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Image Reconstruction Methods / Algorithms

O

ANALYTICAL ITERATIVE
FBP _— T
BPF Algebraic Statistical
Gridding (y = Ax)
ART (Weighted) Likelihood
MART Least (e.g., Poisson)
SMART Squares
EM (etc.)
CcG OSEM
CcD SAGE
ISRA CG
Int. Point
GCA
PSCD
FSCD ...

0.2

Part of the goal is to bring order to this alphabet soup.

0.2
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Outline

Part O: Introduction / Overview

Part 1: From Physics to Statistics (Emission tomography)
e Assumptions underlying Poisson statistical model
e Emission reconstruction problem statement

Part 2: Four of Five Choices for Statistical Image Reconstruction
e Object parameterization

e System physical modeling

e Statistical modeling of measurements

e Cost functions and regularization

Part 3: Fifth Choice: Iterative algorithms

o Classical optimization methods

e Considerations: nonnegativity, convergence rate, ...

e Optimization transfer: EM etc.

e Ordered subsets / block iterative / incremental gradient methods

Part 4: Performance Analysis
e Spatial resolution properties

o Noise properties

o Detection performance

Part 5: Miscellaneous topics (?)
e ...
0.3

Emphasis on general principles rather than specific empirical results.
The journals (and conferences like NSS/MIC!) are replete with empirical comparisons.
Although the focus of examples in this course are PET / SPECT / CT, most of the principles

apply equally well to other tomography problems like MR image reconstruction, optical / diffraction
tomography, etc.

0.3
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History

o lterative method for X-ray CT (Hounsfield, 1968)

e ART for tomography (Gordon, Bender, Herman, JTB, 1970)

e Richardson/Lucy iteration for image restoration (1972, 1974)
e Weighted least squares for 3D SPECT (Goitein, NIM, 1972)

e Proposals to use Poisson likelihood for emission and transmission tomography
Emission: (Rockmore and Macovski, TNS, 1976)
Transmission: (Rockmore and Macovski, TNS, 1977)

o First expectation-maximization (EM) algorithms for Poisson model
Emission: (Shepp and Vardi, TMI, 1982)
Transmission: (Lange and Carson, JCAT, 1984)

o First regularized (aka Bayesian) Poisson emission reconstruction
Geman and McClure, ASA, 1985

e Ordered-subsets EM algorithm
Hudson and Larkin, TMI, 1994

e Commercial introduction of OSEM for PET scanners
circa 1997

0.4

X-ray CT patent: [2]

ART: [3-6]

Richardson/Lucy iteration for image restoration was not derived from ML considerations, but turns
out to be the familiar ML-EM iteration [7, 8]

Emission: [9]

Transmission: [10]

General expectation-maximization (EM) algorithm (Dempster et al., 1977) [11]
Emission EM algorithm: [12]

Transmission EM algorithm: [13]

Bayesian method for Poisson emission problem: [14]

OSEM [15]

Prior to the proposals for Poisson likelihood models, the Lawrence Berkeley Laboratory had pro-
posed and investigated weighted least-squares (WLS) methods for SPECT (in 3D!) using iterative
algorithms; see (Goitein, 1972) [16] and (Budinger and Gullberg, 1974) [17]. These methods
became widely available in 1977 through the release of the Donner RECLBL package [18].

Of course there was lots of work ongoing based on “algebraic” reconstruction methods in the
1970s and before. But until WLS methods were proposed, this work was largely not “statistical.”

todo: According to Rob Lewitt: “On the history of iterative methods for tomographic reconstruction,
David Kuhl was doing related work around 1966-72. | have a vague recollection that Bracewell's
1956 paper mentions an iterative approach (as well as Fourier transforms).”

0.4
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Why Statistical Methods?

e Object constraints (e.g., nonnegativity, object support)

e Accurate physical models (less bias = improved quantitative accuracy)
improved spatial resolution?
(e.g., nonuniform attenuation in SPECT)

e Appropriate statistical models (less variance = lower image noise)
(FBP treats all rays equally)

e Side information (e.g., MRI or CT boundaries)

e Nonstandard geometries (“missing” data)

Disadvantages?

e Computation time

e Model complexity

e Software complexity

Analytical methods (a different short course!)

o Idealized mathematical model
o Usually geometry only, greatly over-simplified physics
o Continuum measurements

o No statistical model

e Easier analysis of properties (due to linearity)
e.g., Huesman (1984) FBP ROI variance for kinetic fitting

0.5

There is a continuum of physical system models that tradeoff accuracy and compute time. The
“right” way to model the physics is usually too complicated, so one uses approximations. The
sensitivity of statistical methods to those approximations needs more investigation.

