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These annotated slides were prepared by Jeff Fessler for attendees of the NSS-MIC short course
on statistical image reconstruction methods.

The purpose of the annotation is to provide supplemental details, and particularly to provide ex-
tensive literature references for further study.

For a fascinating history of tomography, see [1]. For broad coverage of image science, see [2].

For further references on image reconstruction, see review papers and chapters, e.g., [3–9].
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Image Reconstruction Methods

(Simplified View)

Analytical
(FBP)

Iterative
(OSEM?)
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Image Reconstruction Methods / Algorithms

FBP
BPF

Gridding
...

ART
MART

SMART
...

Squares
Least

ISRA
...

CG
CD

Algebraic Statistical

ANALYTICAL ITERATIVE

OSEM

FSCD
PSCD

Int. Point
CG

(y = Ax)

EM (etc.)

SAGE

GCA

...

(Weighted) Likelihood
(e.g., Poisson)
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Part of the goal is to bring order to this alphabet soup.
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Outline

Part 0: Introduction / Overview / Examples

Part 1: From Physics to Statistics (Emission tomography)
◦ Assumptions underlying Poisson statistical model
◦ Emission reconstruction problem statement

Part 2: Four of Five Choices for Statistical Image Reconstruction
◦ Object parameterization
◦ System physical modeling
◦ Statistical modeling of measurements
◦ Cost functions and regularization

Part 3: Fifth Choice: Iterative algorithms
◦ Classical optimization methods
◦ Considerations: nonnegativity, convergence rate, ...
◦ Optimization transfer: EM etc.
◦ Ordered subsets / block iterative / incremental gradient methods

Part 4: Performance Analysis
◦ Spatial resolution properties
◦ Noise properties
◦ Detection performance

Part 5: Miscellaneous topics (?)
◦ ...
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Emphasis on general principles rather than specific empirical results.

The journals (and conferences like NSS/MIC!) are replete with empirical comparisons.

Although the focus of examples in this course are PET / SPECT / CT, most of the principles
apply equally well to other tomography problems like MR image reconstruction, optical / diffraction
tomography, etc.
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History

• Successive substitution method vs direct Fourier (Bracewell, 1956)

• Iterative method for X-ray CT (Hounsfield, 1968)

• ART for tomography (Gordon, Bender, Herman, JTB, 1970)

• Richardson/Lucy iteration for image restoration (1972, 1974)

• Weighted least squares for 3D SPECT (Goitein, NIM, 1972)

• Proposals to use Poisson likelihood for emission and transmission tomography
Emission: (Rockmore and Macovski, TNS, 1976)

Transmission: (Rockmore and Macovski, TNS, 1977)

• Expectation-maximization (EM) algorithms for Poisson model
Emission: (Shepp and Vardi, TMI, 1982)

Transmission: (Lange and Carson, JCAT, 1984)

• Regularized (aka Bayesian) Poisson emission reconstruction
(Geman and McClure, ASA, 1985)

• Ordered-subsets EM algorithm
(Hudson and Larkin, TMI, 1994)

• Commercial introduction of OSEM for PET scanners circa 1997
0.4
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Bracewell’s classic paper on direct Fourier reconstruction also mentions a successive substitution
approach [10]
X-ray CT patent: [11]
Early iterative methods for SPECT by Muehllehner [12] and Kuhl [13].
ART: [14–17]
Richardson/Lucy iteration for image restoration was not derived from ML considerations, but turns
out to be the familiar ML-EM iteration [18,19]
Emission: [20]
Transmission: [21]
General expectation-maximization (EM) algorithm (Dempster et al., 1977) [22]
Emission EM algorithm: [23]
Transmission EM algorithm: [24]
Bayesian method for Poisson emission problem: [25]
OSEM [26]

Prior to the proposals for Poisson likelihood models, the Lawrence Berkeley Laboratory had pro-
posed and investigated weighted least-squares (WLS) methods for SPECT (in 3D!) using iterative
algorithms; see (Goitein, 1972) [27] and (Budinger and Gullberg, 1974) [28]. These methods
became widely available in 1977 through the release of the Donner RECLBL package [29].

Of course there was lots of work ongoing based on “algebraic” reconstruction methods in the
1970s and before. But until WLS methods were proposed, this work was largely not “statistical.”
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Why Statistical Methods?

• Object constraints (e.g., nonnegativity, object support)
• Accurate physical models (less bias =⇒ improved quantitative accuracy)

(e.g., nonuniform attenuation in SPECT)
improved spatial resolution?
• Appropriate statistical models (less variance =⇒ lower image noise)

(FBP treats all rays equally)
• Side information (e.g., MRI or CT boundaries)
• Nonstandard geometries (e.g., irregular sampling or “missing” data)

Disadvantages?
• Computation time
• Model complexity
• Software complexity

Analytical methods (a different short course!)
• Idealized mathematical model
◦ Usually geometry only, greatly over-simplified physics
◦ Continuum measurements (discretize/sample after solving)

• No statistical model
• Easier analysis of properties (due to linearity)

e.g., Huesman (1984) FBP ROI variance for kinetic fitting
0.5

c© J. Fessler, October 24, 2004 p0intro

There is a continuum of physical system models that tradeoff accuracy and compute time. The
“right” way to model the physics is usually too complicated, so one uses approximations. The
sensitivity of statistical methods to those approximations needs more investigation.

FBP has its faults, but its properties (good and bad) are very well understood and hence pre-
dictable, due to its linearity. Spatial resolution, variance, ROI covariance (Huesman [30]), and
autocorrelation have all been thoroughly analyzed (and empirical results agree with the analytical
predictions). Only recently have such analyses been provided for some nonlinear reconstruction
methods e.g., [31–42].
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What about Moore’s Law?
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In this graph complexity is the number of lines of response (number of rays) acquired. The ECAT
scanners can operate either in 2D mode (with septa in place) or 3D mode (with septa retracted)
so those scanners have two points each.

I got this graph from Richard Leahy; it was made by Evren Asma. Only CTI scanners and their
relatives are represented. Another such graph appeared in [43].

There is considerable ongoing effort to reduce or minimize the compute time by more efficient
algorithms.

Moore’s law for computing power increases will not alone solve all of the compute problems in
image reconstruction. The problems increase in difficulty at nearly the same rate as the increase
in compute power. (Consider the increased amount of data in 3D PET scanners relative to 2D.) (Or
even the increased number of slices in 2D mode.) Or spiral CT, or fast dynamic MRI,... Therefore
there is a need for further improvements in algorithms in addition to computer hardware advances.
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Benefit Example: Statistical Models
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Conventional FBP reconstruction of dual-energy X-ray CT data does not account for the noise
properties of CT measurements and results in significant noise propagation into the soft tissue
and cortical bone component images. Statistical reconstruction methods greatly reduces this
noise, improving quantitative accuracy [44]. This is of potential importance for applications like
bone density measurements.
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Benefit Example: Physical Models
a. True object

b. Unocrrected FBP

c. Monoenergetic statistical reconstruction

0.8 1  1.2

a. Soft−tissue corrected FBP

b. JS corrected FBP

c. Polyenergetic Statistical Reconstruction

0.8 1  1.2

0.8
c© J. Fessler, October 24, 2004 p0intro

Conventional FBP ignores the polyenergetic X-ray source spectrum. Statistical/iterative recon-
struction methods can build that spectrum into the model and nearly eliminate beam-hardening
artifacts [45–47].
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Benefit Example: Nonstandard Geometries
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A SPECT transmission scan with 65cm distance between line source and standard Anger camera
provides partially truncated sinogram views of most patients.
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Truncated F an-Beam SPECT Transmission Scan

Truncated Truncated Untruncated
FBP PWLS FBP
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The FBP reconstruction method is largely ruined by the sinogram truncation.

Despite the partial truncation, each pixel is partly sampled by “line integrals” at some range of
angles. With the benefit of spatial regularization, nonnegativity constraints, and statistical models,
a statistical reconstruction method (PWLS in this case) can recover an attenuation map that is
comparable to that obtained with an untruncated scan.

We have shown related benefits in PET with missing sinogram data due to detector gaps [48].
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One Final Advertisement: Iterative MR Reconstruction
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MR signal equation:

s(t) =
Z

f (~x)exp(−ıω(~x)t)exp
(

−ı2π~k(~x) ·~x
)

d~x

• Due to field inhomogeneity, signal is not Fourier transform of object.

• Measure off-resonance field-map ω (~x) using two displaced echos

• Penalized WLS cost function minimized by conjugate gradient

• System matrix AAA includes off-resonance effects

• Fast algorithm using NUFFT and time-segmentation

[49–51]

Hopefully that is enough motivation, so, on with the methodology!
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Part 1: From Physics to Statistics

or
“What quantity is reconstructed?”

(in emission tomography)

Outline
• Decay phenomena and fundamental assumptions
• Idealized detectors
• Random phenomena
• Poisson measurement statistics
• State emission tomography reconstruction problem
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c© J. Fessler, October 24, 2004 p1frame

The fact that “the measurements are Poisson” is well known, but the underlying assumptions for
this fact are perhaps less so.

Since some systems in some modes of operation violate the assumptions (high deadtime), it may
be worth revisiting the assumptions before launching into statistical reconstruction methods.

1.1

What Object is Reconstructed?

In emission imaging, our aim is to image the radiotracer distribution.

The what?

At time t = 0 we inject the patient with some radiotracer, containing a “large” num-
ber N of metastable atoms of some radionuclide.

Let ~Xk(t) ∈ R
3 denote the position of the kth tracer atom at time t.

These positions are influenced by blood flow, patient physiology, and other
unpredictable phenomena such as Brownian motion.

The ultimate imaging device would provide an exact list of the spatial locations
~X1(t), . . . ,~XN(t) of all tracer atoms for the entire scan.

Would this be enough?
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Here, “large” means in the statistical sense that for large N and small success probability, the
binomial distribution closely approximates the Poisson distribution. However, in the biological
sense N is tiny relative to the number of atoms in the body, hence a “tracer.”

Time-of-flight (TOF) PET with perfect timing resolution and perfect spatial resolution would ap-
proach this ultimate imaging device, but even then it would only provide the position of each tracer
atom at the time it decays, rather than for all times.
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Atom Positions or Statistical Distribution?

Repeating a scan would yield different tracer atom sample paths
{

~Xk(t)
}N

k=1
.

... statistical formulation

Assumption 1. The spatial locations of individual tracer atoms at any time t ≥ 0
are independent random variables that are all identically distributed according to
a common probability density function (pdf) pt(~x).

This pdf is determined by patient physiology and tracer properties.

Larger values of pt(~x) correspond to “hot spots” where the tracer atoms tend to
be located at time t. Units: inverse volume, e.g., atoms per cubic centimeter.

The radiotracer distribution pt(~x) is the quantity of interest.

(Not
{

~Xk(t)
}N

k=1
!)

1.3
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This independence assumption should be very reasonable when trace quantities of radiotracer
are injected. If a very large quantity of a radiotracer such as a neuroreceptor agent were injected,
then the first wave of tracer atoms (and molecules) to reach the brain could occupy all or most
available receptor sites, denying access to later arriving tracer atoms. This would lead to a statis-
tical dependence between the tracer atom locations. Rarely are such large quantities injected, so
our i.i.d. assumption is a reasonable starting point.

The identically distributed assumption should be reasonable if the injection duration is relatively
short. If the injection is long enough that the patient’s physiology has changed between the time
the first tracer atoms were injected and the time the last tracer atoms were injected, then the
distributions of those atoms’ spatial locations will differ. However, in practice we can very rarely
distinguish the first tracer atoms from the later tracer atoms, so the numbering from k = 1 to N is
arbitrary, and could even be considered a random permutation of the indices, in which case the
sample paths ~Xk(t) are again identically distributed according to an average radiotracer distribu-
tion. An exception would be multiple-injection studies with different radiotracers.

“density” would be more logical than “distribution”

Since real instruments have finite temporal resolution, we never really observe pt(~x), but at best
something like

Z t2

t1
pt(~x)dt .

Except in list mode...

1.3

Example: Perfect Detector
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Radiotracer Distribution
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x_1

x_
2

N = 2000

True radiotracer distribution pt(~x)
at some time t.

A realization of N = 2000 i.i.d.
atom positions (dots) recorded
“exactly.”

Little similarity!
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By “exactly” I mean there is no error in measuring the locations of the 2000 atoms. A non-ideal
detector PSF would randomly relocate each point relative to its ideal location [52].
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Binning/Histogram Density Estimator

x_1

x_
2

Histogram Density Estimate

−6 0 6
−6

0

6 0.09

Estimate of pt(~x) formed by histogram binning of N = 2000points.
Ramp remains difficult to visualize.
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Discretize object domain into small square pixels. Count number of atoms positioned within each
square. Display gray-scale image with intensity proportional to number of atoms within each
square.

1.5

Kernel Density Estimator

Gaussian Kernel Density Estimate
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Horizontal profiles at x2 = 3 through
density estimates.
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Given a collection X1, . . . ,XN of independently and identically distributed random variables drawn
from a distribution with pdf p(x), a kernel density estimator for p(x) [53] is defined by

p̂(x) =
1
N

N

∑
k=1

g(x−Xk),

for some kernel function g, e.g., Gaussian. Basically each “point” Xk is blurred out and these blobs
are added up to make an image.

The maximum likelihood estimator for a pdf p(x) is essentially a set of Dirac delta functions at each
Xk. This is generally not a good representation of p(x).

Thus, even with a perfect imaging system, there is still a reconstruction problem!
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Poisson Spatial Point Process

Assumption 2. The number of administered tracer atoms N has a Poisson distri-
bution with some mean

µN , E[N] =
∞

∑
n=0

nP{N = n} .

Let Nt(B) denote the number of tracer atoms that have spatial locations in any set
B ⊂ R

3 (VOI) at time t after injection.

Nt(·) is called a Poisson spatial point process.

Fact. For any set B, Nt(B) is Poisson distributed with mean:

E[Nt(B)] = E[N]P
{

~Xk(t) ∈ B
}

= µN

Z

B
pt(~x)d~x .

Poisson N injected atoms + i.i.d. locations =⇒ Poisson point process

1.7
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VOI = volume of interest

To be completely rigorous, “any set” really means “any Borel set” since we are assuming implicitly
that pt(~x) is a density with respect to Lebesgue measure.

Explicitly:

Nt(B) ,
N

∑
k=1

1{~Xk(t)∈B}.

One can also show the following. If B1 and B2 are two disjoint subsets of R
3, then Nt(B1) and

Nt(B2) are independent Poisson random variables.

Thus, the spatial locations of tracer atoms are governed by Poisson statistics.

And we have not even mentioned radioactive decay yet!
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Illustration of Point Process ( µN = 200)
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Four realizations of tracer atom locations distributed according to the radiotracer distribution shown
earlier. In this case E[N] = 200.

The number of points falling within the ROI in each realization is a random variable with a Poisson
distribution.
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Radionuclide Decay

Preceding quantities are all unobservable.
We “observe” a tracer atom only when it decays and emits photon(s).

The time that the kth tracer atom decays is a random variable Tk.

Assumption 3. The Tk’s are statistically independent random variables,
and are independent of the (random) spatial location.

Assumption 4. Each Tk has an exponential distribution with mean µT = t1/2/ln2.

Cumulative distribution function: P{Tk≤ t}= 1−exp(−t/µT)

0 1 2 3 4
0

0.5

1

t / µ
T

P
[T

k ≤
 t]

t
1/2
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We only observe some of the tracer atoms when they decay; most are never recorded.

The independence assumptions are reasonable physically except in cases of stimulated emis-
sions, since the decay of a given nucleus is not “affected to any significant extent by events occur-
ring outside the nucleus” [54, p. 22].

The exponential distribution is consistent with empirical observations [55]. Also, the exponential
distribution is the unique distribution that is consistent with the assumption that “the probability
of decay of an atom is independent of the age of that atom” [55, p. 470]. In statistical terms, this
characteristic is called the memoryless property, and can be expressed mathematically as follows:

P{Tk≤ t|Tk≥ t0}= P{Tk≤ t− t0} for t ≥ t0.

