Nonuniform Fast Fourier Transforms and Applications in Imaging

Jeffrey A. Fessler

EECS Department
BME Department
Department of Radiology
The University of Michigan

Applied and Interdisciplinary Mathematics Seminar
The University of Michigan
Sep. 19, 2003
Outline

- Applications
 - 1. MRI
 - 2. Tomography
- Min-max framework for nonuniform FFT
- Examples
- Features / Limitations
- Future goals

MRI work with Brad Sutton, Doug Noll
Tomography work with Samuel Matej
MRI Application

MRI rosette k-space trajectory
Simplified MRI Signal Model

Ignoring *lots* of things:

\[y_i = s(t_i) + \text{noise}_i, \quad i = 1, \ldots, N_{\text{samples}} \]

\[s(t) = \int f(\vec{r}) \exp \left(-i2\pi \vec{k}(t) \cdot \vec{r} \right) \, d\vec{r}, \]

where \(\vec{k}(t) \) denotes the “k-space trajectory” of the MR pulse sequence.

- MRI measurements are (roughly) *samples of the Fourier transform* of the object’s transverse magnetization \(f(\vec{r}) \).
- Reconstruction problem: recover \(f(\vec{r}) \) from measurements \(\{y_i\} \)
Conventional MR Image Reconstruction

1. Interpolate measurements onto rectilinear grid ("gridding")
2. Apply inverse FFT to estimate samples of $f(\vec{r})$
Limitations of MR gridding-based reconstruction

1. Artifacts/inaccuracies due to interpolation
2. Contention about sample density “weighting”
3. Oversimplifications of Fourier transform signal model:
 - Magnetic field inhomogeneity
 - Magnetization decay (T_2)
 - Eddy currents
 - ...

Magnetic field inhomogeneity
MR Image Reconstruction as an Inverse Problem

1. Series expansion of unknown object:

\[f(\vec{r}) \approx \sum_{j=1}^{n_p} x_j b(\vec{r} - \vec{r}_j) \]

2. Discrete-discrete measurement model:

\[y = A x + \epsilon \]

\[a_{ij} = \int b(\vec{r} - \vec{r}_j) \exp\left(-i2\pi \vec{k}(t_i) \cdot \vec{r}\right) \, d\vec{r} = B(\vec{k}(t_i)) \, e^{-i2\pi \vec{k}(t_i) \cdot \vec{r}_j} \]

3. \(\epsilon \) includes both measurement noise and model error

4. \(A \) can also include “non-Fourier” effects (inhomogeneity, decay, etc.)

5. Least-squares formulation (Gaussian noise model):

\[\hat{x} = \arg \min_x \Psi(x), \quad \Psi(x) = \| y - Ax \|^2 \]

6. Regularization included when needed (depends on \(\vec{k}(t) \))

7. Preconditioned conjugate gradient gradient iteration for minimization.
Challenges for iterative MR image reconstruction

- Each PCG iteration requires calculation of $A'(y - Ax^{(n)})$
- A is too large to store explicitly (not sparse)
- Even if A were stored, directly computing Ax is $O(n_p^2)$, per iteration, whereas FFT is only $O(n_p \log n_p)$

\Rightarrow need fast algorithm for computing Ax, i.e., for computing

$$\sum_{n_1} \sum_{n_2} e^{-i2\pi (k_1(t_i)n_1 + k_2(t_i)n_2)} x(n_1, n_2),$$

assuming the \tilde{r}_j's (basis centers) are unit spaced on a rectilinear grid.

Need: fast algorithm for 2D nonuniform Fourier transform
Simplified tomography measurement model (sinogram):

\[y_i = (h \ast p_{\theta_i}(r; f))(r_i) + \text{noise}_i, \quad i = 1, \ldots, n_d, \quad n_d = n_r \cdot n_\theta. \]

Radon transform degraded by radially shift-invariant blur with PSF \(h(r) \).