FBP has its faults, but its properties (good and bad) are very well understood and hence pre-
dictable, due to its linearity. Spatial resolution, variance, ROI covariance (Huesman [19]), and
autocorrelation have all been thoroughly analyzed (and empirical results agree with the analytical
predictions). Only recently have such analyses been provided for some nonlinear reconstruction
methods e.g., [20-31].

0.5
(© J. Fessler, June 25, 2002 pOintro



What about Moore’s Law?

Complaxity vs. Year of Production for PET Scannars
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In this graph complexity is the number of lines of response (number of rays) acquired. The ECAT
scanners can operate either in 2D mode (with septa in place) or 3D mode (with septa retracted)
so those scanners have two points each.

| got this graph from Richard Leahy. | do not know where he got it, but presumably someone
associated with Siemens/CTI since only CTI scanners (and their relatives) are represented.

There is considerable ongoing effort to reduce or minimize the compute time by more efficient
algorithms.

Moore’s law for computing power increases will not alone solve all of the compute problems in
image reconstruction. The problems increase in difficulty at nearly the same rate as the increase
in compute power. (Consider the increased amount of data in 3D PET scanners relative to 2D.) (Or
even the increased number of slices in 2D mode.) Or spiral CT, or fast dynamic MRI,... Therefore
there is a need for further improvements in algorithms in addition to computer hardware advances.

0.6
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Benefit Example: Statistical Models

© True FBP PWLS PL
S 1 1 1 1 1
0
N2
5104
n 1 128
O]
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NRMS Error

Method | Soft Tissue | Cortical Bone

FBP 22.7% 29.6%

PWLS 13.6% 16.2%

PL 11.8% 15.8%

0.7

Conventional FBP reconstruction of dual-energy X-ray CT data does not account for the noise
properties of CT measurements and results in significant noise propagation into the soft tissue
and cortical bone component images. Statistical reconstruction methods greatly reduces this
noise, improving quantitative accuracy [32]. This is of potential importance for applications like
bone density measurements.

0.7
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Benefit Example: Physical Models Benefit Example: Nonstandard Geometries

a. True object a. Soft-tissue corrected FBP
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0.9
Conventional FBP ignores the polyenergetic X-ray source spectrum. Statistical/iterative recon- A SPECT transmission scan with 65cm distance between line source and standard Anger camera
struction methods can build that spectrum into the model and nearly eliminate beam-hardening provides partially truncated sinogram views of most patients.

artifacts [33-35].

0.8 0.9
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Truncated Fan-Beam SPECT Transmission Scan One Final Advertisement: Iterative MR Reconstruction

@ D
@ D

Truncated Truncated Untruncated
FBP PWLS FBP
0.10
The FBP reconstruction method is essentially ruined by the sinogram truncation. MR signal equation:

. . . - o st) = / (%) exp(—16(X)t) exp(—12Mk(R) - X) d¥

Despite the partial truncation, each pixel is partly sampled by “line integrals” at some range of

angles. With the benefit of spatial regularization, nonnegativity constraints, and statistical models,

a statistical reconstruction method (PWLS in this case) can recover an attenuation map that is o Due to field inhomogeneity, signal is not Fourier transform of object.

comparable to that obtained with an untruncated scan. ) . .
e Measure off-resonance field-map w (X) using two displaced echos

We have shown related benefits in PET with missing sinogram data [36]. e Penalized WLS cost function minimized by conjugate gradient

e System matrix A includes off-resonance effects

e Fast algorithm using NUFFT and time-segmentation

[37-39]

Hopefully that is enough motivation, so, on with the methodology!

0.10 0.11
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Part 1: From Physics to Statistics What Object is Reconstructed?

In emission imaging, our aim is to image the radiotracer distribution.

or
“What quantity is reconstructed?”
(in emission tomography) The what?
Outline At time t = O we inject the patient with some radiotracer, containing a “large” num-
o Decay phenomena and fundamental assumptions ber N of metastable atoms of some radionuclide.
o |dealized detectors ~ 3 . .
« Random phenomena Let X(t) € R® denote the position of the kth tracer atom at time t.
o Poisson measurement statistics These positions are influenced by blood flow, patient physiology, and other
o State emission tomography reconstruction problem unpredictable phenomena such as Brownian motion.
The ultimate imaging device would provide an exact list of the spatial locations
Xi(t),...,Xn(t) of all tracer atoms for the entire scan.
Would this be enough?
11 12
The fact that “the measurements are Poisson” is well known, but the underlying assumptions for Here, “large” means in the statistical sense that for large N and small success probability, the
this fact are perhaps less so. binomial distribution closely approximates the Poisson distribution. However, in the biological

sense N is tiny relative to the number of atoms in the body, hence a “tracer.”