Decay halflife t1/2 is the time for which P
{

Tk≤ t1/2

}

= 1/2. Solving yields t1/2 = µT ln2.

1.9

Statistics of an Ideal Decay Counter

Let Kt(B) denote the number of tracer atoms that decay by time t,
and that were located in the VOI B ⊂ R

3 at the time of decay.

Fact. Kt(B) is a Poisson counting process with mean

E[Kt(B)] =
Z t

0

Z

B
λ(~x,τ)d~xdτ,

where the (nonuniform) emission rate density is given by

λ(~x, t) , µN

e−t/µT

µT

· pt(~x) .

Ingredients: “dose,” “decay,” “distribution”

Units: “counts” per unit time per unit volume, e.g., µCi/cc.

“Photon emission is a Poisson process”

What about the actual measurement statistics?

1.10
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Since we will analyze the statistical properties of “real” photon-counting detectors, it is natural to
first examine the statistical properties of an “ideal” decay counter.

By definition Kt(0) = 0 and Kt(B) = ∑N
k=1Zk where Zk = 1{Tk≤t,~Xk(Tk)∈B}.

The units of λ (~x,t) are “counts” per unit time per unit volume. Note that Kt(B) is an inhomogeneous
Poisson process since its rate varies with time (due to decay).

This counter is “ideal” because it omnisciently counts every decay, regardless of scatter or ab-
sorption, and regardless of the decay rate (no deadtime).

The emission rate density at a point~x is proportional to the (mean) number of administered pho-
tons (dose), corrected for decay, and to the (local) radiotracer density at~x.

Hot regions contain more tracer atoms, and hence produce more decays.

For t small,
R t

0
e−s/µT

µT
ds= 1−e−t/µT ≈ t/µT, so the overall emission rate is proportional to µN/µT for

small time intervals.

The above facts do not ensure that the measurements have Poisson distributions. That conclusion
requires additional assumptions discussed below.
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Idealized Detector Units

A nuclear imaging system consists of nd conceptual detector units.

Assumption 5. Each decay of a tracer atom produces a recorded count in at
most one detector unit.

Let Sk ∈ {0,1, . . . ,nd} denote the index of the incremented detector unit for decay
of kth tracer atom. (Sk = 0 if decay is undetected.)

Assumption 6. The Sk’s satisfy the following conditional independence:

P
{

S1, . . . ,SN |N, T1, . . . ,TN, ~X1(·), . . . ,~XN(·)
}

=
N

∏
k=1

P
{

Sk|~Xk(Tk)
}

.

The recorded bin for the kth tracer atom’s decay depends only on its position when
it decays, and is independent of all other tracer atoms.

(No event pileup; no deadtime losses.)

1.11
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Examples of a “detector unit” (perhaps better named “recorder unit”)
• pair of PET crystals (sinogram bin)
• Anger camera projection bin, at a particular projection angle (sinogram bin)
• Anger camera projection bin at some angle in some energy bin (for multiple energy window

acquisitions)

In our terminology, detector units need not correspond to physical detectors. For example, in a 2D
PET system consisting of a ring of n physical detectors, there could be as many as nd = n(n−1)
detector units, each of which corresponds to a pair of physical detectors in electronic coincidence.
In a SPECT system based on a single rotating gamma camera that collects nz× nx projection
images at each of nθ projection angles, there would be nd = nz ·nz ·nθ detector units. Systems that
bin measurements into multiple energy windows would have even more detector units.

Assumption 5 applies to most nuclear imaging systems. If a system assigns fractions of an event
to different detector units, or can assign events to more than one detector unit, then the measure-
ments are probably non-Poisson and need more complicated analysis.

Assumption 6 is reasonable for moderate count rates. At high count rates, deadtime losses cause
a decrease in the detection probabilities, i.e., P{Sk = 0} will depend on the Tj values for k 6= j.
Measurements affected by deadtime are not Poisson distributed, and need more complicated
analysis [56–58].
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PET Example
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Here each “detector unit” is a pair of detectors in electronic coincidence.
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SPECT Example
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Here each “detector unit” is an (angle,bin) pair.

Or for multiple energy windows:

nd = nradial bins·nangularsteps·nenergywindows

1.13

Detector Unit Sensitivity Patterns

Spatial localization:
si(~x) , probability that decay at~x is recorded by ith detector unit.

Idealized Example . Shift-invariant PSF: si(~x) = h(~ki ·~x− r i)
• r i is the radial position of ith ray
• ~ki is the unit vector orthogonal to ith parallel ray
• h(·) is the shift-invariant radial PSF (e.g., Gaussian bell or rectangular function)

r i

h(r− r i)

~ki

x1

x2

~ki ·~x ~x

r
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h(r) = δ(r) corresponds to the sensitivity pattern of the ideal line integral.
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Example: SPECT Detector-Unit Sensitivity Patterns

s1(~x) s2(~x)

x2

x1

Two representative si(~x) functions for a collimated Anger camera.

1.15
c© J. Fessler, October 24, 2004 p1frame

Here each detector unit corresponds to a particular element of a SPECT sinogram.

In this model, the detector response is a Gaussian function whose FWHM increases monotonically
as a function of the distance from the camera face to a point~x in object space.

Strictly speaking, with this Gaussian model, si(~x) 6= 0 everywhere. This would be impractical to
compute and store. In practice we approximate si(~x) by a truncated version which is set to zero
everywhere the Gaussian function is sufficiently small.

The si functions shown above are purely geometric (detector response) and do not include the
effects of scatter or attenuation.
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Example: PET Detector-Unit Sensitivity Patterns
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These sensitivity patterns account for the parallax and crystal penetration effects in ring PET
systems.
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Detector Unit Sensitivity Patterns

si(~x) can include the effects of
• geometry / solid angle
• collimation
• scatter
• attenuation
• detector response / scan geometry
• duty cycle (dwell time at each angle)
• detector efficiency
• positron range, noncollinearity
• . . .

System sensitivity pattern:

s(~x) ,

nd

∑
i=1

si(~x) = 1−s0(~x)≤ 1

(probability that decay at location~x will be detected at all by system)

1.17
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Subtle point: for a moving imaging system, like a rotating gamma camera, the detector-unit sen-
sitivity patterns are time varying, i.e., we should write si(~x, t). If the radiotracer distribution is
static, then even moving imaging systems fit within the framework described here. However, if
the radiotracer distribution changes with time as the imaging system is moving, then more compli-
cated image formation models and image reconstruction algorithms are needed to avoid artifacts,
e.g., [59–68].

1.17

(Overall) System Sensitivity Pattern: s(~x) = ∑nd
i=1si(~x)

x2

x1

Example: collimated 180◦ SPECT system with uniform attenuation.
1.18
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s(~x) = probability that a decay at location~x will be detected at all by system during the course of
a scan.

Although we call this the “system” sensitivity pattern, it also depends on the object’s attenuation
and scatter properties.
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Detection Probabilities si(~x0) (vs det. unit index i)

si(~x0)

x2

θ

~x0

x1 r

Image domain Sinogram domain
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This is a sinogram with 60 radial positions by 100 angles, so nd = 6000and i varies from 1 (upper
left hand corner) to 6000 (lower right hand corner) in lexicographic ordering.

For a system with perfect detector response the right curve would be a thin sinusoid. The thickness
of the above sinusoid comes from the finite detector response. The depth-dependence of this
(SPECT) detector response is also evident.

1.19

Summary of Random Phenomena

• Number of tracer atoms injected N

• Spatial locations of tracer atoms
{

~Xk(t)
}N

k=1

• Time of decay of tracer atoms {Tk}
N
k=1

• Detection of photon [Sk 6= 0]

• Recording detector unit {Sk}
nd
i=1

1.20
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We have made assumptions about the nature of the distributions of each of the above random
variables.
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Emission Scan

Record events in each detector unit for t1≤ t ≤ t2.
Yi , number of events recorded by ith detector unit during scan, for i = 1, . . . ,nd.

Yi , ∑N
k=1 1{Sk=i, Tk∈[t1,t2]}.

The collection {Yi : i = 1, . . . ,nd} is our sinogram. Note 0≤Yi ≤ N.

Fact. Under Assumptions 1-6 above,

Yi ∼ Poisson

{

Z

si(~x)λ(~x)d~x

}

(cf “line integral”)

and Yi’s are statistically independent random variables,
where the emission density is given by

λ(~x) = µN

Z t2

t1

1
µT

e−t/µT pt(~x)dt .

(Local number of decays per unit volume during scan.)

Ingredients:
• dose (injected)
• duration of scan
• decay of radionuclide
• distribution of radiotracer

1.21
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The emission density λ(~x) is proportional to the decay-weighted time integral of the radiotracer
distribution over the scan interval.

1.21

Poisson Statistical Model (Emission)

Actual measured counts = “foreground” counts + “background” counts.

Sources of background counts:
• cosmic radiation / room background
• random coincidences (PET)
• scatter not accounted for in si(~x)
• “crosstalk” from transmission sources in simultaneous T/E scans
• anything else not accounted for by

R

si(~x)λ(~x)d~x

Assumption 7.
The background counts also have independent Poisson distributions.

Statistical model (continuous to discrete)

Yi ∼ Poisson

{

Z

si(~x)λ(~x)d~x+r i

}

, i = 1, . . . ,nd

r i : mean number of “background” counts recorded by ith detector unit.
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The detector unit sensitivity pattern si(~x) in principle includes both direct (unscattered) and scat-
tered photons, i.e.,

si(~x) = sdirect
i (~x)+sscatter

i (~x) .

For simplicity, we often only include the direct component sdirect
i (~x) in the integral model, i.e., one

assumes

Yi ∼ Poisson

{

Z

sdirect
i (~x)λ(~x)d~x+r i

}

,

in which case the remaining counts due to
R

sscatter
i (~x)λ(~x)d~x should be included in the r i ’s (and

determined separately by some method such as using multiple energy windows).
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Emission Reconstruction Problem

Estimate the emission density λ(~x) using (something like) this model:

Yi ∼ Poisson

{

Z

si(~x)λ(~x)d~x+r i

}

, i = 1, . . . ,nd.

Knowns:

• {Yi = yi}
nd
i=1 : observed counts from each detector unit

• si(~x) sensitivity patterns (determined by system models)

• r i’s : background contributions (determined separately)

Unknown: λ(~x)

1.23
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How to determine the r i ’s is a broad topic that could occupy its own short course. It depends on
what effects are relevant. Here are some standard methods.
• cosmic radiation / room background: determine from a “blank” scan
• transmission crosstalk: determine from same energy window in another head (for multiple-head

SPECT systems with only one transmission head)
• random coincidences (PET): delayed-window method
• scatter: use calculated scatter contributions from attenuation map and initial estimate of λ(~x),

or estimate from another energy window, or ...

And of course the si ’s are not really known at the outset since they include the effects of patient
attenuation which must be determined by some type of transmission scan. But that is a separate
topic...

1.23

List-mode acquisitions

Recall that conventional sinogram is temporally binned:

Yi ,
N

∑
k=1

1{Sk=i, Tk∈[t1,t2]}.

This binning discards temporal information.

List-mode measurements: record all (detector,time) pairs in a list, i.e.,

{(Sk,Tk) : k = 1, . . . ,N} .

List-mode dynamic reconstruction problem:

Estimate λ (~x,t) given {(Sk,Tk)}.
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Recent treatment of dynamic PET reconstruction from list-mode measurements: [69].

To be precise, the list is actually {(Sk,Tk) : k = 1, . . . ,N,Sk 6= 0} since we only can record the times
of recorded events.
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Emission Reconstruction Problem - Illustration

λ(~x) {Yi}

x2 θ

x1 r
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1.25

Example: MRI “Sensitivity Pattern”
 

x1

x 2

Each “k-space sample” corresponds to a sinusoidal pattern weighted by:
• RF receive coil sensitivity pattern
• phase effects of field inhomogeneity
• spin relaxation effects.

yi =
Z

f (~x)si(~x)d~x+εi, si(~x) = cRF(~x)exp(−ıω(~x)ti)exp(−ti/T2(~x))exp
(

−ı2π~k(ti) ·~x
)
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Of course the noise in MR is not Poisson, but this seemed like the best place for this slide...
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Continuous-Discrete Models

Emission tomography: yi ∼ Poisson{
R

λ(~x)si(~x)d~x+r i}

Transmission tomography (monoenergetic): yi ∼ Poisson
{

bi exp
(

−ı
R

Liµ(~x)d`

)

+ r i

}

Transmission (polyenergetic): yi ∼ Poisson
{

R

Ii(E)exp
(

−ı
R

Li
µ(~x,E)d`

)

dE +r i

}

Magnetic resonance imaging: yi =
R

f (~x)si(~x)d~x+εi

Discrete measurements yyy = (y1, . . . ,ynd)
Continuous-space unknowns: λ(~x), µ(~x), f (~x)
Goal: estimate f (~x) given yyy

Solution options :

• Continuous-continuous formulations (“analytical”)

• Continuous-discrete formulations
usually f̂ (~x) = ∑nd

i=1ci si(~x)

• Discrete-discrete formulations f (~x)≈ ∑
np
j=1x j b j(~x)
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For a nice comparison of the options, see [9].

1.27

Part 2: Five Categories of Choices

• Object parameterization: function f (~r) vs finite coefficient vector xxx

• System physical model: {si(~r)}

• Measurement statistical model yi ∼ ?

• Cost function: data-mismatch and regularization

• Algorithm / initialization

No perfect choices - one can critique all approaches!

2.1
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Often these choices are made implicitly rather than explicitly. Leaving the choices implicit forti-
fies the common belief among non-experts that there are basically two kinds of reconstruction
algorithms, FBP and “iterative.”

In fact, the choices one makes in the above five categories can affect the results significantly.

In my opinion, every paper describing iterative image reconstruction methods (or results thereof)
should make as explicit as possible what choices were made in each of the above categories.
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Choice 1. Object Parameterization

Finite measurements: {yi}
nd
i=1. Continuous object: f (~r). Hopeless?

“All models are wrong but some models are useful.”

Linear series expansion approach. Replace f (~r) by xxx = (x1, . . . ,xnp) where

f (~r)≈ f̃ (~r) =
np

∑
j=1

x j b j(~r) ← “basis functions”

Forward projection:
Z

si(~r) f (~r)d~r =
Z

si(~r)

[

np

∑
j=1

x j b j(~r)

]

d~r =
np

∑
j=1

[

Z

si(~r)b j(~r)d~r

]

x j

=
np

∑
j=1

ai j x j = [AAAxxx]i , where ai j ,

Z

si(~r)b j(~r)d~r

• Projection integrals become finite summations.
• ai j is contribution of jth basis function (e.g., voxel) to ith detector unit.
• The units of ai j and x j depend on the user-selected units of b j(~r).
• The nd×np matrix AAA = {ai j} is called the system matrix.

2.2
c© J. Fessler, October 24, 2004 p2choice

In principle it is not entirely hopeless to reconstruction a continuous f (~r) from a finite set of mea-
surements. This is done routinely in the field of nonparametric regression [70] (the generalization
of linear regression that allows for fitting smooth functions rather than just lines). But it is compli-
cated in tomography...

Van De Walle, Barrett, et al. [71] have proposed pseudoinverse calculation method for MRI recon-
struction from a continuous-object / discrete-data formulation, based on the general principles of
Bertero et al. [72]. If the pseudo-inverse could truly be computed once-and-for-all then such an
approach could be practically appealing. However, in practice there are object-dependent effects,
such as nonuniform attenuation in SPECT and magnetic field inhomogeneity in MRI, and these
preclude precomputation of the required SVDs. So pseudo-inverse approaches are impractical for
typical realistic physical models.