Radon transform (line integrals):

\[p_{\theta}(r; f) = \int f(r \cos \theta - l \sin \theta, r \sin \theta + l \cos \theta) \, dl \]

Goal: reconstruct object \(f(\vec{r}) \) from sinogram measurements \(\{y_i\} \)
Classical Fourier-transform reconstruction

Fourier-slice theorem:

\[p_{\theta}(r; f) \xrightarrow{1\text{D FT}} P_{\theta}(\rho) = F(\rho, \theta) \xrightarrow{2\text{D FT}} f(x, y) \]

- Compute 1D FFT of each row of sinogram.
- Possibly deconvolve blur \(h(r) \)
- Interpolate from polar samples onto rectilinear frequency samples
- Compute inverse 2D FFT

Limitations

- Artifacts due to polar-cartesian interpolation
- Suboptimal treatment of nonuniform-variance noise, e.g., Poisson
- Over-simplified measurement model
- Disregards nonnegativity constraint

Proposed approach partially overcomes first two limitations
Iterative Tomographic Image Reconstruction

1. Series expansion of unknown object:

\[f(\vec{r}) \approx \sum_{j=1}^{n_p} x_j b(\vec{r} - \vec{r}_j) \]

2. Discrete-discrete measurement model

\[y = Ax + \varepsilon, \quad a_{ij} = h(r) * p_{\theta_i}(r; b(\cdot - \vec{r}_j)) \bigg|_{r=r_i} \]

3. Penalized weighted least-squares (PWLS) formulation

\[\hat{x} = \arg\min_{x} \Psi(x), \quad \Psi(x) = (y - Ax)'W(y - Ax) + \beta R(x) \]

4. Weighting matrix \(W \) for nonuniform noise variance
 (cf Delaney and Bresler, IEEE T-IP, May 1996)

5. Regularization essential due to ill-conditioned nature of tomography

6. Preconditioned conjugate gradient iteration for minimization.
Challenges for Iterative Tomographic Reconstruction

- Each PCG iteration requires calculation of $A'W(y - Ax^{(n)})$
- A is sparse, but very large for 3D PET, too large to store in 2D X-ray CT
- Even if A were stored, directly computing Ax is $O(n_p^2)$, per iteration, whereas FFT is only $O(n_p \log n_p)$

Proposed approach for reprojection (computing Ax)

1. Apply nonuniform FFT to compute 2D FT on a polar grid accurately
2. Apply shift-invariant blur $h(r)$ in frequency domain
3. Compute inverse 1D FFT to form each row of reprojection
 - Avoids line-integral calculations!
 - Routine for A' is the exact adjoint
Prior work on NUFFT

 Fast Fourier transforms for nonequispaced data.
 Gaussian based interpolation
 On the fast Fourier transform of functions with singularities.
 B-spline based interpolation in multiresolution framework (N-D)
 Fast Fourier transforms for nonequispaced data, II.
 fast multipole method
 Rapid computation of the discrete Fourier transform.
 Taylor series expansion, requiring multiple FFTs
 The regular Fourier matrices and nonuniform fast Fourier transforms.
 least-squares approach to shift-variant Fourier interpolation
 Nonuniform fast Fourier transforms using min-max interpolation.
NUFFT Problem Statement (1D)

Given signal \(x_n, n = 0, \ldots, N - 1 \) with (discrete-time) Fourier transform

\[
X(\omega) = \sum_{n=0}^{N-1} x_n e^{-i\omega n}
\]

and a collection of arbitrary frequencies \(\{\omega_m : m = 1, \ldots, M\} \), compute

\[
y_m = X(\omega_m), \quad m = 1, \ldots, M.
\]

Direct approach is \(O(NM) \); impractical for large \(M \).
NUFFT via linear interpolation

1. Compute K-point FFT of x_n (where $K \geq N$, possibly oversampled)

$$X_k = X \left(\frac{2\pi k}{K} \right), \quad k = 0, \ldots, K - 1$$

2. Interpolate from set $\{2\pi k/K\}$ to set $\{\omega_m\}$

$$\hat{y}_m = \sum_{k=0}^{K-1} v_{mk} X_k$$

Design question: how to choose interpolation coefficients $\{v_{mk}\}$?