Since some systems in some modes of operation violate the assumptions (high deadtime), it may

be worth revisiting the assumptions before launching into statistical reconstruction methods. Time-of-flight (TOF) PET with perfect timing resolution and perfect spatial resolution would ap-
proach this ultimate imaging device, but even then it would only provide the position of each tracer
atom at the time it decays, rather than for all times.

11 12
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Atom Positions or Statistical Distribution?

. N
Repeating a scan would yield different tracer atom sample paths {Xk(t)}kzl'

.. statistical formulation

Assumption 1. The spatial locations of individual tracer atoms at any time t > 0
are independent random variables that are all identically distributed according to
a common probability density function (pdf) fx([)(i).

This pdf is determined by patient physiology and tracer properties.

Larger values of f)?(t)(x) correspond to “hot spots” where the tracer atoms tend to
be located at time t. Units: inverse volume, e.g., atoms per cubic centimeter.

The radiotracer distribution f(X) is the quantity of interest.

(Not {%(v)} 9

This independence assumption should be very reasonable when trace quantities of radiotracer
are injected. If a very large quantity of a radiotracer such as a neuroreceptor agent were injected,
then the first wave of tracer atoms (and molecules) to reach the brain could occupy all or most
available receptor sites, denying access to later arriving tracer atoms. This would lead to a statis-
tical dependence between the tracer atom locations. Rarely are such large quantities injected, so
our i.i.d. assumption is a reasonable starting point.

The identically distributed assumption should be reasonable if the injection duration is relatively
short. If the injection is long enough that the patient’s physiology has changed between the time
the first tracer atoms were injected and the time the last tracer atoms were injected, then the
distributions of those atoms’ spatial locations will differ. However, in practice we can very rarely
distinguish the first tracer atoms from the later tracer atoms, so the numbering fromk=1to N is
arbitrary, and could even be considered a random permutation of the indices, in which case the
sample paths X(t) are again identically distributed according to an average radiotracer distribu-
tion. An exception would be multiple-injection studies with different radiotracers.

“density” would be more logical than “distribution”

Since real instruments have finite temporal resolution, we never really observe f;“)()‘('), but at best
something like .
2
| fim(i)dt.
1
Except in list mode...

13
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Example: Perfect Detector

2000 X, values
Radiotracer Distribution fXt (unnormalized) n

A realization of N = 2000 i.i.d.
atom positions (dots) recorded
“exactly.”

True radiotracer distribution fg,(X)
at some time t.

Little similarity!

14

By “exactly” | mean there is no error in measuring the locations of the 2000 atoms. A non-ideal
detector PSF would randomly relocate each point relative to its ideal location [40].

14
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Binning/Histogram Density Estimator Kernel Density Estimator

Histogram Density Estimate Gaussian Kemel Density Estimate
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Estimate of f;((t)(x') formed by histogram binning of N = 2000points.
Ramp remains difficult to visualize. Gaussian kernel density estimator  Horizontal profiles at x, = 3 through
for fz) (X) from N = 2000points. density estimates.

15 1.6

Discretize object domain into small square pixels. Count number of atoms positioned within each Given a collection Xy, ..., Xy of independently and identically distributed random variables drawn
square. Display gray-scale image with intensity proportional to number of atoms within each from a distribution with pdf f(X), a kernel density estimator for f(X) [41] is defined by

square. LN
f®=y kZQ(?* X

for some kernel function g, e.g., Gaussian. Basically each “point” X is blurred out and these blobs
are added up to make an image.

The maximum likelihood estimator for a pdf f (X) is essentially a set of Dirac delta functions at each
¥« This is generally not a good representation of f(X).

Thus, even with a perfect imaging system, there is still a reconstruction problem!

16
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Poisson Spatial Point Process

Assumption 2. The number of injected tracer atoms N has a Poisson distribution
with some mean

=

N 2 E[N] = ZDnP[N =n.

Let N(B) denote the number of tracer atoms that have spatial locations in any set
B c R® (VOI) at time tp after injection.

N(-) is called a Poisson spatial point process.
Fact. For any set B, N(B) is Poisson distributed with mean:

EIN(B)] = E[NJP[X € B] = “N/B T (O %

Poisson N injected atoms + i.i.d. locations = Poisson point process

17

VOI = volume of interest

To be completely rigorous, “any set” really means “any Borel set” since we are assuming implicitly
that fy ) (X) is a density with respect to Lebesgue measure.

