}0 & \text { if } \operatorname{det} J(x, y, z)>J_{t} \\
\left(\operatorname{det} J\left(x_{i}, y_{j}, z_{k}\right)-J_{t}\right)^{2} & \text { otherwise }\end{cases}
\end{gather*}
$$

where J_{t} is a threshold.

Existing Methods- Constrained Optimization subject to Constraints Ensuring Positive Jacobian Determinants

- Bounding gradients by $1 / 3$ ensures positive Jacobian determinants
- Bound coefficients to bound gradients by 1/3-['03 Rhode et al.]
- Search space is too much restricted (large deformations with small gradients are precluded.)
- Relationship between gradient bounds and Jacobian determinants bounds would be more desirable

Proposed Approach

- Relate Jacobian determinants (local volume change) bounds to displacement gradient bounds: Proposition 1
- Expand search space to include large deformation with small gradients by bounding differences between two neighboring coefficients: Proposition 2
- Constrained optimization subject to polyhedral constraints designed using Proposition 1 and 2

Search Space of 1D deformation

- Rhode's constraint and proposed constraint

C_{i+1} and C_{i} are two neighboring coefficients.

Jacobian Determinants and Gradient Bounds

Proposition 1. Suppose that $\left|\frac{\partial f(x, y, z)}{\partial x}\right| \leq k_{f},\left|\frac{\partial f(x, y, z)}{\partial y}\right| \leq k_{f},\left|\frac{\partial f(x, y, z)}{\partial z}\right| \leq$ $k_{f},\left|\frac{\partial g(x, y, z)}{\partial x}\right| \leq k_{g},\left|\frac{\partial g(x, y, z)}{\partial y}\right| \leq k_{g},\left|\frac{\partial g(x, y, z)}{\partial z}\right| \leq k_{g}$ and $\left|\frac{\partial h(x, y, z)}{\partial x}\right| \leq k_{h}, \left\lvert\, \frac{\partial h(x, y, z)}{\partial y}\right.$ $k_{h},\left|\frac{\partial h(x, y, z)}{\partial z}\right| \leq k_{h}$, for $\forall x, y, z$. If $0 \leq k_{f}, k_{g}, k_{h} \leq \frac{1}{2}$, then $1-\left(k_{f}+k_{g}+\right.$ $\left.k_{h}\right) \leq \operatorname{det} J(x, y, z) \leq\left(1+k_{f}\right)\left(1+k_{g}\right)\left(1+k_{h}\right)+\left(1+k_{f}\right) k_{g} k_{h}+(1+$ $\left.k_{g}\right) k_{f} k_{h}+\left(1+k_{h}\right) k_{f} k_{g}$.

- Derived using Kuhn-Tucker condition
- Rhode's result is a special case for minimum $\operatorname{det} J(x, y, z)$ when $k_{f}=k_{g}=k_{h}$.

Gradient Bounds and Constraints in Parameter Space

Proposition 2. If $\left|\theta_{i+1, j, k}^{x}-\theta_{i, j, k}^{r}\right| \leq b, \forall_{i j k} \in K_{x}$, then $\left|\frac{\partial f(x, y, z)}{\partial x}\right| \leq \frac{b}{T_{x}}$. Similarly, if $\left|\theta_{i, j+1, k}^{x}-\theta_{i, j, k}^{x}\right| \leq b, \forall_{i j k} \in K_{x}$, then $\left|\frac{\partial f(x, y, z)}{\partial y}\right| \leq \frac{b}{T_{y}}$ and $\left|\theta_{i, j, k+1}-\theta_{i, j, k}\right| \leq b, \forall_{i j k} \in K_{z}$ implies $\left|\frac{\partial f(x, y, z)}{\partial z}\right| \leq \frac{b}{T_{z}}$.

- Bounds on differences between two consecutive parameters (polyhedral convex set in parameter space).

Constrained Optimization

- Combining proposition 1 and 2 leads to polyhedral constraint set that bounds Jacobian determinants

$$
\begin{align*}
\mathcal{H}_{i} & =\left\{\boldsymbol{\theta} \in X \mid\left\langle\theta, f_{i}\right\rangle \leq c_{i}\right\}, \quad i=1, \ldots, r \tag{3}\\
\mathcal{K} & =\bigcap_{i=1}^{r} \mathcal{H}_{i}, \tag{4}
\end{align*}
$$

where, X is the parameter space, r is the number of constraints, f_{i} and c_{i} are appropriate vectors and scalars.