2.2

(Linear) Basis Function Choices

• Fourier series (complex / not sparse)
• Circular harmonics (complex / not sparse)
• Wavelets (negative values / not sparse)
• Kaiser-Bessel window functions (blobs)
• Overlapping circles (disks) or spheres (balls)
• Polar grids, logarithmic polar grids
• “Natural pixels” {si(~r)}
• B-splines (pyramids)
• Rectangular pixels / voxels (rect functions)
• Point masses / bed-of-nails / lattice of points / “comb” function
• Organ-based voxels (e.g., from CT), ...

Considerations
• Represent f (~r) “well” with moderate np

• Orthogonality? (not essential)
• “Easy” to compute ai j ’s and/or AAAxxx
• Rotational symmetry
• If stored, the system matrix AAA should be sparse (mostly zeros).
• Easy to represent nonnegative functions e.g., if x j ≥ 0, then f (~r)≥ 0.

A sufficient condition is b j(~r)≥ 0.
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“Well” ≡ approximation error less than estimation error

Many published “projector / backprojector pairs” are not based explicitly on any particular choice
of basis.

Many bases have the desirable approximation property that one can form arbitrarily accurate ap-
proximations to f (~r) by taking np sufficiently large. (This is related to completeness.) Exceptions
include “natural pixels” (a finite set) and the point-lattice “basis” (usually).

Some pixel-driven backprojectors could be interpreted implicitly as point-mass object models. This
model works fine for FBP, but causes artifacts for iterative methods.

Mazur et al. [73] approximate the shadow of each pixel by a rect function, instead of by a trapezoid.
“As the shapes of pixels are artifacts of our digitisation of continuous real-world images, consid-
eration of alternative orientation or shapes for them seems reasonable.” However, they observe
slightly worse results that worsen with iteration!

Classic series-expansion reference [74]

Organ-based voxel references include [63,75–79]
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Nonlinear Object Parameterizations

Estimation of intensity and shape (e.g., location, radius, etc.)

Surface-based (homogeneous) models
• Circles / spheres
• Ellipses / ellipsoids
• Superquadrics
• Polygons
• Bi-quadratic triangular Bezier patches, ...

Other models
• Generalized series f (~r) = ∑ j x j b j(~r,θθθ)
• Deformable templates f (~r) = b(Tθθθ(~r))
• ...

Considerations
• Can be considerably more parsimonious
• If correct, yield greatly reduced estimation error
• Particularly compelling in limited-data problems
• Often oversimplified (all models are wrong but...)
• Nonlinear dependence on location induces non-convex cost functions,

complicating optimization

2.4
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Disks [80,81]

Polygons [82]

Generalized series [83]

Bi-quadratic triangular Bezier patches [84]

2.4

Example Basis Functions - 1D
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In the above example, neither the pixels nor the blobs are ideal, though both could reduce the
average approximation error as low as needed by taking np sufficiently large.
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Pixel Basis Functions - 2D
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My tentative recommendation: use pixel / voxel basis.
• Simple
• Perfectly matched to digital displays
• Maximally sparse system matrix

Or use blobs (rotationally symmetric Kaiser-Bessel windows)
• Easy to compute projections “on the fly” due to rotational symmetry.
• Differentiable, nonnegative.
• Parsimony advantage using body-centered cubic packing

2.6

Blobs in SPECT: Qualitative
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A slice and profiles through over-iterated and post-smoothed OSEM-reconstructed images of a
single realization of noisy simulated phantom data. Superimposed on the profile of the true high-
resolution phantom (x) are those of the images reconstructed with the rotation-based model (x̂R,
NMSE = 4.12%), the blob-based model with α = 0 (x̂B0, NMSE = 2.99%), and the blob-based
model with α = 10.4 (x̂B1, NMSE = 3.60%).

Figure taken from [85].

Blob expositions [86,87].
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Blobs in SPECT: Quantitative
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Bottom line: in our experience in SPECT simulations comparing bias and variance of a small ROI,
iterative reconstruction improved significantly over FBP, but blobs offered only a modest improve-
ment over a rotation-based projector/backprojector that uses square pixels implicitly. And in some
cases, a “blob” with shape parameter = 0, which is a (non-smooth) circ function performed best.

2.8

Discrete-Discrete Emission Reconstruction Problem

Having chosen a basis and linearly parameterized the emission density...

Estimate the emission density coefficient vector xxx = (x1, . . . ,xnp)
(aka “image”) using (something like) this statistical model:

yi ∼ Poisson

{

np

∑
j=1

ai j x j + r i

}

, i = 1, . . . ,nd.

• {yi}
nd
i=1 : observed counts from each detector unit

• AAA = {ai j} : system matrix (determined by system models)

• r i’s : background contributions (determined separately)

Many image reconstruction problems are “find xxx given yyy” where

yi = gi([AAAxxx]i)+ εi, i = 1, . . . ,nd.
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Called the “discrete-discrete” estimation problem since both the measurement vector and the im-
age vector are “discretized” (finite dimensional).

In contrast, FBP is derived from the “continuous-continuous” Radon transform model.
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Choice 2. System Model

System matrix elements: ai j =
Z

si(~r)b j(~r)d~r

• scan geometry
• collimator/detector response
• attenuation
• scatter (object, collimator, scintillator)
• duty cycle (dwell time at each angle)
• detector efficiency / dead-time losses
• positron range, noncollinearity, crystal penetration, ...
• ...

Considerations
• Improving system model can improve
◦ Quantitative accuracy
◦ Spatial resolution
◦ Contrast, SNR, detectability

• Computation time (and storage vs compute-on-fly)
• Model uncertainties

(e.g., calculated scatter probabilities based on noisy attenuation map)
• Artifacts due to over-simplifications

2.10
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For the pixel basis, ai j is the probability that a decay in the jth pixel is recorded by the ith detector
unit, or is proportional to that probability.

Attenuation enters into ai j differently in PET and SPECT.

2.10

Measured System Model?

Determine ai j ’s by scanning a voxel-sized cube source over the imaging volume
and recording counts in all detector units (separately for each voxel).

• Avoids mathematical model approximations

• Scatter / attenuation added later (object dependent), approximately

• Small probabilities =⇒ long scan times

• Storage

• Repeat for every voxel size of interest

• Repeat if detectors change

2.11
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Certainly worth doing occasionally (at least for some voxels) to check system models, particularly
for complicated geometries. Examples include [88,89].
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“Line Length” System Model

x1 x2

ai j , length of intersection

ith ray
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Mathematically, the corresponding detector unit sensitivity pattern is

si(~r) = δ
(

~ki ·~r− τi

)

,

where δ denotes the Dirac impulse function.

This model is usually applied with the pixel basis, but can be applied to any basis.

Does not exactly preserve counts, i.e., in general
Z

f (~r)d~r 6=
nd

∑
i=1

np

∑
j=1

ai j x j

Leads to artifacts.

Units are wrong too. (Reconstructed xxx will have units inverse length.)

Perhaps reasonable for X-ray CT, but unnatural for emission tomography. (Line segment length is
a probability?)

In short: I recommend using almost anything else!

2.12

“Strip Area” System Model

x1

x j−1

ai j , area

ith ray
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Accounts for finite detector width.

Mathematically, the corresponding detector unit sensitivity pattern is

si(~r) = rect

(

~ki ·~r− τi

w

)

,

where w is the detector width.

Can exactly preserve counts, since all areas are preserved, provided that the width w is an integer
multiple of the center-to-center ray spacing.

Most easily applied to the pixel basis, but in principle applies to any choice.

A little more work to compute than line-lengths, but worth the extra effort (particularly when pre-
computed).
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(Implicit) System Sensitivity Patterns

nd

∑
i=1

ai j ≈ s(~r j) =
nd

∑
i=1

si(~r j)

Line Length Strip Area
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Backprojection of a uniform sinogram.

Explicitly:
nd

∑
i=1

ai j =
nd

∑
i=1

Z

si(~r)b j(~r)d~r =
Z

[

nd

∑
i=1

si(~r)

]

b j(~r)d~r =
Z

s(~r)b j(~r)d~r ≈ s(~r j)

where~r j is center of jth basis function.

Shows probability for each pixel that an emission from that pixel will be detected somewhere.

These nonuniformities propagate into the reconstructed images, except when sinograms are sim-
ulated from the same model of course.

2.14

Point-Lattice Projector/Backprojector

x1 x2

ith ray

ai j ’s determined by linear interpolation
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This model is used implicitly in many pixel-driven backprojection subroutines.

Mathematically, the corresponding detector unit sensitivity pattern is

si(~r) = tri

(

~ki ·~r− τi

∆r

)

,

where ∆r is the ray spacing.

This is a reasonable enough detector response model (more realistic than an impulse at least),
but the problem arises when combining it with the bed-of-nails “basis” functions b j(~r) = δ(~r−~r j).
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Point-Lattice Artifacts

Projections (sinograms) of uniform disk object:

0◦
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r r

Point Lattice Strip Area
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A little radial smoothing can reduce these artifacts, but that just hides the underlying deficiency of
the point-lattice model.

The disadvantage of the strip-area model is that it is more work to compute the areas of intersec-
tion than it is to compute line lengths or linear interpolations for point-lattice model. There may be
less “symmetries” to exploit in the strip-area model too.

For 2D we precompute and store the ai j ’s, so the “extra work” is irrelevant. This becomes more
cumbersome for 3D, but it has been done.

2.16

Forward- / Back-projector “Pairs”

Forward projection (image domain to projection domain):

ȳyyi =
Z

si(~r) f (~r)d~r =
np

∑
j=1

ai j x j = [AAAxxx]i , or ȳyy = AAAxxx

Backprojection (projection domain to image domain):

AAA′yyy =

{

nd

∑
i=1

ai j yi

}np

j=1

The term “forward/backprojection pair” often corresponds to an implicit choice for
the object basis and the system model.

Often AAA′yyy is implemented as BBByyy for some “backprojector” BBB 6= AAA′

Least-squares solutions (for example):

x̂xx = [AAA′AAA]−1AAA′yyy 6= [BBBAAA]−1BBByyy

2.17
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Algorithms are generally derived using a single AAA matrix, and usually the quantity AAA′yyy appears
somewhere in the derivation.

If the product AAA′yyy is implemented by some BBByyy for BBB 6= AAA′, then all convergence properties, statistical
properties, etc. of the theoretical algorithm may be lost by the implemented algorithm.
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Mismatched Backprojector BBB 6= AAA′

xxx x̂xx (PWLS-CG) x̂xx (PWLS-CG)

Matched Mismatched
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Note: when converting from .ps to .pdf, I get JPEG image compression artifacts that may corrupt
these images. If I disable compression, then the files are 8x larger...

Noiseless 3D PET data, images are nx×ny×nz = 64×64×4, with nu×nv×nφ×nθ = 62×10×60×3
projections. 15 iterations of PWLS-CG, initialized with the true image. True object values range
from 0 to 2. Display windowed to [0.7, 1.3] to highlight artifacts.

In this case mismatch arises from a ray-driven forward projector but a pixel-driven back projector.

Another case where mismatch can arise is in “rotate and sum” projection / backprojection methods,
if implemented carelessly.

The problem with mismatched backprojectors arises in iterative reconstruction because multiple
iterations are generally needed, so discrepancies between BBB and AAA′ can accumulate.

Such discrepancies may matter more for regularized methods where convergence is desired,
then for unregularized methods where one stops well before convergence [90], but this is merely
speculation.

The deliberate use of mismatched projectors/backprojectors has been called the “dual matrix”
approach [91,92].

The imprtance of matching also arises in solving differential equations [93].

2.18
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Horizontal Profiles
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This was from noiseless simulated data!

2.20

System Model Tricks

• Factorize (e.g., PET Gaussian detector response)

AAA≈ SSSGGG

(geometric projection followed by Gaussian smoothing)

• Symmetry

• Rotate and Sum

• Gaussian diffusion
for SPECT Gaussian detector response

• Correlated Monte Carlo (Beekman et al.)

In all cases, consistency of backprojector with AAA′ requires care.

2.21
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Separability [94]
Symmetry [95–98]
Rotators [99–101]
Gaussian diffusion [102,103]
Sparse storage [104]
Forward projector tricks [105–118]
Correlated Monte Carlo [119]

My recommendation: in 2D PET and SPECT, precompute and store as accurate of a system
matrix as you can, strip-area model at least.

This topic could be a talk in itself...

Other issues: include scatter in AAA or not?

2.21

SPECT System Model

Collimator / D
etector

Complications: nonuniform attenuation, depth-dependent PSF, Compton scatter
2.22
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Choice 3. Statistical Models

After modeling the system physics, we have a deterministic “model:”

yi ≈ gi([AAAxxx]i)

for some functions gi, e.g., gi(l) = l + r i for emission tomography.

Statistical modeling is concerned with the “ ≈ ” aspect.

Considerations
• More accurate models:
◦ can lead to lower variance images,
◦ may incur additional computation,
◦ may involve additional algorithm complexity

(e.g., proper transmission Poisson model has nonconcave log-likelihood)
• Statistical model errors (e.g., deadtime)
• Incorrect models (e.g., log-processed transmission data)
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“Complexity” can just mean “inconvenience.” It would certainly be more convenient to precorrect
the sinogram data for effects such as randoms, attenuation, scatter, detector efficiency, etc., since
that would save having to store those factors for repeated use during the iterations. But such pre-
corrections destroy the Poisson statistics and lead to suboptimal performance (higher variance).

More accurate statistical models may also yield lower bias, but bias is often dominated by ap-
proximations in the system model (neglected scatter, etc.) and by resolution effects induced by
regularization.

2.23

Statistical Model Choices for Emission Tomography

• “None.” Assume yyy− rrr = AAAxxx. “Solve algebraically” to find xxx.

•White Gaussian noise. Ordinary least squares: minimize ‖yyy−AAAxxx‖2

• Non-white Gaussian noise. Weighted least squares: minimize

‖yyy−AAAxxx‖2
WWW =

nd

∑
i=1

wi (yi− [AAAxxx]i)
2, where [AAAxxx]i ,

np

∑
j=1

ai j x j

(e.g., for Fourier rebinned (FORE) PET data)

• Ordinary Poisson model (ignoring or precorrecting for background)

yi ∼ Poisson{[AAAxxx]i}

• Poisson model
yi ∼ Poisson{[AAAxxx]i + r i}

• Shifted Poisson model (for randoms precorrected PET)

yi = yprompt
i −ydelay

i ∼ Poisson{[AAAxxx]i +2r i}−2r i

2.24



c© J. Fessler, October 24, 2004 p2stat

These are all for the emission case.

GE uses WLS for FORE data [120].

The shifted-Poisson model for randoms-precorrected PET is described in [121–124].

Snyder et al. used similar models for CCD imaging [125,126].

Missing from the above list: deadtime model [56].

My recommendations.
• If the data is uncorrected, then use Poisson model above.
• If the data was corrected for random coincidences, use shifted Poisson model.
• If the data has been corrected for other stuff, consider using WLS, e.g. [127,128].
• Try not to correct the data so that the first choice can be used!

Classic reason for WLS over Poisson was compute time. This has been obviated by recent algo-
rithm advances. Now the choice should be made statistically.

Preprocessing: randoms subtraction, Fourier or multislice rebinning (3d to 2d), attenuation, scat-
ter, detector efficiency, etc.

2.24

Shifted Poisson model for PET

Precorrected random coincidences: yi = yprompt
i −ydelay

i

yprompt
i ∼ Poisson{[AAAxxx]i + r i}

ydelay
i ∼ Poisson{r i}

E[yi] = [AAAxxx]i
Var{yi} = [AAAxxx]i +2r i Mean 6= Variance =⇒ not Poisson!

Statistical model choices
• Ordinary Poisson model: ignore randoms

[yi]+ ∼ Poisson{[AAAxxx]i}

Causes bias due to truncated negatives
• Data-weighted least-squares (Gaussian model):

yi ∼N
(

[AAAxxx]i , σ̂
2
i

)

, σ̂2
i = max

(

yi +2r̂ i,σ2
min

)

Causes bias due to data-weighting
• Shifted Poisson model (matches 2 moments):

[yi +2r̂ i]+ ∼ Poisson{[AAAxxx]i +2r̂ i}

Insensitive to inaccuracies in r̂ i.
One can further reduce bias by retaining negative values of yi +2r̂ i.
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Ideally, r̂ i would be calculated based on block singles rates and detector efficiency information.