Explicitly:
N

A
N(B)= k; 1% (to)eB}

One can also show the following. If B; and B, are two disjoint subsets of R®, then N(B;) and N(B)
are independent Poisson random variables.

Thus, the spatial locations of tracer atoms are governed by Poisson statistics.

And we have not even mentioned radioactive decay yet!

17
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lllustration of Point Process ( pn = 200

25 points within ROI 15 points within ROI

-5 0 5

20 points within ROI

..

il

-5 0 5 -5 0 5

18

Four realizations of tracer atom locations distributed according to the radiotracer distribution shown
earlier. In this case E[N] = 200

The number of points falling within the ROI in each realization is a random variable with a Poisson
distribution.

18
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Radionuclide Decay

Preceding quantities are all unobservable.
We “observe” a tracer atom only when it decays and emits photon(s).

The time that the kth tracer atom decays is a random variable Ty.

Assumption 3. The Ty’s are statistically independent random variables,
and are independent of the (random) spatial location.

Assumption 4. Each Ty has an exponential distribution with mean pr =ty/5/In2.
Cumulative distribution function: P[Ty <t] = 1—exp(—t/ur)

1
Vi 05 1
=l
o
0 L L L
0 1 3 4

We only observe some of the tracer atoms when they decay; most are never recorded.

The independence assumptions are reasonable physically except in cases of stimulated emis-
sions, since the decay of a given nucleus is not “affected to any significant extent by events occur-
ring outside the nucleus” [42, p. 22].

The exponential distribution is consistent with empirical observations [43]. Also, the exponential
distribution is the unique distribution that is consistent with the assumption that “the probability
of decay of an atom is independent of the age of that atom” [43, p. 470]. In statistical terms, this
characteristic is called the memoryless property, and can be expressed mathematically as follows:

P[Tk < t|Tk > to] = P[Tk <t —to] for t >to.

Decay halflife ty, is the time for which P[T, < t; /5] = 1/2. Solving yields

19
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Statistics of an Ideal Decay Counter

Let K(t,B) denote the number of tracer atoms that decay by time t,
and that were located in the VOI B ¢ R® at the time of decay.

Fact. K(t,B) is a Poisson counting process with mean

E[K(t,B)] :/Ot/B}\(XT)dXdT,

where the (nonuniform) emission rate density is given by

e*t/HT
: fi(r) X).

AR 2 iy

Ingredients: “dose,” “decay,” “distribution”

Units: “counts” per unit time per unit volume, e.g., uCi/cc.
“Photon emission is a Poisson process”

What about the actual measurement statistics?

1.10

Since we will analyze the statistical properties of “real” photon-counting detectors, it is natural to
first examine the statistical properties of an “ideal” decay counter.

By definition K(0,B) =0and K(t,B) = 5, Zx where Zx = 1(. g mcB}-

The units of A(%,t) are “counts” per unit time per unit volume. Note that K(t,B) is an inhomogenous
Poisson process since its rate varies with time (due to decay).

This counter is “ideal” because it omnisciently counts every decay, regardless of scatter or ab-
sorption, and regardless of the decay rate (no deadtime).

The emission rate density at a point X is proportional to the (mean) number of administered pho-
tons (dose), corrected for decay, and to the (local) radiotracer density at X.

Hot regions contain more tracer atoms, and hence produce more decays.

For t small, fé%ds: 1—e "M ~t/pr, so the overall emission rate is proportional to p/pr for
small time intervals.

The above facts do not ensure that the measurements have Poisson distributions. That conclusion
requires additional assumptions discussed below.

110
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Idealized Detector Units
A nuclear imaging system consists of ng conceptual detector units.

Assumption 5. Each decay of a tracer atom produces a recorded count in at
most one detector unit.

Let S € {0,1,...,nq} denote the index of the incremented detector unit for decay
of kth tracer atom. (S = 0 if decay is undetected.)

Assumption 6. The S/'s satisfy the following conditional independence:
= — N —
P(S,. o, SN, Toyee, Ty Xa(5)yee o, X)) = TTPLSIX(Ti) ) -
( ) = []P(s:%m)

The recorded bin for the kth tracer atom’s decay depends only on its position when
it decays, and is independent of all other tracer atoms.

(No event pileup; no deadtime losses.)

