
0

Analytical Approach to Regularization Design
for Isotropic Spatial Resolution

Jeffrey A. Fessler

EECS Department
The University of Michigan

2003 IEEE NSS-MIC

Oct. 23, 2003



1

Motivation
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History

• 1994 MIC, Fessler and Rogers
◦ Uniform quadratic penalties cause nonuniform image resolution
◦ Simple “certainty-based” correction for shift-invariant systems

• 1998 ICIP, Stayman and Fessler
◦ Improved regularization design for shift-invariant systems,

compensating for anisotropy of local PSF

• 1999 Fully 3D
◦ Qi and Leahy: design for uniform pixel contrast
◦ Stayman and Fessler: design for 3D shift-invariant systems

• 2001 MIC, Stayman and Fessler
◦ Improved (but complicated) design allowing negative weights

• 2002 MIC
◦ Stayman and Fessler: faster method for space varying systems
◦ Nuyts and Fessler: simplified design

All based on matrix analysis!



3

Local Impulse Response

• Noisy measurement vector yyy = AAAxxx+noise
yyy: measured projection data
AAA: system matrix
xxx: unknown image pixel values to reconstruct

• General image reconstruction method: x̂xx = x̂xx(yyy)
• Local impulse response for jth pixel:

lll j = lim
δ→0

x̂xx(yyy+δAAAeeej)− x̂xx(yyy)
δ

eeej = point source in jth pixel
“How does a small impulse in the jth pixel affect other pixels?”

• Useful for design of regularized reconstruction methods

Goal. Design the estimator x̂xx to have good noise properties and
spatial resolution properties that are isotropic and uniform, or ...
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Penalized-Likelihood Reconstruction

Regularized estimator:

x̂xx = argmin
xxx

L(AAAxxx,yyy)+R(xxx)

• xxx: unknown image pixel values to reconstruct

• yyy: measured projection data

• AAA: system matrix

• L : negative log-likelihood (e.g., Poisson statistical model)

• R(xxx): quadratic regularizing roughness penalty R(xxx) = 1
2xxx′RRRxxx

RRR is the Hessian of the penalty function R(xxx)

Local impulse response:

lll j = [AAA′WWWAAA+RRR]−1AAA′WWWAAAeeej

WWW depends on the log-likelihood and yyy, e.g., WWW = diag{1/yi}.

This matrix form has been the foundation of most previous methods!
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Local Discrete Fourier Approximations

Let QQQ denote the DFT matrix for image domain.

Local system frequency response:

AAA′WWWAAAeeej ≈QQQdiag
{

λ j
k

}
QQQ′eeej, λλλ j = FFT

{
AAA′WWWAAAeeej

}
Local regularization frequency response:

RRReeej ≈QQQdiag
{

ω j
k

}
QQQ′eeej, ωωω j = FFT

{
RRReeej

}
Local impulse response with local Fourier approximation:

lll j = [AAA′WWWAAA+RRR]−1AAA′WWWAAAeeej ≈QQQdiag

{
λk

λk +ωk

}
QQQ′eeej

Useful for design of the regularizer RRR, but requires FFTs for every pixel.
(And forward- / back-projections for each pixel for shift varying systems.)
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Position-Dependent Regularization

R( f ) = ∑
n,m

r(n,m)
1 | f [n,m]− f [n−1,m−0]|2+

r(n,m)
2 | f [n,m]− f [n−1,m+1]|2+

r(n,m)
3 | f [n,m]− f [n+0,m+1]|2+

r(n,m)
4 | f [n,m]− f [n+1,m−1]|2

rrr j = (r1, . . . , r4) : 4 penalty coefficients per pixel.
Conventional regularizer: r1 = r3 = 1, r2 = r4 = 1/

√
2.

r1

r2
r3 r4

f [n,m] f [n+1,m]f [n−1,m]

f [n,m+1]

f [n,m−1]

f [n+1,m+1]

f [n+1,m−1]

f [n−1,m+1]

f [n−1,m−1]
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Linearized Regularization Design

Goal: choose RRR (i.e.,
{

rrr j
}

) such that the resulting local impulse
response lll j approximates some desired target PSF.

Natural target PSF is from unweighted penalized least-squares:

lll j = [AAA′WWWAAA+RRR]−1AAA′WWWAAAeeej︸ ︷︷ ︸
Local impulse resp.

≈ [AAA′0AAA0+RRR0]
−1AAA′0AAA0eee

j︸ ︷︷ ︸
Target PSF

.

Nonlinear in RRR⇒ complicated design.