Practically, using r̂ i ≈ 2 or so works fine for usual whole-body FDG PET scans [121–124].

If r̂ i is too small, then there will be many remaining negatives that will be truncated by the []+
operation, leading to biased images. By modifying certain algorithms, one can avoid this truncation
[129].

If r̂ i is too large, the statistical properties approach those of unweighted least squares, yielding
unnecessarily noisy images and slower convergence of EM-type algorithms.

2.25

Shifted-Poisson Model for X-ray CT

A model that includes both photon variability and electronic readout noise:

yi ∼ Poisson{ȳyyi(µµµ)}+N
(

0,σ2
)

Shifted Poisson approximation
[

yi +σ2
]

+
∼ Poisson

{

ȳyyi(µµµ)+σ2
}

or just use WLS...

Complications:
• Intractability of likelihood for Poisson+Gaussian
• Compound Poisson distribution due to photon-energy-dependent detector sig-

nal.

X-ray statistical models is a current research area in several groups!
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For Poisson+Gaussian, see [125,126].

For compound Poisson distribution, see [130–132].

2.26

Choice 4. Cost Functions

Components:
• Data-mismatch term
• Regularization term (and regularization parameter β)
• Constraints (e.g., nonnegativity)

Ψ(xxx) = DataMismatch(yyy,AAAxxx)+βRoughness(xxx)

x̂xx , argmin
xxx≥000

Ψ(xxx)

Actually several sub-choices to make for Choice 4 ...

Distinguishes “statistical methods” from “algebraic methods” for “yyy = AAAxxx.”

2.27

c© J. Fessler, October 24, 2004 p2stat

β sometimes called hyperparameter

2.27

Why Cost Functions?

(vs “procedure” e.g., adaptive neural net with wavelet denoising)

Theoretical reasons
ML is based on minimizing a cost function: the negative log-likelihood
• ML is asymptotically consistent
• ML is asymptotically unbiased
• ML is asymptotically efficient (under true statistical model...)
• Estimation: Penalized-likelihood achieves uniform CR bound asymptotically
• Detection: Qi and Huesman showed analytically that MAP reconstruction out-

performs FBP for SKE/BKE lesion detection (T-MI, Aug. 2001)

Practical reasons
• Stability of estimates (if Ψ and algorithm chosen properly)
• Predictability of properties (despite nonlinearities)
• Empirical evidence (?)
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Stability means that running “too many iterations” will not compromise image quality.

Asymptotically efficient means that the variance of ML estimator approaches that given by the
Cramer-Rao lower bound, which is a bound on the variance of unbiased estimators.

But nuclear imaging is not asymptotic (too few counts), and system models are always approxi-
mate, and we regularize which introduces bias anyway.

Uniform CR bound generalizes CR bound to biased case [133,134]

Bottom line: have not found anything better, seen plenty that are worse (LS vs ML in low count)

OSEM vs MAP [94,135]

Qi and Huesman [42]

“Iterative FBP” methods are examples of methods that are not based on any cost function, and
have not shared the popularity of ML and MAP approaches e.g., [136–139].

2.28

Bayesian Framework

Given a prior distribution p(xxx) for image vectors xxx, by Bayes’ rule:

posterior: p(xxx|yyy) = p(yyy|xxx)p(xxx)/p(yyy)

so
logp(xxx|yyy) = logp(yyy|xxx)+ logp(xxx)− logp(yyy)

• − logp(yyy|xxx) corresponds to data mismatch term (likelihood)
• − logp(xxx) corresponds to regularizing penalty function

Maximum a posteriori (MAP) estimator :

x̂xx = argmax
xxx

logp(xxx|yyy)

• Has certain optimality properties (provided p(yyy|xxx) and p(xxx) are correct).
• Same form as Ψ
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I avoid the Bayesian terminology because
• Images drawn from the “prior” distributions almost never look like real objects
• The risk function associated with MAP estimation seems less natural to me than a quadratic

risk function. The quadratic choice corresponds to conditional mean estimation x̂xx= E[xxx|yyy] which
is very rarely used by those who describe Bayesian methods for image formation.
• I often use penalty functions R(xxx) that depend on the data yyy, which can hardly be called “priors.”

2.29

Choice 4.1: Data-Mismatch Term

Options (for emission tomography):
• Negative log-likelihood of statistical model. Poisson emission case:

−L(xxx;yyy) =− logp(yyy|xxx) =
nd

∑
i=1

([AAAxxx]i + r i)−yi log([AAAxxx]i + r i)+ logyi!

• Ordinary (unweighted) least squares: ∑nd
i=1

1
2(yi− r̂ i− [AAAxxx]i)

2

• Data-weighted least squares: ∑nd
i=1

1
2(yi− r̂ i− [AAAxxx]i)

2/σ̂2
i , σ̂2

i = max
(

yi + r̂ i,σ2
min

)

,
(causes bias due to data-weighting).
• Reweighted least-squares: σ̂2

i = [AAAx̂xx]i + r̂ i

• Model-weighted least-squares (nonquadratic, but convex!)
nd

∑
i=1

1
2
(yi− r̂ i− [AAAxxx]i)

2/([AAAxxx]i + r̂ i)

• Nonquadratic cost-functions that are robust to outliers
• ...

Considerations
• Faithfulness to statistical model vs computation
• Ease of optimization (convex?, quadratic?)
• Effect of statistical modeling errors
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Poisson probability mass function (PMF):
p(yyy|xxx) = ∏nd

i=1e− ȳyyi ȳyyyi
i /yi! where ȳyy , AAAxxx+ rrr

Reweighted least-squares [140]

Model-weighted least-squares [141,142]

f (l) =
1
2
(y− r− l)2/(l + r) f̈ (l) = y2/(l + r)3 > 0

Robust norms [143,144]

Generally the data-mismatch term and the statistical model go hand-in-hand.

2.30

Choice 4.2: Regularization

Forcing too much “data fit” gives noisy images
Ill-conditioned problems: small data noise causes large image noise

Solutions :
• Noise-reduction methods
• True regularization methods

Noise-reduction methods
• Modify the data
◦ Prefilter or “denoise” the sinogram measurements
◦ Extrapolate missing (e.g., truncated) data

• Modify an algorithm derived for an ill-conditioned problem
◦ Stop algorithm before convergence
◦ Run to convergence, post-filter
◦ Toss in a filtering step every iteration or couple iterations
◦ Modify update to “dampen” high-spatial frequencies
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Dampen high-frequencies in EM [145]

FBP with an apodized ramp filter belongs in the “modify the algorithm” category. The FBP method
is derived based on a highly idealized system model. The solution so derived includes a ramp
filter, which causes noise amplification if used unmodified. Throwing in apodization of the ramp
filter attempts to “fix” this problem with the FBP “algorithm.”

The fault is not with the algorithm but with the problem definition and cost function. Thus the fix
should be to the latter, not to the algorithm.

The estimate-maximize smooth (EMS) method [146] uses filtering every iteration.

The continuous image f (~r)- discrete data problem is ill-posed.

If the discrete-discrete problem has a full column rank system matrix AAA, then that problem is well-
posed, but still probably ill-conditioned.

2.31

Noise-Reduction vs True Regularization

Advantages of noise-reduction methods
• Simplicity (?)
• Familiarity
• Appear less subjective than using penalty functions or priors
• Only fiddle factors are # of iterations, or amount of smoothing
• Resolution/noise tradeoff usually varies with iteration

(stop when image looks good - in principle)
• Changing post-smoothing does not require re-iterating

Advantages of true regularization methods
• Stability (unique minimizer & convergence =⇒ initialization independence)
• Faster convergence
• Predictability
• Resolution can be made object independent
• Controlled resolution (e.g., spatially uniform, edge preserving)
• Start with decent image (e.g., FBP) =⇒ reach solution faster.
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Running many iterations followed by post-filtering seems preferable to aborting early by stopping
rules [147,148].

Lalush et al. reported small differences between post-filtering and MAP reconstructions with an
entropy prior [149].

Slijpen and Beekman conclude that post-filtering slightly more accurate than “oracle” filtering be-
tween iterations for SPECT reconstruction [150].

2.32

True Regularization Methods

Redefine the problem to eliminate ill-conditioning,
rather than patching the data or algorithm!

Options

• Use bigger pixels (fewer basis functions)
◦ Visually unappealing
◦ Can only preserve edges coincident with pixel edges
◦ Results become even less invariant to translations

• Method of sieves (constrain image roughness)
◦ Condition number for “pre-emission space” can be even worse
◦ Lots of iterations
◦ Commutability condition rarely holds exactly in practice
◦ Degenerates to post-filtering in some cases

• Change cost function by adding a roughness penalty / prior
◦ Disadvantage: apparently subjective choice of penalty
◦ Apparent difficulty in choosing penalty parameters

(cf. apodizing filter / cutoff frequency in FBP)
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Big pixels [151]

Sieves [152,153]

Lots of iterations for convergence [147,154]

2.33

Penalty Function Considerations

• Computation
• Algorithm complexity
• Uniqueness of minimizer of Ψ(xxx)
• Resolution properties (edge preserving?)
• # of adjustable parameters
• Predictability of properties (resolution and noise)

Choices
• separable vs nonseparable
• quadratic vs nonquadratic
• convex vs nonconvex
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There is a huge literature on different regularization methods. Of the many proposed methods,
and many anecdotal results illustrating properties of such methods, only the “lowly” quadratic
regularization method has been shown analytically to yield detection results that are superior to
FBP [42].

2.34

Penalty Functions: Separable vs Nonseparable

Separable

• Identity norm: R(xxx) = 1
2xxx′IIIxxx = ∑

np
j=1x2

j/2
penalizes large values of xxx, but causes “squashing bias”

• Entropy: R(xxx) = ∑
np
j=1x j logx j

• Gaussian prior with mean µj, variance σ2
j : R(xxx) = ∑

np
j=1

(x j−µj)
2

2σ2
j

• Gamma prior R(xxx) = ∑
np
j=1p(x j,µj,σ j) where p(x,µ,σ) is Gamma pdf

The first two basically keep pixel values from “blowing up.”
The last two encourage pixels values to be close to prior means µj.

General separable form: R(xxx) =
np

∑
j=1

f j(x j)

Slightly simpler for minimization, but these do not explicitly enforce smoothness.
The simplicity advantage has been overcome in newer algorithms.
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The identity norm penalty is a form of Tikhinov-Miller regularization [155].

The Gaussian and Gamma bias the results towards the prior image. This can be good or bad
depending on whether the prior image is correct or not! If the prior image comes from a normal
database, but the patient is abnormal, such biases would be undesirable.

For arguments favoring maximum entropy, see [156]. For critiques of maximum entropy regular-
ization, see [157–159].

A key development in overcoming the “difficulty” with nonseparable regularization was a 1995
paper by De Pierro: [160].

2.35

Penalty Functions: Separable vs Nonseparable

Nonseparable (partially couple pixel values) to penalize roughness

x1 x2 x3

x4 x5

Example

R(xxx) = (x2−x1)
2+(x3−x2)

2+(x5−x4)
2

+(x4−x1)
2+(x5−x2)

2

2 2 2

2 1

3 3 1

2 2

1 3 1

2 2

R(xxx) = 1 R(xxx) = 6 R(xxx) = 10

Rougher images =⇒ greater R(xxx)
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If diagonal neighbors were included there would be 3 more terms in this example.

2.36

Roughness Penalty Functions

First-order neighborhood and pairwise pixel differences:

R(xxx) =
np

∑
j=1

1
2 ∑

k∈N j

ψ(x j−xk)

N j , neighborhood of jth pixel (e.g., left, right, up, down)
ψ called the potential function

Finite-difference approximation to continuous roughness measure:

R( f (·)) =
Z

‖∇ f (~r)‖2d~r =
Z

∣

∣

∣

∣

∂
∂x

f (~r)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂
∂y

f (~r)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂
∂z

f (~r)

∣

∣

∣

∣

2

d~r .

Second derivatives also useful:
(More choices!)

∂2

∂x2
f (~r)

∣

∣

∣

∣

~r=~r j

≈ f (~r j+1)−2 f (~r j)+ f (~r j−1)

R(xxx) =
np

∑
j=1

ψ(x j+1−2x j +x j−1)+ · · ·
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For differentiable basis functions (e.g., B-splines), one can find
R

‖∇ f (~r)‖2d~r exactly in terms of
coefficients, e.g., [161].

See Gindi et al. [162,163] for comparisons of first and second order penalties.

2.37

Penalty Functions: General Form

R(xxx) = ∑
k

ψk([CCCxxx]k) where [CCCxxx]k =
np

∑
j=1

ck jx j

Example : x1 x2 x3

x4 x5

CCCxxx =













−1 1 0 0 0
0 −1 1 0 0
0 0 0 −1 1
−1 0 0 1 0

0 −1 0 0 1

























x1

x2

x3

x4

x5













=













x2−x1

x3−x2

x5−x4

x4−x1

x5−x2













R(xxx) =
5

∑
k=1

ψk([CCCxxx]k)

= ψ1(x2−x1)+ψ2(x3−x2)+ψ3(x5−x4)+ψ4(x4−x1)+ψ5(x5−x2)
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This form is general enough to cover nearly all the penalty functions that have been used in
tomography. Exceptions include priors based on nonseparable line-site models [164–167], and
the median root “prior” [168,169], both of which are nonconvex.

It is just coincidence that CCC is square in this example. In general, for a nx×ny image, there are
nx(ny−1) horizontal pairs and ny(nx−1) vertical pairs, so CCC will be a (2nxny−nx−ny)× (nxnx) very
sparse matrix (for a first-order neighborhood consisting of horizontal and vertical cliques).

Concretely, for a nx×ny image ordered lexicographically, for a first-order neighborhood we use

CCC =

[

IIIny⊗DDDnx

DDDny⊗ IIInx

]

where ⊗ denotes the Kronecker product and DDDn denotes the following (n−1)×n matrix:

DDDn ,









−1 1 0 0 0
0 −1 1 0 0
0 0 . . . . . . 0
0 0 0 −1 1









.

2.38

Penalty Functions: Quadratic vs Nonquadratic

R(xxx) = ∑
k

ψk([CCCxxx]k)

Quadratic ψk

If ψk(t) = t2/2, then R(xxx) = 1
2xxx′CCC′CCCxxx, a quadratic form.

• Simpler optimization
• Global smoothing

Nonquadratic ψk

• Edge preserving
• More complicated optimization. (This is essentially solved in convex case.)
• Unusual noise properties
• Analysis/prediction of resolution and noise properties is difficult
• More adjustable parameters (e.g., δ)

Example: Huber function. ψ(t) ,

{

t2/2, |t| ≤ δ
δ|t|−δ2/2, |t|> δ

Example: Hyperbola function. ψ(t) , δ2
√

1+(t/δ)2
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2.39

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

Quadratic vs Non−quadratic Potential Functions

Parabola (quadratic)
Huber, δ=1
Hyperbola, δ=1

t

ψ
(t

)

Lower cost for large differences =⇒ edge preservation
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2.40

Edge-Preserving Reconstruction Example

Phantom Quadratic Penalty Huber Penalty

2.41
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In terms of ROI quantification, a nonquadratic penalty may outperform quadratic penalties for
certain types of objects (especially phantom-like piecewise smooth objects). But the benefits of
nonquadratic penalties for visual tasks is largely unknown.

The smaller δ is in the Huber penalty, the stronger the degree of edge preservation, and the more
unusual the noise effects. In this case I used δ = 0.4, for a phantom that is 0 in background, 1 in
white matter, 4 in graymatter. Thus δ is one tenth the maximum value, as has been recommended
by some authors.

2.41

More “Edge Preserving” Regularization

Chlewicki et al., PMB, Oct. 2004: “Noise reduction and convergence of Bayesian
algorithms with blobs based on the Huber function and median root prior”

2.42



c© J. Fessler, October 24, 2004 p2reg

Figure taken from [170].