- Proposed image registration method

$$
\begin{equation*}
\hat{\theta}=\arg \max _{\theta \in \mathcal{K}} \Phi\left(A\left(T_{\theta}(\cdot)\right), B(\cdot)\right), \tag{5}
\end{equation*}
$$

Gradient Projection Method

- Gradient projection method

$$
\begin{equation*}
\theta^{n+1}=P_{\mathcal{K}}\left(\theta^{n}-\alpha \nabla_{\theta} \Phi(A, B ; \theta)\right), \tag{6}
\end{equation*}
$$

where, \mathcal{K} is the convex constraint set and $P_{\mathcal{K}}$ denotes the orthogonal projection onto the convex set \mathcal{K}.

- Convergence is guaranteed, if α is chosen appropriately.
- In general, determining $P_{\mathcal{K}}$ is challenging.

Dykstra's Cyclic Projection Method

- Projection onto the intersection of convex sets can be computed by cyclic projections onto the convex sets
- Computing a projection onto a half space is easy.
- Dykstra's algorithm converges to $P_{\mathcal{K}}$ geometrically.

Inhale/exhale Lung CT Registration

- Inhale/exhale CT images ($64 \times 36 \times 10$)
- Two synthetic deformations using sinusoidal basis function
- Constrained optimization method (gradient bound 1/3)
- Penalty based method using Jacobian determinants

Inhale CT image

Exhale CT image

Simulation Results

- Number of B-splines: $30 \times 16 \times 8 \times 3$
- X-axis deformation evaluated at one slice

$f(x, y, z)$ evaluated at one slice
$\hat{f}(x, y, z)$ at the same slice

Simulation Results

- Two synthetic deformations: small and large gradient

Average error for low gradient deformation
Average error for high gradient deformation

Simulation Results

Characteristics of the estimated deformations

	Synthetic deformation 1	Proposed	E_{J} penalty	Synthetic deformation 2	Proposed	E_{J} penalty
$\min \|J\|$	0.807	0.648	0.231	0.201	0.433	0.029
$\max \|J\|$	1.324	1.398	1.939	1.457	1.912	3.887
$\max \frac{\partial f(x, y, z)}{\partial x}$	0.251	0.196	0.446	0.199	0.303	0.893
$\max \frac{\partial f(x, y, z)}{\partial y}$	0.229	0.204	0.264	0.551	0.328	1.547
$\max \frac{\partial f(x, y, z)}{\partial z}$	0.269	0.318	0.473	0.319	0.319	2.034
$\max \frac{\partial g(x, y, z)}{\partial x}$	0.192	0.174	0.321	0.445	0.331	3.002
$\max \frac{\partial g(x, y, z)}{\partial y}$	0.224	0.224	0.389	0.317	0.242	3.616
$\max \frac{\partial g(x, y, z)}{\partial z}$	0.329	0.323	0.586	0.609	0.333	2.442
$\max \frac{\partial h(x, y, z)}{\partial x}$	0.109	0.163	0.162	0.233	0.241	0.598
$\max \frac{\partial h(x, y, z)}{\partial y}$	0.201	0.191	0.212	0.204	0.276	0.889
$\left.\max \frac{\partial h(x, y, z)}{\partial z} \right\rvert\,$	0.287	0.310	0.672	0.786	0.333	0.867

Experimental Results

- Inhale/Exhale CT registration for 8 patients
- Optimization parameter is tuned for PT01 (Registration after 150 iterations).

Lung CT registration results
(ρ is correlation coefficient between images)

ρ before registration	PT01	PT02	PT03	PT04	PT05	PT06	PT07	PT08
ρ after registration	0.681	0.964	0.852	0.722	0.888	0.755	0.956	0.930
$\min \|J\|$	0.332	0.277	0.444	0.970	0.979	0.935	0.970	0.963
$\max \|J\|$	2.323	2.477	2.089	2.176	2.269	2.395	2.103	2.023

Summary

- Jacobian determinant penalty method yielded larger gradient deformation than truth.
- Different regularization parameters were required for different images.
- Proposed method performed well but required additional computation.

Future Work

- A priori information about gradient and Jacobian bound would be desirable.
- How to validate the estimated deformation in practice?
- How to remove manual tuning procedure for optimization?
- Comparison study with interior point methods for optimization

