Image Registration using Constrained Optimization

Jeongtae Kim[†] and Jeffrey A. Fessler^{*}

† Information Electronics Dept., Ewha Womans University, Korea

* EECS Dept., The University of Michigan, Ann Arbor

SIAM Imaging Science Conference May 4, 2004

* This work was supported by NIH grant CA60711, PO1-CA59827 and RO1-CA81161.

Nonrigid Image Registration

 Estimating geometric transformation that aligns objects in two images

$$\hat{\theta} = \arg \max_{\theta \in \mathcal{K}} \Phi(A(T_{\theta}(\cdot)), B(\cdot)) - \beta \mathcal{R}(\theta),$$

where, $T_{\theta}: \mathbb{R}^3 \to \mathbb{R}^3$ denotes a parametric nonrigid deformation model, $\Phi(A(\cdot), B(\cdot))$ is a similarity measure, \mathcal{K} is a constraint set, β is a regularization parameter and $\mathcal{R}(\theta)$ is a penalty function.

Image Registration Problem

- Deformation model
- Similarity measure
- Penalty functions and/or constraint set
- Optimization methods (unconstrained or constrained)

Deformation Model using B-spline functions

• Deformation model using parameters $\theta = (\theta^{x}, \theta^{y}, \theta^{z})$ $T_{\theta}(x, y, z) = [x + f_{\theta^{x}}(x, y, z), y + g_{\theta^{y}}(x, y, z), z + h_{\theta^{z}}(x, y, z)],$ (1) $f_{\theta^{x}}(x, y, z) = \sum_{ijk \in K_{x}} \theta^{x}_{ijk} \beta_{3}(\frac{x}{T_{x}} - i)\beta_{3}(\frac{y}{T_{y}} - j)\beta_{3}(\frac{z}{T_{z}} - k),$ $g_{\theta^{y}}(x, y, z) = \sum_{ijk \in K_{y}} \theta^{y}_{ijk} \beta_{3}(\frac{x}{T_{x}} - i)\beta_{3}(\frac{y}{T_{y}} - j)\beta_{3}(\frac{z}{T_{z}} - k),$ $h_{\theta^{z}}(x, y, z) = \sum_{ijk \in K_{z}} \theta^{z}_{ijk} \beta_{3}(\frac{x}{T_{x}} - i)\beta_{3}(\frac{y}{T_{y}} - j)\beta_{3}(\frac{z}{T_{z}} - k).$

where, θ^x , θ^y , θ^z are the unknown coefficients, K_x , K_y , K_z are the sets of "knot locations", and T_x , T_y , T_z are expansion parameters.

Regularization and Invertibility

- The estimated deformation should be invertible.
- Jacobian determinants of the estimated deformation should be nonzero everywhere (inverse function theorem).
- Jacobian determinants should be positive by the continuity of the determinant (assuming there is a region without deformation).

Goals: Constrain θ to ensure positive Jacobian determinants

Existing Methods- Unconstrained Optimization with a Penalty Function

- Bending energy ['99 Rueckert *et al.*]
- Smoothness penalty ['03 Rohfling et al.]
- Exponential function of Jacobian determinant ['00 Kybic *et al.*]
 - Invertibility is not guaranteed.
 - Regularization parameter tuning is required.
 - Jacobian determinants between grid points can be negative even if those are positive at grid points.

Penalty function

 Quadratically penalize Jacobian determinants smaller than threshold

$$E_J = \sum_{i,j,k} e_J(x_i, y_j, z_k),$$

$$e_J(x_i, y_j, z_k) = \begin{cases} 0 & \text{if } \det J(x, y, z) > J_t \\ (\det J(x_i, y_j, z_k) - J_t)^2 & \text{otherwise}, \end{cases}$$
(2)

where J_t is a threshold.

Existing Methods- Constrained Optimization subject to Constraints Ensuring Positive Jacobian Determinants

- Bounding gradients by 1/3 ensures positive Jacobian determinants
- Bound coefficients to bound gradients by 1/3 -['03 Rhode *et al.*]
 - Search space is too much restricted (large deformations with small gradients are precluded.)
 - Relationship between gradient bounds and Jacobian determinants bounds would be more desirable

Proposed Approach

- Relate Jacobian determinants (local volume change) bounds to displacement gradient bounds: Proposition 1
- Expand search space to include large deformation with small gradients by bounding differences between two neighboring coefficients: Proposition 2
- Constrained optimization subject to polyhedral constraints designed using Proposition 1 and 2

Search Space of 1D deformation

Rhode's constraint and proposed constraint

 C_{i+1} and C_i are two neighboring coefficients.

Jacobian Determinants and Gradient Bounds

Proposition 1. Suppose that $\left|\frac{\partial f(x,y,z)}{\partial x}\right| \leq k_f$, $\left|\frac{\partial f(x,y,z)}{\partial y}\right| \leq k_f$, $\left|\frac{\partial f(x,y,z)}{\partial z}\right| \leq k_h$, $\left|\frac{\partial h(x,y,z)}{\partial y}\right| \leq k_h$, for $\forall x, y, z$. If $0 \leq k_f$, k_g , $k_h \leq \frac{1}{2}$, then $1 - (k_f + k_g + k_h) \leq \det J(x, y, z) \leq (1 + k_f)(1 + k_g)(1 + k_h) + (1 + k_f)k_gk_h + (1 + k_g)k_fk_h + (1 + k_h)k_fk_g$.

Derived using Kuhn-Tucker condition

• Rhode's result is a special case for minimum $\det J(x, y, z)$ when $k_f = k_g = k_h$.