2.42

Piecewise Constant “Cartoon” Objects

−2 0 2

−2

0

2

400 k−space samples

1 32

|x| true
1

28 0

2

1 32

∠ x true
1

28 −0.5

0.5

1 32

|x| "conj phase"
1

28 0

2

1 32

∠ x "conj phase"
1

28 −0.5

0.5

1 32

∠ x pcg quad
1

28

1 32

|x| pcg quad
1

28 0

2

−0.5

0.5

1 32

|x| pcg edge
1

28 0

2

1 32

∠ x pcg edge
1

28 −0.5

0.5
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2.43

Total Variation Regularization

Non-quadratic roughness penalty:
Z

‖∇ f (~r)‖d~r ≈∑
k

|[CCCxxx]k|

Uses magnitude instead of squared magnitude of gradient.

Problem: |·| is not differentiable.
Practical solution: |t| ≈

√

1+(t/δ)2 (hyperbola!)

−5 0 5
0

1

2

3

4

5
Potential functions

Total Variation
Hyperbola, δ=0.2
Hyperbola, δ=1

t

ψ
(t

)
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To be more precise, in 2D: ‖∇ f (x,y)‖=

√

∣

∣

∂
∂x f
∣

∣

2
+
∣

∣

∣

∂
∂y f
∣

∣

∣

2
so the total variation is

ZZ

‖∇ f (x,y)‖dxdy≈∑
n

∑
m

√

| f (n,m)− f (n−1,m)|2+ | f (n,m)− f (n,m−1)|2

Total variation in image reconstruction [171–173]. A critique [174].

2.44

Penalty Functions: Convex vs Nonconvex

Convex
• Easier to optimize
• Guaranteed unique minimizer of Ψ (for convex negative log-likelihood)

Nonconvex
• Greater degree of edge preservation
• Nice images for piecewise-constant phantoms!
• Even more unusual noise properties
• Multiple extrema
• More complicated optimization (simulated / deterministic annealing)
• Estimator x̂xx becomes a discontinuous function of data YYY

Nonconvex examples
• “broken parabola”

ψ(t) = min(t2, t2
max)

• true median root prior:

R(xxx) =
np

∑
j=1

(x j−medianj(xxx))2

medianj(xxx)
where medianj(xxx) is local median

Exception: orthonormal wavelet threshold denoising via nonconvex potentials!
2.45
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The above form is not exactly what has been called the median root prior by Alenius et al. [175].
They have used medianj(xxx(n)) which is not a true prior since it depends on the previous iteration.
Hsiao, Rangarajan, and Ginda have developed a very interesting prior that is similar to the “medial
root prior” but is convex [176].

For nice analysis of nonconvex problems, see the papers by Mila Nikolova [177].

For orthonormal wavelet denoising, the cost functions [178] usually have the form

Ψ(xxx) = ‖yyy−AAAxxx‖2+
np

∑
j=1

ψ(x j)

where AAA is an orthonormal. When AAA is orthonormal we can write: ‖yyy−AAAxxx‖2 =
∥

∥AAA′yyy−xxx
∥

∥

2
, so

Ψ(xxx) =
np

∑
j=1

(x j− [AAA′yyy] j)
2+ψ(x j)

which separates completely into np 1-D minimization problems, each of which has a unique mini-
mizer for all useful potential functions.

2.45
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2.46

Local Extrema and Discontinuous Estimators

x̂xx

Ψ(xxx)

xxx

Small change in data =⇒ large change in minimizer x̂xx.
Using convex penalty functions obviates this problem.
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[144] discuss discontinuity

2.47

Augmented Regularization Functions

Replace roughness penalty R(xxx) with R(xxx|bbb)+αR(bbb),
where the elements of bbb (often binary) indicate boundary locations.
• Line-site methods
• Level-set methods

Joint estimation problem:

(x̂xx, b̂bb) = argmin
xxx,bbb

Ψ(xxx,bbb), Ψ(xxx,bbb) =−L(xxx;yyy)+βR(xxx|bbb)+αR(bbb).

Example: b jk indicates the presence of edge between pixels j and k:

R(xxx|bbb) =
np

∑
j=1

∑
k∈N j

(1−b jk)
1
2
(x j−xk)

2

Penalty to discourage too many edges (e.g.):

R(bbb) = ∑
jk

b jk.

• Can encourage local edge continuity
• May require annealing methods for minimization
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Line-site methods: [164–167].
Level-set methods: [179–181].

For the simple non-interacting line-site penalty function R(bbb) given above, one can perform the
minimization over bbb analytically, yielding an equivalent regularization method of the form R(xxx) with
a broken parabola potential function [182].

More sophisticated line-site methods use neighborhoods of line-site variables to encourage local
boundary continuity [164–167].

The convex median prior of Hsiao et al. uses augmented regularization but does not require
annealing [176].

2.48

Modified Penalty Functions

R(xxx) =
np

∑
j=1

1
2 ∑

k∈N j

w jk ψ(x j−xk)

Adjust weights {w jk} to
• Control resolution properties
• Incorporate anatomical side information (MR/CT)

(avoid smoothing across anatomical boundaries)

Recommendations
• Emission tomography:
◦ Begin with quadratic (nonseparable) penalty functions
◦ Consider modified penalty for resolution control and choice of β
◦ Use modest regularization and post-filter more if desired

• Transmission tomography (attenuation maps), X-ray CT
◦ consider convex nonquadratic (e.g., Huber) penalty functions
◦ choose δ based on attenuation map units (water, bone, etc.)
◦ choice of regularization parameter β remains nontrivial,

learn appropriate values by experience for given study type

2.49
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Resolution properties [36,183–185].

Side information (a very incomplete list) [186–197].

2.49

Choice 4.3: Constraints

• Nonnegativity
• Known support
• Count preserving
• Upper bounds on values

e.g., maximum µ of attenuation map in transmission case

Considerations
• Algorithm complexity
• Computation
• Convergence rate
• Bias (in low-count regions)
• . . .
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Sometimes it is stated that the ML-EM algorithm “preserves counts.” This only holds when r i = 0
in the statistical model. The count-preserving property originates from the likelihood, not the
algorithm. The ML estimate, under the Poisson model, happens to preserve counts. It is fine that
ML-EM does so every iteration, but that does not mean that it is superior to other algorithms that
get to the optimum x̂xx faster without necessarily preserving counts along the way.

I do not recommend artificially renormalizing each iteration to try to “preserve counts.”

2.50

Open Problems

Modeling
• Noise in ai j ’s (system model errors)
• Noise in r̂ i’s (estimates of scatter / randoms)
• Statistics of corrected measurements
• Statistics of measurements with deadtime losses

For PL or MAP reconstruction, Qi (MIC 2004) has derived a bound on system
model errors relative to data noise.

Cost functions
• Performance prediction for nonquadratic penalties
• Effect of nonquadratic penalties on detection tasks
• Choice of regularization parameters for nonquadratic regularization

2.51
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Deadtime statistics are analyzed in [57, 58]. Bottom line: in most SPECT and PET systems with
paralyzable deadtime, the measurements are non-Poisson, but the mean and variance are nearly
identical. So presumably the Poisson statistical model is adequate, provided the deadtime losses
are included in the system matrix AAA.

Some of these types of questions are being addressed, e.g., effects of sensitivity map errors (a
type of system model mismatch) in list-mode reconstruction [198]. Qi’s bound on system model
error relative to data error: [199].

2.51

Summary

• 1. Object parameterization: function f (~r) vs vector xxx

• 2. System physical model: si(~r)

• 3. Measurement statistical model Yi ∼ ?

• 4. Cost function: data-mismatch / regularization / constraints

Reconstruction Method , Cost Function + Algorithm

Naming convention “criterion”-“algorithm”:
• ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, . . .
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2.52

Part 3. Algorithms

Method = Cost Function + Algorithm

Outline
• Ideal algorithm
• Classical general-purpose algorithms
• Considerations:
◦ nonnegativity
◦ parallelization
◦ convergence rate
◦ monotonicity

• Algorithms tailored to cost functions for imaging
◦ Optimization transfer
◦ EM-type methods
◦ Poisson emission problem
◦ Poisson transmission problem

• Ordered-subsets / block-iterative algorithms
◦ Recent convergent versions

3.1
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Choosing a cost function is an important part of imaging science.

Choosing an algorithm should be mostly a matter of computer science (numerical methods).

Nevertheless, it gets a lot of attention by imaging scientists since our cost functions have forms
that can be exploited to get faster convergence than general-purpose methods.

3.1

Why iterative algorithms?

• For nonquadratic Ψ, no closed-form solution for minimizer.

• For quadratic Ψ with nonnegativity constraints, no closed-form solution.

• For quadratic Ψ without constraints, closed-form solutions:

PWLS: x̂xx = argmin
xxx
‖yyy−AAAxxx‖2

WWW1/2 +xxx′RRRxxx = [AAA′WWWAAA+RRR]−1AAA′WWWyyy

OLS: x̂xx = argmin
xxx
‖yyy−AAAxxx‖2 = [AAA′AAA]−1AAA′yyy

Impractical (memory and computation) for realistic problem sizes.
AAA is sparse, but AAA′AAA is not.

All algorithms are imperfect. No single best solution.
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Singular value decomposition (SVD) techniques have been proposed for the OLS cost function as
a method for reducing the computation problem, e.g., [200–209].

The idea is that one could precompute the pseudo-inverse of AAA “once and for all.” However AAA
includes physical effects like attenuation, which change for every patient. And for data-weighted
least squares, WWW changes for each scan too.

Image reconstruction never requires the matrix inverse [AAA′AAA]−1; all that is required is a solution to
the normal equations [AAA′AAA]x̂xx = AAA′yyy which is easier, but still nontrivial.

3.2

General Iteration

Model
System

Iteration

Parameters

Measurements
Projection

Calibration ...

Ψ
xxx(n) xxx(n+1)

Deterministic iterative mapping: xxx(n+1) = M (xxx(n))

3.3
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There are also stochastic iterative algorithms, such as simulated annealing [164] and the stochas-
tic EM algorithm [210].

3.3

Ideal Algorithm

xxx? , argmin
xxx≥000

Ψ(xxx) (global minimizer)

Properties
stable and convergent {xxx(n)} converges to xxx? if run indefinitely
converges quickly {xxx(n)} gets “close” to xxx? in just a few iterations
globally convergent limnxxx(n) independent of starting image xxx(0)

fast requires minimal computation per iteration
robust insensitive to finite numerical precision
user friendly nothing to adjust (e.g., acceleration factors)

parallelizable (when necessary)
simple easy to program and debug
flexible accommodates any type of system model
(matrix stored by row or column, or factored, or projector/backprojector)

Choices: forgo one or more of the above
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One might argue that the “ideal algorithm” would be the algorithm that produces xxxtrue. In the
framework presented here, it is the job of the cost function to try to make xxx? ≈ xxxtrue, and the job of
the algorithm to find xxx? by minimizing Ψ.

In fact, nothing in the above list really has to do with image quality. In the statistical framework,
image quality is determined by Ψ, not by the algorithm.

Note on terminology: “algorithms” do not really converge, it is the sequence of estimates {xxx(n)}
that converges, but everyone abuses this all the time, so I will too.

3.4

Classic Algorithms

Non-gradient based
• Exhaustive search
• Nelder-Mead simplex (amoeba)

Converge very slowly, but work with nondifferentiable cost functions.

Gradient based
• Gradient descent

xxx(n+1) , xxx(n)−α∇Ψ
(

xxx(n)
)

Choosing α to ensure convergence is nontrivial.
• Steepest descent

xxx(n+1) , xxx(n)−αn∇Ψ
(

xxx(n)
)

where αn , argmin
α

Ψ
(

xxx(n)−α∇Ψ
(

xxx(n)
))

Computing αn can be expensive.

Limitations
• Converge slowly.
• Do not easily accommodate nonnegativity constraint.

3.5

c© J. Fessler, October 24, 2004 p3alg

Nice discussion of optimization algorithms in [211].

Row and column gradients:

∇Ψ(xxx) =

[

∂
∂x1

Ψ,
∂

∂x2
Ψ, . . . ,

∂
∂xnp

Ψ
]

, ∇ = ∇′

Using gradients excludes nondifferentiable penalty functions such as the Laplacian prior which
involves |x j−xk|. See [212–214] for solutions to this problem.

3.5

Gradients & Nonnegativity - A Mixed Blessing

Unconstrained optimization of differentiable cost functions:

∇Ψ(xxx) = 000 when xxx = xxx?

• A necessary condition always.
• A sufficient condition for strictly convex cost functions.
• Iterations search for zero of gradient.

Nonnegativity-constrained minimization :

Karush-Kuhn-Tucker conditions
∂

∂x j
Ψ(xxx)

∣

∣

∣

∣

xxx=xxx?

is
{

= 0, x?
j > 0

≥ 0, x?
j = 0

• A necessary condition always.
• A sufficient condition for strictly convex cost functions.
• Iterations search for ???
• 0 = x?

j
∂

∂x j
Ψ(xxx?) is a necessary condition, but never sufficient condition.
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3.6

Karush-Kuhn-Tucker Illustrated

−4 −3 −2 −1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

Inactive constraint
Active constraint

Ψ
(xx x

)

xxx

3.7

c© J. Fessler, October 24, 2004 p3alg

The usual condition ∂
∂x j

Ψ(xxx) = 0 only applies for pixels where the nonnegativity constraint is inac-
tive.

3.7

Why Not Clip Negatives?

Nonnegative
Orthant

WLS with Clipped Newton−Raphson

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

x1

x 2

Newton-Raphson with negatives set to zero each iteration.
Fixed-point of iteration is not the constrained minimizer!
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By clipped negatives, I mean you start with some nominal algorithm M0(xxx) and modify it to be:
xxx(n+1) = M (xxx(n)) where M (xxx) = [M0(xxx)]+ and the jth element of [xxx]+ is x j if x j > 0 or 0 if x j ≤ 0.
Basically, you run your favorite iteration and then set any negatives to zero before proceeding to
the next iteration.

Simple 2D quadratic problem. Curves show contours of equal value of the cost function Ψ.

Same problem arises with upper bounds too.

The above problem applies to many simultaneous update iterative methods. For sequential update
methods, such as coordinate descent, clipping works fine.

There are some simultaneous update iterative methods where it will work though; projected gra-
dient descent with a positive-definite diagonal preconditioner, for example.

3.8

Newton-Raphson Algorithm

xxx(n+1) = xxx(n)− [∇2Ψ
(

xxx(n)
)

]−1∇Ψ
(

xxx(n)
)

Advantage :
• Super-linear convergence rate (if convergent)

Disadvantages :
• Requires twice-differentiable Ψ
• Not guaranteed to converge
• Not guaranteed to monotonically decrease Ψ
• Does not enforce nonnegativity constraint
• Computing Hessian ∇2Ψ often expensive
• Impractical for image recovery due to matrix inverse

General purpose remedy: bound-constrained Quasi-Newton algorithms

3.9
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∇2Ψ(xxx) is called the Hessian matrix. It is a np×np matrix (where np is the dimension of xxx). The
j,kth element of it is ∂2

∂x j∂xk
Ψ(xxx) .

A “matrix inverse” actually is not necessary. One can rewrite the above iteration as xxx(n+1) = xxx(n)−ddd(n)

where ddd(n) is the solution to the system of equations: ∇2Ψ(xxx(n))ddd(n) = ∇Ψ(xxx(n)) . Unfortunately, this
is a non-sparse np× np system of equations, requiring O(n3

p) flops to solve, which is expensive.
Instead of solving the system exactly one could use approximate iterative techniques, but then it
should probably be considered a preconditioned gradient method rather than Newton-Raphson.

Quasi-Newton algorithms [215–218] [219, p. 136] [220, p. 77] [221, p. 63].

bound-constrained Quasi-Newton algorithms (LBFGS) [217,222–225].