Linearize by “cross multiplying:”

[AAA′0AAA0+RRR0]AAA′WWWAAAeeej ≈ [AAA′WWWAAA+RRR]AAA′0AAA0eee
j.

Simplify using “local shift invariance” approximations:

RRR0AAA
′WWWAAAeeej ≈ RRRAAA′0AAA0eee

j.

“Linearized regularization design” (still with matrices):

min
RRR∈RRR

∥∥RRR0AAA
′WWWAAAeeej−RRRAAA′0AAA0eee

j
∥∥ .
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Analytical Regularization Design

Matrix approach: minRRR∈RRR
∥∥RRR0AAA′WWWAAAeeej−RRRAAA′0AAA0eeej

∥∥
Key idea: replace 4 matrices with analytical Fourier approximations.

1. Nominal system transfer function

AAA′0AAA0≡ |B(ρ)|2
ρ

• (ρ,ϕ) : polar coordinates in frequency space

• B(ρ): “typical” detector frequency response

2. Weighted system transfer function

AAA′WWWAAA≡
wj(ϕ)

∣∣∣Bj
ϕ(ρ)

∣∣∣2

ρ

• Bj
ϕ(ρ): detector response at projection angle ϕ for jth pixel

• wj(ϕ): angular weighting (certainty) for jth pixel (from WWW)
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Analytical Regularization Design

3. Isotropic 1st-order roughness: R0( f ) =
∫ ‖∇ f‖2

RRR0≡ |2πρ|2

4. Local roughness penalty (simplified)

R( f ) = ∑
n,m

L

∑
l=1

r l
1
2
| f [n,m]− f [n−nl ,m−ml ]|2

Penalty coefficients rrr j = (r1, . . . , rL) to be designed (for each pixel).

After some Fourier analysis...:

RRR≡ (2πρ)2
L

∑
l=1

r l cos2(ϕ−ϕl),
ϕl
4
= tan−1 ml

nl

ϕl = (0, π
4,

π
2,

3π
4 ) for L = 4

(Each penalty coefficient influences PSF shape along some direction.)
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Analytical Regularization Design

Rewrite the “matrix” minimization using the 4 Fourier approximations.
Simplifying yields the following matrix-free design criterion:

rrr j = argmin
rrr�000

∫ π

0

∣∣∣∣∣wj(ϕ)−
L

∑
l=1

r l cos2(ϕ−ϕl)

∣∣∣∣∣
2

dϕ

wj(ϕ): angular “certainty” weighting for jth pixel, from data statistics.
cos2(ϕ−ϕl) : angular contribution for l th penalty direction.

No matrix inverses (cf. analytical 1/ρ).

For 2nd-order neighborhood (L = 4), exact closed-form solution.
(No NNLS iterations needed.)

Solution requires just three sums (over projection angle) per pixel:


dj
1

dj
2

dj
3


 =




1
π
∫ π

0 wj(ϕ) dϕ
1
π
∫ π

0 wj(ϕ)cos(2ϕ)dϕ
1
π
∫ π

0 wj(ϕ)sin(2ϕ)dϕ




“average”

“0 and π
2”

“π
4 and 3π

4 ”
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Eight-fold symmetry
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Analytical solution

Four penalty coefficients per pixel for 2nd-order neighborhood:

1

r1 =
4
3
(d1+d2) , r2 = r3 = r4 = 0

2

r1 =
8
5

[
1
2
d1+

3
2
d2−d3

]
, r3 =

12
5

[
d3−

(
2
3
d2− 1

3
d1

)]
, r2 = r4 = 0

3

r1 = 4d2, r2 = 0, r3 = d1−2d2+2d3, r4 = 2

[
1
2
d1− (d2+d3)

]

4

r1 = 2
(

1
4d1+d2

)
, r2 = 2

(
1
4d1−d2

)
r3 = 2

(
1
4d1+d3

)
, r4 = 2

(
1
4d1−d3

)
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Example
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Comparison
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Ring Profiles
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Summary

• Simple, fast, effective regularization design
for uniform, isotropic spatial resolution

• Analogy to FBP: solve first, discretize second.
(cf. Fourier (1/ρ)−1 = ρ versus matrix [AAA′0AAA0]−1)

• Recommendation: combine modest regularization with post-filtering

• Extends to 3D and to shift-variant systems.
Requires somewhat more computation for designing the regularizer,
but is still more practical than alternatives.

• Analytical approximations also applicable to variance/autocorrelation
predictions.

• Non-quadratic edge-preserving regularizers for transmission case?

• Matlab tomography toolbox:
http://www.eecs.umich.edu/ ∼fessler
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