Scaled variation

1. Start with “weighted” K-point FFT:

$$Y_k = \sum_{n=0}^{N-1} s_n x_n e^{-i \frac{2\pi k}{K} n}$$

2. Design problem includes choosing scaling factors $\{s_n\}$. (Important!)
Interpolators

1. Shift invariant:
 - Gaussian
 - B-spline
 - Rarely precomputed
 - Less memory
 - More in-line work

2. Shift variant
 - Constraint: use the J nearest FFT samples for each ω_m

$$\hat{y}_m = \sum_{j=1}^{J} u_{m,j}^* X_{k_0(\omega_m)+j}, \text{ where } k_0(\omega) \triangleq \begin{cases} \left(\arg\min_k \left| \omega - \frac{2\pi k}{2}\right| \right) - \frac{J+1}{2}, & J \text{ odd} \\ \left(\max \{ k : \omega \geq \frac{2\pi k}{2}\} \right) - \frac{J}{2}, & J \text{ even} \end{cases}$$

- $O(JM)$ memory if interpolation coefficients are precomputed
- $O(K \log K) + O(JM)$ computation
Min-Max Criterion

Choose interpolation coefficients \(\{u_{mj}\} \) to minimize worst-case error.

\[
\min_{u_m \in \mathbb{C}^J} \max_{x \in \mathbb{C}^N: \|x\| \leq 1} |\hat{y}_m - y_m|, \text{ where } u_m = (u_{m1}, \ldots, u_{mJ}).
\]

Solution (data independent!):

\[u_m = \Lambda'(\omega) Tr(\omega_m), \text{ where:} \]

\[
\Lambda_{jj}(\omega) = e^{-i[\omega - \frac{2\pi}{K}(k_0(\omega) + j)]\frac{N-1}{2}}
\]

\[
T = [C' C]^{-1} \in \mathbb{R}^{J \times J}
\]

\[
[C' C]_{l,j} = \delta_0(j - l)
\]

\[
r_j(\omega) = \delta_0(\omega / (2\pi / K) - k_0(\omega) - j)
\]

\[
\delta_0(t) \triangleq \frac{\sin(\pi t N / K)}{N \sin(\pi t / K)}.
\]

“Modified truncated-Dirichlet interpolation of oversampled FFT”
Equivalent interpolator for $J=6$, $K/N=2$

- Min–max
- Sinc
Equivalent interpolator for $J=7$, $K/N=2$

- Min–max
- Sinc
Accuracy

Worst-case error for unit-norm signal is \(\frac{E_{\text{max}}(\omega)}{\sqrt{N}} = \sqrt{1 - r'(\omega) T r(\omega)}. \)

Maximum error for \(\alpha = 1 \):

- \(K/N = 1.5 \)
- \(K/N = 2 \)
- \(K/N = 2.5 \)
- \(K/N = 3 \)
- \(K/N = 4 \)
- \(K/N = 5 \)
Comparison with Dirichlet

Maximum error for $K/N=2$

- Truncated Dirichlet
- Tapered Dirichlet
- Linear ($J=2$)
- Min–Max (uniform)
- Min–Max (best $L=2$)
Comparison with Gaussian (Dutt/Rokhlin)

Maximum error for $K/N=2$

- Gaussian (best σ)
- Min–Max (uniform)
- Min–Max (L=5 LS fit)
- Min–Max (best L=2)
Extensions

- Multidimensional NUFFT
 Use $J \times J$ neighborhood (in 2D, e.g.) around each spatial frequency location of interest. Straightforward generalization.

- Adjoint operator
 1. Hermitian transpose of interpolation matrix
 2. K-point inverse FFT

- Adaptive neighborhoods
 Neighborhood size J vs distance between ω_m and nearest neighbor.