3.9

Newton’s Quadratic Approximation

2nd-order Taylor series:

Ψ(xxx)≈ φ(xxx;xxx(n)) , Ψ
(

xxx(n)
)

+∇Ψ
(

xxx(n)
)

(xxx−xxx(n))+
1
2
(xxx−xxx(n))T ∇2Ψ

(

xxx(n)
)

(xxx−xxx(n))

Set xxx(n+1) to the (“easily” found) minimizer of this quadratic approximation:

xxx(n+1) , argmin
xxx

φ(xxx;xxx(n))

= xxx(n)− [∇2Ψ
(

xxx(n)
)

]−1∇Ψ
(

xxx(n)
)

Can be nonmonotone for Poisson emission tomography log-likelihood,
even for a single pixel and single ray:

Ψ(x) = (x+ r)−ylog(x+ r) .
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3.10

Nonmonotonicity of Newton-Raphson
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3.11

Consideration: Monotonicity

An algorithm is monotonic if

Ψ
(

xxx(n+1)
)

≤Ψ
(

xxx(n)
)

, ∀xxx(n).

Three categories of algorithms:
• Nonmonotonic (or unknown)
• Forced monotonic (e.g., by line search)
• Intrinsically monotonic (by design, simplest to implement)

Forced monotonicity

Most nonmonotonic algorithms can be converted to forced monotonic algorithms
by adding a line-search step:

xxxtemp, M (xxx(n)), ddd = xxxtemp−xxx(n)

xxx(n+1) , xxx(n)−αnddd
(n) where αn , argmin

α
Ψ
(

xxx(n)−αddd(n)
)

Inconvenient, sometimes expensive, nonnegativity problematic.
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Although monotonicity is not a necessary condition for an algorithm to converge globally to xxx?, it
is often the case that global convergence and monotonicity go hand in hand. In fact, for strictly
convex Ψ, algorithms that monotonically decrease Ψ each iteration are guaranteed to converge
under reasonable regularity conditions [226].

Any algorithm containing a line search step will have difficulties with nonnegativity. In principle
one can address these problems using a “bent-line” search [227], but this can add considerable
computation per iteration.

3.12

Conjugate Gradient Algorithm

Advantages :
• Fast converging (if suitably preconditioned) (in unconstrained case)
• Monotonic (forced by line search in nonquadratic case)
• Global convergence (unconstrained case)
• Flexible use of system matrix AAA and tricks
• Easy to implement in unconstrained quadratic case
• Highly parallelizable

Disadvantages :
• Nonnegativity constraint awkward (slows convergence?)
• Line-search awkward in nonquadratic cases

Highly recommended for unconstrained quadratic problems (e.g., PWLS without
nonnegativity). Useful (but perhaps not ideal) for Poisson case too.

3.13
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CG is like steepest descent, but the search direction is modified each iteration to be conjugate to
the previous search direction.

Preconditioners [228,229]

Poisson case [135,230,231].

3.13

Consideration: Parallelization

Simultaneous (fully parallelizable)
update all pixels simultaneously using all data
EM, Conjugate gradient, ISRA, OSL, SIRT, MART, ...

Block iterative (ordered subsets)
update (nearly) all pixels using one subset of the data at a time
OSEM, RBBI, ...

Row action
update many pixels using a single ray at a time
ART, RAMLA

Pixel grouped (multiple column action)
update some (but not all) pixels simultaneously a time, using all data
Grouped coordinate descent, multi-pixel SAGE
(Perhaps the most nontrivial to implement)

Sequential (column action)
update one pixel at a time, using all (relevant) data
Coordinate descent, SAGE
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Sequential algorithms are the least parallelizable since one cannot update the second pixel until
the first pixel has been updated (to preserve monotonicity and convergence properties).

SAGE [232,233]
Grouped coordinate descent [234]
Multi-pixel SAGE [235]
RAMLA [236]
OSEM [26]
RBBI [237–239]
ISRA [240–242]
OSL [243,244]

3.14

Coordinate Descent Algorithm

aka Gauss-Siedel, successive over-relaxation (SOR), iterated conditional modes (ICM)

Update one pixel at a time, holding others fixed to their most recent values:

xnew
j = argmin

x j≥0
Ψ
(

xnew
1 , . . . ,xnew

j−1,x j,x
old
j+1, . . . ,x

old
np

)

, j = 1, . . . ,np

Advantages :
• Intrinsically monotonic
• Fast converging (from good initial image)
• Global convergence
• Nonnegativity constraint trivial

Disadvantages :
• Requires column access of system matrix AAA
• Cannot exploit some “tricks” for AAA, e.g., factorizations
• Expensive “arg min” for nonquadratic problems
• Poorly parallelizable

3.15
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Fast convergence shown by Sauer and Bouman with clever frequency-domain analysis [245].

Any ordering can be used. Convergence rate may vary with ordering.

Global convergence even with negatives clipped [246].

One can replace the “arg min” with a one-dimensional Newton-Raphson step [234, 247–249].
However, this change then loses the guarantee of monotonicity for nonquadratic Ψ. Also, evalu-
ating the second partial derivatives of Ψ with respect to x j is expensive (costs an extra modified
backprojection per iteration) [234].

The paraboloidal surrogates coordinate descent (PSCD) algorithm circumvents these problems
[250].

3.15

Constrained Coordinate Descent Illustrated
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In this particular case, the nonnegativity constraint led to exact convergence in 1.5 iterations.

3.16

Coordinate Descent - Unconstrained
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In general coordinate descent converges at a linear rate [127,245].

Interestingly, for this particular problem the nonnegativity constraint accelerated convergence.

3.17

Coordinate-Descent Algorithm Summary

Recommended when all of the following apply:
• quadratic or nearly-quadratic convex cost function
• nonnegativity constraint desired
• precomputed and stored system matrix AAA with column access
• parallelization not needed (standard workstation)

Cautions:
• Good initialization (e.g., properly scaled FBP) essential.

(Uniform image or zero image cause slow initial convergence.)
• Must be programmed carefully to be efficient.

(Standard Gauss-Siedel implementation is suboptimal.)
• Updates high-frequencies fastest =⇒ poorly suited to unregularized case

Used daily in UM clinic for 2D SPECT / PWLS / nonuniform attenuation
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In saying “not good for the unregularized case” I am assuming one does not really wish to find the
minimizer of Ψ in that case. If you really want the minimizer of Ψ in the unregularized case, then
coordinate descent may still be useful.

3.18

Summary of General-Purpose Algorithms

Gradient-based
• Fully parallelizable
• Inconvenient line-searches for nonquadratic cost functions
• Fast converging in unconstrained case
• Nonnegativity constraint inconvenient

Coordinate-descent
• Very fast converging
• Nonnegativity constraint trivial
• Poorly parallelizable
• Requires precomputed/stored system matrix

CD is well-suited to moderate-sized 2D problem (e.g., 2D PET),
but poorly suited to large 2D problems (X-ray CT) and fully 3D problems

Neither is ideal.

... need special-purpose algorithms for image reconstruction!
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Interior-point methods for general-purpose constrained optimization have recently been applied to
image reconstruction [251] and deserve further examination.

3.19

Data-Mismatch Functions Revisited

For fast converging, intrinsically monotone algorithms, consider the form of Ψ.

WLS:

Ł(xxx) =
nd

∑
i=1

1
2

wi (yi− [AAAxxx]i)
2 =

nd

∑
i=1

hi([AAAxxx]i), where hi(l) ,
1
2

wi (yi− l)2.

Emission Poisson (negative) log-likelihood :

Ł(xxx) =
nd

∑
i=1

([AAAxxx]i + r i)−yi log([AAAxxx]i + r i) =
nd

∑
i=1

hi([AAAxxx]i)

where hi(l) , (l + r i)−yi log(l + r i) .

Transmission Poisson log-likelihood :

Ł(xxx) =
nd

∑
i=1

(

bi e
−[AAAxxx]i + r i

)

−yi log
(

bi e
−[AAAxxx]i + r i

)

=
nd

∑
i=1

hi([AAAxxx]i)

where hi(l) , (bie
−l + r i)−yi log

(

bie
−l + r i

)

.

MRI, polyenergetic X-ray CT, confocal microscopy, image restoration, ...
All have same partially separable form.
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All the algorithms discussed this far are generic; they can be applied to any differentiable Ψ.

3.20

General Imaging Cost Function

General form for data-mismatch function:

Ł(xxx) =
nd

∑
i=1

hi([AAAxxx]i)

General form for regularizing penalty function:

R(xxx) = ∑
k

ψk([CCCxxx]k)

General form for cost function:

Ψ(xxx) = Ł(xxx)+βR(xxx) =
nd

∑
i=1

hi([AAAxxx]i)+β∑
k

ψk([CCCxxx]k)

Properties of Ψ we can exploit:
• summation form (due to independence of measurements)
• convexity of hi functions (usually)
• summation argument (inner product of xxx with ith row of AAA)

Most methods that use these properties are forms of optimization transfer.

3.21
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3.21

Optimization Transfer Illustrated

Surrogate function
Cost function

xxx(n) xxx(n+1)

Ψ
(xx x

)
an

d
φ(n

) (
xx x)
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This figure does not do justice to the problem. A one-dimensional Ψ is usually easy to minimize.
The problem is in multiple dimensions.

3.22

Optimization Transfer

General iteration:
xxx(n+1) = argmin

xxx≥000
φ
(

xxx;xxx(n)
)

Monotonicity conditions (cost function Ψ decreases provided these hold):

• φ(xxx(n);xxx(n)) = Ψ(xxx(n)) (matched current value)

• ∇xxxφ(xxx;xxx(n))
∣

∣

∣

xxx=xxx(n)
= ∇Ψ(xxx)

∣

∣

∣

xxx=xxx(n)
(matched gradient)

• φ(xxx;xxx(n))≥Ψ(xxx) ∀xxx≥ 000 (lies above)

These 3 (sufficient) conditions are satisfied by the Q function of the EM algorithm
(and SAGE).

The 3rd condition is not satisfied by the Newton-Raphson quadratic approxima-
tion, which leads to its nonmonotonicity.

3.23

c© J. Fessler, October 24, 2004 p3x
3.23

Optimization Transfer in 2d
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3.24

Optimization Transfer cf EM Algorithm

E-step: choose surrogate function φ(xxx;xxx(n))

M-step: minimize surrogate function

xxx(n+1) = argmin
xxx≥000

φ
(

xxx;xxx(n)
)

Designing surrogate functions
• Easy to “compute”
• Easy to minimize
• Fast convergence rate

Often mutually incompatible goals ... compromises
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From the point of view of “per iteration convergence rate,” the optimal “surrogate function” would
be just Ψ itself. However, then the M-step is very difficult (in fact it is the original optimization
problem). Such an “algorithm” would converge in one very expensive “iteration.”

3.25

Convergence Rate: Slow

High Curvature

Old

Small Steps
Slow Convergence

x
New

φ

Φ

3.26



c© J. Fessler, October 24, 2004 p3x
3.26

Convergence Rate: Fast

Fast Convergence

Old

Large Steps
Low Curvature

x
New

φ

Φ
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Tradeoff between curvature and ease of M-step... Can we beat this tradeoff?

3.27

Tool: Convexity Inequality

g(x)

x

αx1+(1−α)x2x1 x2

g convex =⇒ g(αx1+(1−α)x2)≤ αg(x1)+(1−α)g(x2) for α ∈ [0,1]

More generally: αk≥ 0 and ∑kαk = 1 =⇒ g(∑kαkxk) ≤ ∑kαkg(xk). Sum outside!
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The emission Poisson ray log-likelihood hi is strictly convex on (−r i,∞). This turns out to be
adequate for the derivation.

3.28

Example 1: Classical ML-EM Algorithm

Negative Poisson log-likelihood cost function (unregularized):

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i), hi(l) = (l + r i)−yi log(l + r i) .

Intractable to minimize directly due to summation within logarithm.

Clever trick due to De Pierro (let ȳyy(n)

i = [AAAxxx(n)]i + r i):

[AAAxxx]i =
np

∑
j=1

ai j x j =
np

∑
j=1

[

ai j x
(n)

j

ȳyy(n)

i

](

x j

x(n)

j

ȳyy(n)

i

)

.

Since the hi’s are convex in Poisson emission model:

hi([AAAxxx]i) = hi

(

np

∑
j=1

[

ai j x
(n)

j

ȳyy(n)

i

](

x j

x(n)

j

ȳyy(n)

i

))

≤
np

∑
j=1

[

ai j x
(n)

j

ȳyy(n)

i

]

hi

(

x j

x(n)

j

ȳyy(n)

i

)

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i) ≤ φ
(

xxx;xxx(n)
)

,

nd

∑
i=1

np

∑
j=1

[

ai j x
(n)

j

ȳyy(n)

i

]

hi

(

x j

x(n)

j

ȳyy(n)

i

)

Replace convex cost function Ψ(xxx) with separable surrogate function φ(xxx;xxx(n)).
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The clever (multiplicative) trick in the first equation is due to Alvaro De Pierro [242].

Note that the bracketed terms sum over j to unity.

I believe that this is the shortest and simplest possible derivation of the ML-EM algorithm, out of
five distinct derivations I have seen.

This derivation is complete only for the case r i = 0. It is easily generalized to r i 6= 0.

3.29

“ML-EM Algorithm” M-step

E-step gave separable surrogate function:

φ
(

xxx;xxx(n)
)

=
np

∑
j=1

φ j

(

x j;xxx
(n)
)

, where φ j

(

x j;xxx
(n)
)

,

nd

∑
i=1

[

ai j x
(n)

j

ȳyy(n)

i

]

hi

(

x j

x(n)

j

ȳyy(n)

i

)

.

M-step separates:

xxx(n+1) = argmin
xxx≥000

φ
(

xxx;xxx(n)
)

=⇒ x(n+1)

j = argmin
x j≥0

φ j

(

x j;xxx
(n)
)

, j = 1, . . . ,np

Minimizing:

∂
∂x j

φ j

(

x j;xxx
(n)
)

=
nd

∑
i=1

ai j ḣi

(

ȳyy(n)

i x j/x(n)

j

)

=
nd

∑
i=1

ai j

[

1−
yi

ȳyy(n)

i x j/x(n)

j

]∣

∣

∣

∣

∣

x j=x
(n+1)
j

= 0.

Solving (in case r i = 0):

x(n+1)

j = x(n)

j

[

nd

∑
i=1

ai j
yi

[AAAxxx(n)]i

]

/

(

nd

∑
i=1

ai j

)

, j = 1, . . . ,np

• Derived without any statistical considerations, unlike classical EM formulation.
• Uses only convexity and algebra.
• Guaranteed monotonic: surrogate function φ satisfies the 3 required properties.
• M-step trivial due to separable surrogate.
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When r i = 0, ḣi(l) , d
dl hi(l) = 1−yi/l .

Case where r i 6= 0 can also be handled with more algebra. Just replace final [AAAxxx(n)]i with ȳyy(n)

i =
[AAAxxx(n)]i + r i.

To be rigorous, we should check that the Karush-Kuhn-Tucker condition holds for our minimizer of
φ j(·;xxx(n)). It does, provided xxx(n) ≥ 000.

I prefer this derivation over the statistical EM derivation, even though we are doing statistical image
reconstruction. Statistics greatly affect the design of Ψ, but minimizing Ψ is really just a numerical
problem, and statistics need not have any role in that.

3.30

ML-EM is Scaled Gradient Descent

x(n+1)

j = x(n)

j

[

nd

∑
i=1

ai j
yi

ȳyy(n)

i

]

/

(

nd

∑
i=1

ai j

)

= x(n)

j +x(n)

j

[

nd

∑
i=1

ai j

(

yi

ȳyy(n)

i

−1

)]

/

(

nd

∑
i=1

ai j

)

= x(n)

j −

(

x(n)

j

∑nd
i=1ai j

)

∂
∂x j

Ψ
(

xxx(n)
)

, j = 1, . . . ,np

xxx(n+1) = xxx(n) +DDD(xxx(n))∇Ψ
(

xxx(n)
)

This particular diagonal scaling matrix remarkably
• ensures monotonicity,
• ensures nonnegativity.
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3.31

Consideration: Separable vs Nonseparable

−2 0 2
−2

−1

0

1

2
Separable

−2 0 2
−2

−1

0

1

2
Nonseparable

x1x1

x 2x 2

Contour plots: loci of equal function values.