Gradient Bounds and Constraints in Parameter Space

Proposition 2. If $\left| \Theta_{i+1,j,k}^{x} - \Theta_{i,j,k}^{x} \right| \leq b, \forall_{ijk} \in K_x$, then $\left| \frac{\partial f(x,y,z)}{\partial x} \right| \leq \frac{b}{T_x}$. Similarly, if $\left| \Theta_{i,j+1,k}^{x} - \Theta_{i,j,k}^{x} \right| \leq b, \forall_{ijk} \in K_x$, then $\left| \frac{\partial f(x,y,z)}{\partial y} \right| \leq \frac{b}{T_y}$ and $\left| \Theta_{i,j,k+1} - \Theta_{i,j,k} \right| \leq b, \forall_{ijk} \in K_z$ implies $\left| \frac{\partial f(x,y,z)}{\partial z} \right| \leq \frac{b}{T_z}$.

 Bounds on differences between two consecutive parameters (polyhedral convex set in parameter space).

Constrained Optimization

 Combining proposition 1 and 2 leads to polyhedral constraint set that bounds Jacobian determinants

$$\mathcal{H}_{i} = \{ \substack{\theta \in X | \langle \theta, f_{i} \rangle \leq c_{i} \}, \quad i = 1, \dots, r$$

$$\mathcal{K} = \bigcap_{i=1}^{r} \mathcal{H}_{i},$$
(4)

(5)

where, X is the parameter space, r is the number of constraints, f_i and c_i are appropriate vectors and scalars.

• Proposed image registration method $\hat{\theta} = \arg \max_{\theta \in \mathcal{K}} \Phi(A(T_{\theta}(\cdot)), B(\cdot)),$

Gradient Projection Method

Gradient projection method

$$\theta^{n+1} = P_{\mathcal{K}}(\theta^n - \alpha \nabla_{\theta} \Phi(A, B; \theta)), \qquad (6)$$

where, \mathcal{K} is the convex constraint set and $P_{\mathcal{K}}$ denotes the orthogonal projection onto the convex set \mathcal{K} .

Convergence is guaranteed, if α is chosen appropriately.
In general, determining P_K is challenging.

Dykstra's Cyclic Projection Method

- Projection onto the intersection of convex sets can be computed by cyclic projections onto the convex sets
- Computing a projection onto a half space is easy.
- Dykstra's algorithm converges to $P_{\mathcal{K}}$ geometrically.

Inhale/exhale Lung CT Registration

- Inhale/exhale CT images (64×36×10)
- Two synthetic deformations using sinusoidal basis function
- Constrained optimization method (gradient bound 1/3)
- Penalty based method using Jacobian determinants

Inhale CT image

Exhale CT image

Simulation Results

Number of B-splines: 30×16×8×3
X-axis deformation evaluated at one slice

f(x,y,z) evaluated at one slice

 $\hat{f}(x,y,z)$ at the same slice

Simulation Results

• Two synthetic deformations: small and large gradient

Average error for low gradient deformation

Average error for high gradient deformation

Simulation Results

Characteristics of the estimated deformations

		Synthetic deformation 1	Proposed	E_J penalty	Synthetic deformation 2	Proposed	E_J penalty
$\min J $		0.807	0.648	0.231	0.201	0.433	0.029
$\max J $		1.324	1.398	1.939	1.457	1.912	3.887
max	$\frac{\partial f(x,y,z)}{\partial x}$	0.251	0.196	0.446	0.199	0.303	0.893
max	$\frac{\partial f(x,y,z)}{\partial y}$	0.229	0.204	0.264	0.551	0.328	1.547
max	$\frac{\partial f(x,y,z)}{\partial z}$	0.269	0.318	0.473	0.319	0.319	2.034
max	$\frac{\partial g(x,y,z)}{\partial x}$	0.192	0.174	0.321	0.445	0.331	3.002
max	$\frac{\partial g(x,y,z)}{\partial y}$	0.224	0.224	0.389	0.317	0.242	3.616
max	$\frac{\partial g(x,y,z)}{\partial z}$	0.329	0.323	0.586	0.609	0.333	2.442
max	$\frac{\partial h(x,y,z)}{\partial x}$	0.109	0.163	0.162	0.233	0.241	0.598
max	$\frac{\partial h(x,y,z)}{\partial y}$	0.201	0.191	0.212	0.204	0.276	0.889
max	$\frac{\partial h(x,y,z)}{\partial z}$	0.287	0.310	0.672	0.786	0.333	0.867

Experimental Results

- Inhale/Exhale CT registration for 8 patients
- Optimization parameter is tuned for PT01 (Registration after 150 iterations).

Lung CT registration results

(ρ is correlation coefficient between images)

	PT01	PT02	PT03	PT04	PT05	PT06	PT07	PT08
ρ before registration	0.701	0.678	0.852	0.722	0.888	0.755	0.956	0.930
ρ after registration	0.981	0.964	0.978	0.970	0.979	0.935	0.970	0.963
$\min J $	0.332	0.277	0.444	0.295	0.337	0.180	0.428	0.413
$\max J $	2.323	2.477	2.089	2.176	2.269	2.395	2.103	2.023

Summary

- Jacobian determinant penalty method yielded larger gradient deformation than truth.
- Different regularization parameters were required for different images.
- Proposed method performed well but required additional computation.

Future Work

- A priori information about gradient and Jacobian bound would be desirable.
- How to validate the estimated deformation in practice?
- How to remove manual tuning procedure for optimization?
- Comparison study with interior point methods for optimization