- Free software: http://www.eecs.umich.edu/~fessler
Kaiser-Bessel Interpolator

\[F(\kappa) = f_J^m(\kappa) \frac{I_m(\alpha f_J(\kappa))}{I_m(\alpha)}, \text{ where } f_J(\kappa) \triangleq \begin{cases} \sqrt{1 - \left(\frac{\kappa}{J/2}\right)^2}, & |\kappa| < J/2 \\ 0, & \text{otherwise.} \end{cases} \]

- Optimality properties?
- Usually \(m = 2 \) so continuous and differentiable on boundaries.
Kaiser-Bessel: Optimizing Order

Kaiser-Bessel Error for $K/N=2$ and $\alpha=2.34\cdot J$

E_{max} vs m (Kaiser-Bessel order)
Kaiser-Bessel: Optimizing Width

Kaiser–Bessel Error for K/N=2 and m=0

\[E_{\text{max}} \]

\[\frac{\alpha}{J} \text{ (Kaiser–Bessel width)} \]

\[J=5 \]
\[J=6 \]
\[J=7 \]
Kaiser-Bessel: Optimizing Scaling Factors

Kaiser–Bessel Error for K/N=2, $\alpha=2.34 \cdot J$, and $m=0$

Numerical FT scaling factors
Analytical FT scaling factors
Kaiser-Bessel: Scaling Factors Tradeoff

Kaiser–Bessel Error for $K/N=2$, $\alpha=2.34 \cdot J$, and $m=0$

- Numerical FT scaling factors
- Analytical FT scaling factors

$\omega / (2\pi/K)$

E_{max}
Kaiser-Bessel vs Min-Max Interpolators

Maximum error for $K/N=2$

- Min–Max (uniform)
- Gaussian (best)
- Min–Max (best $L=2$)
- Kaiser–Bessel (best)
- Min–Max ($L=13$, $\beta=1$ fit)
Fourier-Based Tomographic Projection
(Radon Transform)

1. Compute $2 \times$ oversampled 2D FFT of object
2. Min-max interpolation onto polar coordinates (5×5 neighborhood)
3. Multiply spectrum by effects of
 - shift-invariant detector blur
 - and (square) pixel basis.
4. 1D inverse FFT for each sinogram row
Forward Projector Simulation

- 128×128 Shepp-Logan digital phantom
- $160 \text{ bins} \times 192 \text{ angles sinogram}$
- 1-bin rectangular detector PSF
- Exact DSFT-based Fourier projector (no interpolation) vs NUFFT based on min-max interpolator
- 6.3s precompute time on 1GHz Pentium III / Linux

<table>
<thead>
<tr>
<th>Exact DSFT</th>
<th>NUFFT/KB($J=4, K/N=2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu = 101.5 s</td>
<td>cpu = 0.15 s</td>
</tr>
<tr>
<td>max diff = 0.04%</td>
<td></td>
</tr>
</tbody>
</table>

Shepp-Logan image
Bilinear Interpolation ("Gridding") Comparison

- **Exact DSFT**
 - Shepp–Logan
 - CPU: 101.5 s

- **NUFFT/Bilinear**
 - K/N=2
 - CPU: 0.11 s
 - Bilinear |Error|: 3.2% max

- **NUFFT/KB(J=4)**
 - K/N=2
 - CPU: 0.15 s
 - KaiserB |Error|: 0.04% max

Back-projector (Adjoint) Test

Sinogram

Exact DSFT

NUFFT/KB

cpu = 144.0 s

cpu = 0.34 s

max |error| = 0.08%

J=4, K/N=2
QPWLS Iterative Reconstruction

Phantom

Exact DSFT

NUFFT(J=5)

20 iter of CG

20 iter of CG

4799.4 sec

20.2 sec

FBP

Exact – NUFFT

4 \times 10^{-3}

-3

0

5
Summary

Future Applications
- MRI with field inhomogeneity
- MRI with multiple coils
- 3D PET

Limitations / Challenges
- Slightly negative a_{ij}’s (in tomography)
- Shift-invariant PSF
- Parallel-beam geometry
- Non-uniform radial sampling in ring PET geometry
- Numerical conditioning for large J
- Ordered-subsets
Iterative MRI Reconstruction

Spin Echo

Iterative NUFFT with min-max

Uncorrected

Conjugate Phase

Field Map in Hz

SPHERE
References