Uncoupled vs coupled minimization.
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To find the minimizer of a separable function, one can minimize separately with respect to each
argument. To find the minimizer of a nonseparable function, one must consider the variables
together. In this sense the minimization problem “couples” together the unknown parameters.

3.32

Separable Surrogate Functions (Easy M-step)

The preceding EM derivation structure applies to any cost function of the form

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i) .

cf ISRA (for nonnegative LS), “convex algorithm” for transmission reconstruction

Derivation yields a separable surrogate function

Ψ(xxx)≤ φ
(

xxx;xxx(n)
)

, where φ
(

xxx;xxx(n)
)

=
np

∑
j=1

φ j

(

x j;xxx
(n)
)

M-step separates into 1D minimization problems (fully parallelizable):

xxx(n+1) = argmin
xxx≥000

φ
(

xxx;xxx(n)
)

=⇒ x(n+1)

j = argmin
x j≥0

φ j

(

x j;xxx
(n)
)

, j = 1, . . . ,np

Why do EM / ISRA / convex-algorithm / etc. converge so slowly?
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Unfortunately, choosing additively separable surrogate functions generally leads to very high cur-
vature surrogates, which gives very slow convergence rates. EM is the classic example.

The classic EM algorithm is simple to implement precisely because it uses separable surrogate
functions.

The derivation of the “convex algorithm” for the Poisson transmission problem [252] and the con-
vergence proof of the ISRA algorithm [242] use a very similar derivation.

Clarify: the self-similar surrogate function is easy to minimize because it is separable. So even
though L and Q are composed of the same ray-log likelihood functions, the latter is easier to
minimize because it is separable.

3.33

Separable vs Nonseparable

Separable Nonseparable

ΨΨ

φ

φ

Separable surrogates (e.g., EM) have high curvature ... slow convergence.
Nonseparable surrogates can have lower curvature ... faster convergence.
Harder to minimize? Use paraboloids (quadratic surrogates).
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3.34

High Curvature of EM Surrogate
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Sublinear convergence rate of EM shown in [253].

3.35

1D Parabola Surrogate Function

Find parabola q(n)

i (l) of the form:

q(n)

i (l) = hi

(

`(n)

i

)

+ ḣi

(

`(n)

i

)

(l − `(n)

i )+c(n)

i
1
2
(l − `(n)

i )2, where `(n)

i , [AAAxxx(n)]i

Satisfies tangent condition. Choose curvature to ensure “lies above” condition:

c(n)

i , min
{

c≥ 0 : q(n)

i (l)≥ hi(l), ∀l ≥ 0
}

.
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Surrogate Functions for Emission Poisson

Negative log−likelihood
Parabola surrogate function
EM surrogate function

l l →`(n)

i

Lower
curvature!
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3.36

Paraboloidal Surrogate

Combining 1D parabola surrogates yields paraboloidal surrogate:

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i)≤ φ
(

xxx;xxx(n)
)

=
nd

∑
i=1

q(n)

i ([AAAxxx]i)

Rewriting: φ
(

δδδ+xxx(n);xxx(n)
)

= Ψ
(

xxx(n)
)

+∇Ψ
(

xxx(n)
)

δδδ+
1
2

δδδ′AAA′diag
{

c(n)

i

}

AAAδδδ

Advantages
• Surrogate φ(xxx;xxx(n)) is quadratic, unlike Poisson log-likelihood

=⇒ easier to minimize
• Not separable (unlike EM surrogate)
• Not self-similar (unlike EM surrogate)
• Small curvatures =⇒ fast convergence
• Intrinsically monotone global convergence
• Fairly simple to derive / implement

Quadratic minimization
• Coordinate descent

+ fast converging
+ Nonnegativity easy
- precomputed column-stored system matrix

• Gradient-based quadratic minimization methods
- Nonnegativity inconvenient
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Instead of coordinate descent, one could also apply nonnegativity-constrained conjugate gradient.

PSCD recommended for 2D emission Poisson likelihood when system matrix precomputed and
stored by columns.

3.37

Example: PSCD for PET Transmission Scans

• square-pixel basis
• strip-integral system model
• shifted-Poisson statistical model
• edge-preserving convex regularization (Huber)
• nonnegativity constraint
• inscribed circle support constraint
• paraboloidal surrogate coordinate descent (PSCD) algorithm

3.38
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3.38

Separable Paraboloidal Surrogate

To derive a parallelizable algorithm apply another De Pierro trick:

[AAAxxx]i =
np

∑
j=1

πi j

[

ai j

πi j
(x j−x(n)

j )+ `(n)

i

]

, `(n)

i = [AAAxxx(n)]i.

Provided πi j ≥ 0 and ∑
np
j=1πi j = 1, since parabola qi is convex:

q(n)

i ([AAAxxx]i) = q(n)

i

(

np

∑
j=1

πi j

[

ai j

πi j
(x j−x(n)

j )+ `(n)

i

]

)

≤
np

∑
j=1

πi j q
(n)

i

(

ai j

πi j
(x j−x(n)

j )+ `(n)

i

)

... φ
(

xxx;xxx(n)
)

=
nd

∑
i=1

q(n)

i ([AAAxxx]i) ≤ φ̃
(

xxx;xxx(n)
)

,

nd

∑
i=1

np

∑
j=1

πi j q
(n)

i

(

ai j

πi j
(x j−x(n)

j )+ `(n)

i

)

Separable Paraboloidal Surrogate:

φ̃
(

xxx;xxx(n)
)

=
np

∑
j=1

φ j

(

x j;xxx
(n)
)

, φ j

(

x j;xxx
(n)
)

,

nd

∑
i=1

πi j q
(n)

i

(

ai j

πi j
(x j−x(n)

j )+ `(n)

i

)

Parallelizable M-step (cf gradient descent!):

x(n+1)

j = argmin
x j≥0

φ j

(

x j;xxx
(n)
)

=

[

x(n)

j −
1

d(n)

j

∂
∂x j

Ψ
(

xxx(n)
)

]

+

, d(n)

j =
nd

∑
i=1

a2
i j

πi j
c(n)

i

Natural choice is πi j = |ai j |/|a|i, |a|i = ∑
np
j=1 |ai j |
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De Pierro’s “additive trick” in [160].

For the natural choice πi j = |ai j |/|a|i, we have

d(n)

j =
nd

∑
i=1

|ai j | |a|i c
(n)

i

3.39

Example: Poisson ML Transmission Problem

Transmission negative log-likelihood (for ith ray):

hi(l) = (bie
−l + r i)−yi log

(

bie
−l + r i

)

.

Optimal (smallest) parabola surrogate curvature (Erdoğan, T-MI, Sep. 1999):

c(n)

i = c(`(n)

i ,hi), c(l ,h) =











[

2
h(0)−h(l)+ ḣ(l)l

l2

]

+

, l > 0
[

ḧ(l)
]

+
, l = 0.

Separable Paraboloidal Surrogate (SPS) Algorithm :

Precompute |a|i = ∑
np
j=1ai j , i = 1, . . . ,nd

`(n)

i = [AAAxxx(n)]i, (forward projection)

ȳyy(n)

i = bi e−`
(n)
i + r i (predicted means)

ḣi
(n)

= 1−yi/ ȳyy(n)

i (slopes)
c(n)

i = c(`(n)

i ,hi) (curvatures)

x(n+1)

j =

[

x(n)

j −
1

d(n)

j

∂
∂x j

Ψ
(

xxx(n)
)

]

+

=

[

x(n)

j −
∑nd

i=1ai j ḣi
(n)

∑nd
i=1ai j |a|ic

(n)

i

]

+

, j = 1, . . . ,np

Monotonically decreases cost function each iteration. No logarithm!
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Note that this algorithm never takes the logarithm of the transmission data, since it is based
directly on a statistical model for the raw measurements. This is a significant part of the reason
why it works well for low-count measurements.

Optimal parabola surrogate curvature for transmission problem [250]. Emission problem [254].

A Matlab m-file for this algorithm is available from
http://www.eecs.umich.edu/∼fessler /code
as transmission/tml_sps.m

Related m-files also of interest include transmission/tpl_osps.m

3.40

The MAP-EM M-step “Problem”

Add a penalty function to our surrogate for the negative log-likelihood:

Ψ(xxx) = Ł(xxx)+βR(xxx)

φ
(

xxx;xxx(n)
)

=
np

∑
j=1

φ j

(

x j;xxx
(n)
)

+βR(xxx)

M-step: xxx(n+1) = argmin
xxx≥000

φ
(

xxx;xxx(n)
)

= argmin
xxx≥000

np

∑
j=1

φ j

(

x j;xxx
(n)
)

+βR(xxx) = ?

For nonseparable penalty functions, the M-step is coupled ... difficult.

Suboptimal solutions
• Generalized EM (GEM) algorithm (coordinate descent on φ)

Monotonic, but inherits slow convergence of EM.
• One-step late (OSL) algorithm (use outdated gradients) (Green, T-MI, 1990)

∂
∂x j

φ(xxx;xxx(n)) = ∂
∂x j

φ j(x j;xxx(n))+β ∂
∂x j

R(xxx)
?
≈ ∂

∂x j
φ j(x j;xxx(n))+β ∂

∂x j
R(xxx(n))

Nonmonotonic. Known to diverge, depending on β.
Temptingly simple, but avoid!

Contemporary solution
• Use separable surrogate for penalty function too (De Pierro, T-MI, Dec. 1995)

Ensures monotonicity. Obviates all reasons for using OSL!
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OSL [243,244]
GEM [255–257]

De Pierro’s separable penalty derived in [160].

3.41

De Pierro’s MAP-EM Algorithm

Apply separable paraboloidal surrogates to penalty function:

R(xxx)≤ RSPS(xxx;xxx(n)) =
np

∑
j=1

Rj(x j;xxx
(n))

Overall separable surrogate: φ
(

xxx;xxx(n)
)

=
np

∑
j=1

φ j

(

x j;xxx
(n)
)

+β
np

∑
j=1

Rj(x j;xxx
(n))

The M-step becomes fully parallelizable:

x(n+1)

j = argmin
x j≥0

φ j

(

x j;xxx
(n)
)

−βRj(x j;xxx
(n)), j = 1, . . . ,np.

Consider quadratic penalty R(xxx) = ∑kψ([CCCxxx]k), where ψ(t) = t2/2.
If γk j ≥ 0 and ∑

np
j=1γk j = 1 then

[CCCxxx]k =
np

∑
j=1

γk j

[

ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

]

.

Since ψ is convex:

ψ([CCCxxx]k) = ψ

(

np

∑
j=1

γk j

[

ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

]

)

≤
np

∑
j=1

γk j ψ
(

ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

)
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Often we just choose

γk j =

{

1
number of nonzero ck j’s in kth row of CCC, ck j 6= 0

0, otherwise,

which satisfies the two conditions γk j ≥ 0 and ∑
np
j=1γk j = 1, e.g.

CCC =













−1 1 0 0 0
0 −1 1 0 0
0 0 0 −1 1
−1 0 0 1 0

0 −1 0 0 1













, {γk j}=













1
2

1
2 0 0 0

0 1
2

1
2 0 0

0 0 0 1
2

1
2

1
2 0 0 1

2 0
0 1

2 0 0 1
2













.

Alternatively we use the choice

γk j =
|ck j|

∑
np
j ′=1

∣

∣ck j′
∣

∣

,

which happens to yield the same result when the elements of CCC are just ±1 as in the above
example. For non-unity ck j’s, the latter ratio seems to be preferable in terms of convergence rate.

3.42

De Pierro’s Algorithm Continued

So R(xxx)≤ R(xxx;xxx(n)) , ∑
np
j=1Rj(x j;xxx(n)) where

Rj(x j;xxx
(n)) , ∑

k

γk j ψ
(

ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

)

M-step: Minimizing φ j(x j;xxx(n))+βRj(x j;xxx(n)) yields the iteration:

x(n+1)

j =
x(n)

j ∑nd
i=1ai j yi/ ȳyy(n)

i

B j +

√

B2
j +
(

x(n)

j ∑nd
i=1ai j yi/ ȳyy(n)

i

)(

β∑kc2
k j/γk j

)

where B j ,
1
2

[

nd

∑
i=1

ai j +β∑
k

(

ck j[CCCxxx(n)]k−
c2

k j

γk j
x(n)

j

)]

, j = 1, . . . ,np

and ȳyy(n)

i = [AAAxxx(n)]i + r i.

Advantages: Intrinsically monotone, nonnegativity, fully parallelizable.
Requires only a couple % more computation per iteration than ML-EM

Disadvantages: Slow convergence (like EM) due to separable surrogate
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As a concrete example, consider R(xxx) = ∑
np
j=1

1
2 ∑k∈N j

1
2(x j − xk)

2 with N j corresponding to the |N j |

nearest neighbors to the jth pixel. For this penalty with the choice γk j = |ck j|/ck where ck =

∑
np
j=1 |ck j|= |N j |, the separable surrogate is [160]:

Rj(x j ;xxx
(n)) = ∑

k∈N j

1
2

1
|N j |

(

|N j |(x j−x(n)

j )+x(n)

j −x(k)

j

)2
.

Matlab m-file available from http://www.eecs.umich.edu/∼fessler /code
as emission/eql emdp.m

Caution: use stable quadratic roots [211] (slightly more complicated than above).

One can make an ordered-subsets version of De Pierro’s MAP-EM easily. Such an approach is
preferable to the OSL version of OS-EM mentioned by Hudson and Larkin [26].

One can do multiple M-step subiterations for minimal additional computation with some improve-
ment in convergence rate.

For a tomography problem with a 64×64 image, 64×80 sinogram, and strip-area system matrix,
De Pierro’s MAP-EM algorithm requires 4% more flops per iteration than classic ML-EM.

3.43

Ordered Subsets Algorithms

aka block iterative or incremental gradient algorithms

The gradient appears in essentially every algorithm:

Ł(xxx) =
nd

∑
i=1

hi([AAAxxx]i) =⇒
∂

∂x j
Ł(xxx) =

nd

∑
i=1

ai j ḣi([AAAxxx]i) .

This is a backprojection of a sinogram of the derivatives
{

ḣi([AAAxxx]i)
}

.

Intuition: with half the angular sampling, this backprojection would be fairly similar

1
nd

nd

∑
i=1

ai j ḣi(·)≈
1
|S |∑i∈S

ai j ḣi(·),

where S is a subset of the rays.

To “OS-ize” an algorithm, replace all backprojections with partial sums.

Recall typical iteration:

xxx(n+1) = xxx(n)−DDD(xxx(n))∇Ψ
(

xxx(n)
)

.

3.44



c© J. Fessler, October 24, 2004 p3x

The dramatic improvements in apparent “convergence rate” of OSEM over classic ML-EM are due
largely to the fact that the latter converges so slowly.

Modern, faster converging algorithms may benefit much less from OS modifications.

Richard Larkin (personal communication) has described the development of OSEM as something
of a fortuitous programming “accident.” In the course of developing software to implement the
E-ML-EM algorithm, he first implemented a version that updated the image immediately after the
reprojection of each view. Later he implemented the classical E-ML-EM algorithm but found it
to give worse images (in the early iterations). (Due of course to its slow convergence.) The
“immediate update” version turns out to be OSEM with 1 view per subset.

Several publications hinted at the use of subsets of projection views for acceleration, e.g., [258–
261], and D. Politte’s 1983 dissertation. But it was the paper by Larking and Hudson that incited
widespread use of OSEM [26].

In the general optimization literature, such algorithms are called incremental gradient methods
[262–266], and they date back to the 1970’s [267].

3.44

Geometric View of Ordered Subsets

)( n
xΦ ∇ 

)(1
nf x∇ 

)(2
nf x∇ 

)( k
xΦ ∇ 

)(1
kf x∇ 

)(2
kf x∇ 

k
x

n
x

*
x

)(maxarg 1 xf

)(maxarg 2 xf

Two subset case: Ψ(xxx) = f1(xxx)+ f2(xxx) (e.g., odd and even projection views).

For xxx(n) far from xxx?, even partial gradients should point roughly towards xxx?.
For xxx(n) near xxx?, however, ∇Ψ(xxx)≈ 000, so ∇ f1(xxx)≈−∇ f2(xxx) =⇒ cycles!
Issues. “Subset gradient balance”: ∇Ψ(xxx)≈M∇ fk(xxx). Choice of ordering.
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3.45

Incremental Gradients (WLS, 2 Subsets)

0

1x0

−40

10∇ f
WLS

(x)

−40

102⋅∇ f
even

(x)

−40

102⋅∇ f
odd

(x)

−5

5difference

−5

5

M
=

2

difference

(full − subset)

0

8
xtrue
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Here the initial image xxx(0) is far from the solution so the incremental gradients, i.e., the gradients
computed from just the even or odd angles, agree well with the full gradient.

3.46

Subset Gradient Imbalance
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−5

5

M
=

2

difference

(full − subset)
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Here the first subset was angles 0-90◦, and the second subset was angles 90-180◦, roughly speak-
ing. Now the incremental gradients do not agree as well with the full gradient. (Of course the sum
of the two incremental gradients would still equal the full gradient.) This imbalance is expected to
slow “convergence.”

3.47

Problems with OS-EM

• Non-monotone

• Does not converge (may cycle)

• Byrne’s “rescaled block iterative” (RBI) approach converges only for consistent
(noiseless) data

• ... unpredictable
• What resolution after n iterations?

Object-dependent, spatially nonuniform
• What variance after n iterations?
• ROI variance? (e.g., for Huesman’s WLS kinetics)
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RBI (rescaled block iterative) [239].

Soares and Glick et al. [41] [40] have extended the work of Barrett et al. [33] to the OSEM case.

Wang et al. have extended it to the penalized case, for the OSL algorithm [39].

3.48

OSEM vs Penalized Likelihood

• 64×62 image
• 66×60 sinogram
• 106 counts
• 15% randoms/scatter
• uniform attenuation
• contrast in cold region
• within-region σ opposite side
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3.49

Contrast-Noise Results
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3.50
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3.51

Making OS Methods Converge

• Relaxation
• Incrementalism

Relaxed block-iterative methods

Ψ(xxx) =
M

∑
m=1

Ψm(xxx)

xxx(n+(m+1)/M) = xxx(n+m/M)−αnD(xxx(n+m/M))∇Ψm

(

xxx(n+m/M)
)

, m= 0, . . . ,M−1

Relaxation of step sizes:

αn→ 0 as n→ ∞, ∑
n

αn = ∞, ∑
n

α2
n < ∞

• ART
• RAMLA, BSREM (De Pierro, T-MI, 1997, 2001)
• Ahn and Fessler, NSS/MIC 2001, T-MI 2003

Considerations
• Proper relaxation can induce convergence, but still lacks monotonicity.
• Choice of relaxation schedule requires experimentation.
• Ψm(xxx) = Łm(xxx)+ 1

M R(xxx), so each Ψm includes part of the likelihood yet all of R
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RAMLA [236] (for ML only)

Kudo [268] does not give convergence proof in English...

BSREM [269] convergence proof requires some “a posteriori” assumptions. These have been
eliminated in [270].

3.52

Relaxed OS-SPS
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[271]

3.53

Incremental Methods

Incremental EM applied to emission tomography by Hsiao et al. as C-OSEM

Incremental optimization transfer (Ahn & Fessler, MIC 2004)

Find majorizing surrogate for each sub-objective function:

φm(xxx;xxx) = Ψm(xxx), ∀xxx
φm(xxx; x̄xx) ≥ Ψm(xxx), ∀xxx, x̄xx

Define the following augmented cost function: F(xxx; x̄xx1, . . . , x̄xxM) = ∑M
m=1φm(xxx; x̄xxm) .

Fact: by construction x̂xx = argminxxxΨ(xxx) = argminxxxminx̄xx1,...,x̄xxM F(xxx; x̄xx1, . . . , x̄xxM).

Alternating minimization: for m= 1, . . . ,M:

xxxnew = argmin
xxx

F
(

xxx; x̄xx(n+1)

1 , . . . , x̄xx(n+1)

m−1 , x̄xx(n)
m , x̄xx(n)

m+1, . . . x̄xx
(n)

M

)

x̄xx(n+1)
m = argmin

x̄xxm

F
(

xxxnew; x̄xx(n+1)

1 , . . . , x̄xx(n+1)

m−1 , x̄xxm, x̄xx(n)

m+1, . . . x̄xx
(n)

M

)

= xxxnew.

• Use all current information, but increment the surrogate for only one subset.
• Monotone in F , converges under reasonable assumptions on Ψ
• In constrast, OS-EM uses the information from only one subset at a time
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C-OSEM [272]

Incremental optimization transfer [273,274]

3.54

TRIOT Example: Convergence Rate

Transmission incremental optimization transfer (TRIOT)

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

iteration

no
rm

al
iz

ed
 Φ

 d
iff

er
en

ce

2 iterations of OS−SPS included

64 subsets, initialized with uniform image

SPS−MC
SPS−PC
TRIOT−MC
TRIOT−PC
OS−SPS

3.55

c© J. Fessler, October 24, 2004 p3x
3.55

TRIOT Example: Attenuation Map Images

FBP PL optimal image

OS-SPS TRIOT-PC

OS-SPS: 64 subsets, 20 iterations, one point of the limit cycle
TRIOT-PC: 64 subsets, 20 iterations, after 2 iterations of OS-SPS)
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3.56

OSTR aka Transmission OS-SPS

Ordered subsets version of separable paraboloidal surrogates
for PET transmission problem with nonquadratic convex regularization

Matlab m-file http://www.eecs.umich.edu/∼fessler
/code/transmission/tpl osps.m
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Ordered subsets for PET/SPECT transmission scans [275], and for X-ray CT [46].

3.57

Precomputed curvatures for OS-SPS

Separable Paraboloidal Surrogate (SPS) Algorithm :

x(n+1)

j =

[

x(n)

j −
∑nd

i=1ai j ḣi([AAAxxx(n)]i)

∑nd
i=1ai j |a|ic

(n)

i

]

+

, j = 1, . . . ,np

Ordered-subsets abandons monotonicity, so why use optimal curvatures c(n)

i ?

Precomputed curvature:

ci = ḧi

(

l̂ i
)

, l̂ i = argmin
l

hi(l)

Precomputed denominator (saves one backprojection each iteration!):

d j =
nd

∑
i=1

ai j |a|ici, j = 1, . . . ,np.

OS-SPS algorithm with M subsets:

x(n+1)

j =

[

x(n)

j −
∑i∈S (n) ai j ḣi([AAAxxx(n)]i)

d j/M

]

+

, j = 1, . . . ,np
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Precomputed parabola surrogate curvature for transmission problem and ordered subsets [250,
275].

For emission problem, ci ≈ 1/yi.

For transmission problem, ci ≈ yi.

Precomputed curvatures combined with suitable relaxation yields guaranteed convergence for
convex problems [270].

3.58

Summary of Algorithms

• General-purpose optimization algorithms
• Optimization transfer for image reconstruction algorithms
• Separable surrogates =⇒ high curvatures =⇒ slow convergence
• Ordered subsets accelerate initial convergence

require relaxation or incrementalism for true convergence
• Principles apply to emission and transmission reconstruction
• Still work to be done...

An Open Problem

Still no algorithm with all of the following properties:
• Nonnegativity easy
• Fast converging
• Intrinsically monotone global convergence
• Accepts any type of system matrix
• Parallelizable
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Until an “ideal” algorithm is developed, OSEM will probably remain very popular...

3.59

Part 4. Performance Characteristics

• Spatial resolution properties

• Noise properties

• Detection properties

4.1
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4.1

Spatial Resolution Properties

Choosing β can be painful, so ...

For true minimization methods:

x̂xx = argmin
xxx

Ψ(xxx)

the local impulse response is approximately (Fessler and Rogers, T-MI, 1996):

lll j(xxx) = lim
δ→0

E[x̂xx|xxx+δeeej]−E[x̂xx|xxx]
δ

≈
[

−∇20Ψ
]−1∇11Ψ

∂
∂x j

ȳyy(xxx).

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm (if iterated “to convergence”).

• Enables prediction of resolution properties
(provided Ψ is minimized)

• Useful for designing regularization penalty functions
with desired resolution properties. For penalized likelihood:

lll j(xxx)≈ [AAA′WWWAAA+βRRR]−1AAA′WWWAAAxxxtrue.

• Helps choose β for desired spatial resolution

4.2
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[36,183,276]

A commonly cited disadvantage of regularized methods is the need to select the regularization
parameter β. One must also select the cutoff frequency for FBP, but at least that value is intuitive
and works the same (resolution-wise) for all patients. Not so for stopping rules. The analysis in
[36,183,276] brings some of the consistency of FBP-like resolution selection to statistical methods.

4.2

Modified Penalty Example, PET

a) b) c)

d) e)

a) filtered backprojection
b) Penalized unweighted least-squares
c) PWLS with conventional regularization
d) PWLS with certainty-based penalty [36]
e) PWLS with modified penalty [183]
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Figure from [183].

4.3

Modified Penalty Example, SPECT - Noiseless

Target filtered object FBP Conventional PWLS

Truncated EM Post-filtered EM Modified Regularization
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Figure from [184].

4.4

Modified Penalty Example, SPECT - Noisy

Target filtered object FBP Conventional PWLS

Truncated EM Post-filtered EM Modified Regularization
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Figure from [184].

These were preliminary results, and they initially casted doubt on the claim sometimes made that
post-filtered EM (or OSEM) is equivalent to truly regularized image reconstruction.

However, it turns out we had not matched spatial resolution as carefully as needed...

See [185,277].

4.5

Regularized vs Post-filtered, with Matched PSF
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Figure from [185].

4.6

Reconstruction Noise Properties

For unconstrained (converged) minimization methods, the estimator is implicit :

x̂xx = x̂xx(yyy) = argmin
xxx

Ψ(xxx,yyy) .

What is Cov{x̂xx}? New simpler derivation.

Denote the column gradient by g(xxx,yyy) , ∇xxxΨ(xxx,yyy) .
Ignoring constraints, the gradient is zero at the minimizer: g(x̂xx(yyy),yyy) = 000.
First-order Taylor series expansion:

g(x̂xx,yyy) ≈ g(xxxtrue,yyy)+∇xxxg(xxxtrue,yyy)(x̂xx−xxxtrue)

= g(xxxtrue,yyy)+∇2
xxxΨ
(

xxxtrue,yyy
)

(x̂xx−xxxtrue).

Equating to zero:

x̂xx≈ xxxtrue−
[

∇2
xxxΨ
(

xxxtrue,yyy
)]−1∇xxxΨ

(

xxxtrue,yyy
)

.

If the Hessian ∇2Ψ is weakly dependent on yyy, then

Cov{x̂xx} ≈
[

∇2
xxxΨ
(

xxxtrue, ȳyy
)]−1

Cov
{

∇xxxΨ
(

xxxtrue,yyy
)}[

∇2
xxxΨ
(

xxxtrue, ȳyy
)]−1

.

If we further linearize w.r.t. the data: g(xxx,yyy)≈ g(xxx, ȳyy)+∇yyyg(xxx, ȳyy)(yyy− ȳyy), then

Cov{x̂xx} ≈
[

∇2
xxxΨ
]−1

(∇xxx∇yyyΨ) Cov{yyy} (∇xxx∇yyyΨ)′
[

∇2
xxxΨ
]−1

.
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The latter approximation was derived in [35].

4.7

Covariance Continued

Covariance approximation:

Cov{x̂xx} ≈
[

∇2
xxxΨ
(

xxxtrue, ȳyy
)]−1

Cov
{

∇xxxΨ
(

xxxtrue,yyy
)}[

∇2
xxxΨ
(

xxxtrue, ȳyy
)]−1

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm.

• Enables prediction of noise properties

• Can make variance images

• Useful for computing ROI variance (e.g., for weighted kinetic fitting)

• Good variance prediction for quadratic regularization in nonzero regions

• Inaccurate for nonquadratic penalties, or in nearly-zero regions

4.8

c© J. Fessler, October 24, 2004 p4prop

Qi has developed an approximation that may help with the nonnegativity constraint [278].

4.8

Qi and Huesman’s Detection Analysis

SNR of MAP reconstruction > SNR of FBP reconstruction (T-MI, Aug. 2001)

quadratic regularization
SKE/BKE task
prewhitened observer
non-prewhitened observer

Open issues

Choice of regularizer to optimize detectability?
Active work in several groups.
(e.g., 2004 MIC poster by Yendiki & Fessler.)
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See recent detection analyses papers, e.g., [42,85,279–283].

4.9

Part 5. Miscellaneous Topics

(Pet peeves and more-or-less recent favorites)

• Short transmission scans

• 3D PET options

• OSEM of transmission data (ugh!)

• Precorrected PET data

• Transmission scan problems

• List-mode EM

• List of other topics I wish I had time to cover...

5.1
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5.1

PET Attenuation Correction (J. Nuyts)

5.2



c© J. Fessler, October 24, 2004 p5misc
5.2

Iterative reconstruction for 3D PET

• Fully 3D iterative reconstruction
• Rebinning / 2.5D iterative reconstruction
• Rebinning / 2D iterative reconstruction
◦ PWLS
◦ OSEM with attenuation weighting

• 3D FBP
• Rebinning / FBP

5.3
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[128,284,285]

5.3

OSEM of Transmission Data?

Bai and Kinahan et al. “‘Post-injection single photon transmission tomography
with ordered-subset algorithms for whole-body PET imaging”
• 3D penalty better than 2D penalty
• OSTR with 3D penalty better than FBP and OSEM
• standard deviation from a single realization to estimate noise can be misleading

Using OSEM for transmission data requires taking logarithm,
whereas OSTR does not.
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[286]

5.4

Precorrected PET data

C. Michel examined shifted-Poisson model, “weighted OSEM” of various flavors.

concluded attenuation weighting matters especially

5.5
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[287,288]

5.5

Transmission Scan Challenges

• Overlapping-beam transmission scans
• Polyenergetic X-ray CT scans
• Sourceless attenuation correction

All can be tackled with optimization transfer methods.
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Overlapping beams [289].

Polyenergetic X-ray CT [46,290].

5.6

List-mode EM

x(n+1)

j = x(n)

j

[

nd

∑
i=1

ai j
yi

ȳyy(n)

i

]

/

(

nd

∑
i=1

ai j

)

=
x(n)

j

∑nd
i=1ai j

∑
i :yi 6=0

ai j
yi

ȳyy(n)

i

• Useful when ∑nd
i=1yi ≤ ∑nd

i=11
• Attenuation and scatter non-trivial
• Computing ai j on-the-fly
• Computing sensitivity ∑nd

i=1ai j still painful
• List-mode ordered-subsets is naturally balanced

5.7

c© J. Fessler, October 24, 2004 p5misc
5.7

Misc

• 4D regularization (reconstruction of dynamic image sequences)

• “Sourceless” attenuation-map estimation

• Post-injection transmission/emission reconstruction

• µ-value priors for transmission reconstruction

• Local errors in µ̂ propagate into emission image (PET and SPECT)
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Dynamic reconstruction
• nonlinear models [59,60,62,63,66,77,82,291–299]
• linear models [61,64,65,67,69,300–304]
• KL-based approaches [68,305–310]
• Motion/gating [311]

Sourceless attenuation [312–318]

5.8

Summary

• Predictability of resolution / noise and controlling spatial resolution
argues for regularized cost function
• todo: Still work to be done...

5.9
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