111

Examples of a “detector unit” (perhaps better named “recorder unit”)

e pair of PET crystals (sinogram bin)

e Anger camera projection bin, at a particular projection angle (sinogram bin)

e Anger camera projection bin at some angle in some energy bin (for multiple energy window
acquisitions)

In our terminology, detector units need not correspond to physical detectors. For example, in a 2D
PET system consisting of a ring of n physical detectors, there could be as many as ng = n(n—1)
detector units, each of which corresponds to a pair of physical detectors in electronic coincidence.
In a SPECT system based on a single rotating gamma camera that collects n, x ny projection
images at each of ng projection angles, there would be ng = n,-n,-ng detector units. Systems that
bin measurements into multiple energy windows would have even more detector units.

Assumption 5 applies to most nuclear imaging systems. If a system assigns fractions of an event
to different detector units, or can assign events to more than one detector unit, then the measure-
ments are probably non-Poisson and need more complicated analysis.

Assumption 6 is reasonable for moderate count rates. At high count rates, deadtime losses cause
a decrease in the detection probabilities, i.e., P[Sc = 0] will depend on the Tj’s for k # j. Mea-
surements affected by deadtime are not Poisson distributed, and need more complicated analy-
sis [44-46].

111
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PET Example

Sinogram

Angular Positions

Radial Positions

ng < (ncrystals_ 1) ncrystals/ 2

112

i:nd

Here each “detector unit” is a pair of detectors in electronic coincidence.

112
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SPECT Example

Angular Positions

Sinogram

. o i= Ny
Radial Positions
Ng = Nradial bins* nanguIaLsteps

113
Here each “detector unit” is an (angle,bin) pair.
Or for multiple energy windows:

Ng = Nradial bins* Nangular steps Nenergy windows
113
plframe
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Detector Unit Sensitivity Patterns

Spatial localization:

s (X) 2 probability that decay at X is recorded by ith detector unit.

Idealized Example . Shift-invariant PSF: 5(X) = h(R -X—1j)

e r1; is the radial position of ith ray

o ki is the unit vector orthogonal to ith parallel ray

e h(.) is the shift-invariant radial PSF (e.g., Gaussian bell or rectangular function)

i

114

X1

h(r) = &(r) corresponds to the sensitivity pattern of the ideal line integral.

(© J. Fessler, June 25, 2002
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Example: SPECT Detector-Unit Sensitivity Patterns Example: PET Detector-Unit Sensitivity Patterns

51(R) S2(X)

: \

X1
Two representative s(X) functions for a collimated Anger camera. sof S i
-80 -60 -40 -20 0 20 40 60 80
1.15 1.16
Here each detector unit corresponds to a particular element of a SPECT sinogram. These sensitivity patterns account for the parallax and crystal penetration effects in ring PET
systems.

In this model, the detector response is a Gaussian function whose FWHM increases monotonically
as a function of the distance from the camera face to a point X in object space.

Strictly speaking, with this Gaussian model, s(X) # 0 everywhere. This would be impractical to
compute and store. In practice we approximate s(X) by a truncated version which is set to zero
everywhere the Gaussian function is sufficiently small.

The s functions shown above are purely geometric (detector response) and do not include the
effects of scatter or attenuation.

115 1.16
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Detector Unit Sensitivity Patterns System Sensitivity Pattern  s(X)

s(X) can include the effects of
e geometry / solid angle "
e collimation
e scatter
e attenuation
e detector response / scan geometry
o duty cycle (dwell time at each angle)
e detector efficiency
e positron range, noncollinearity
. ... X2
System sensitivity pattern:
P
s(X) = le(i) =l-5(X) <1
i=
(probability that decay at location X will be detected at all by system)
-
X1
Example: collimated 180° SPECT system with uniform attenuation.

117 1.18
Subtle point: for a moving imaging system, like a rotating gamma camera, the detector-unit sen- s(X) = probability that a decay at location X will be detected at all by system during the course of a
sitivity patterns are time varying, i.e., we should write §(X,t). If the radiotracer distribution is scan.
static, then even moving imaging systems fit within the framework described here. However, if
the radiotracer distribution changes with time as the imaging system is moving, then more compli- Although we call this the “system” sensitivity pattern, it also depends on the object’s attenuation
cated image formation models and image reconstruction algorithms are needed to avoid artifacts, and scatter properties.
e.g., [47-56].

117 118
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Detection Probabilities  5(Xp) (vs det. unit index i) Summary of Random Phenomena

S (%) e Number of tracer atoms injected N
« Spatial locations of tracer atoms {X}&_;
e Time of decay of tracer atoms {Ti}R_;
¢ Detection of photon [S # 0]
e Recording detector unit {S}¢,
0
X2 .
%o
X1 r
119 1.20
This is a sinogram with 60 radial positions by 100 angles, so ng = 6000and i varies from 1 (upper We have made assumptions about the nature of the distributions of each of the above random
left hand corner) to 6000 (lower right hand corner) in lexicographic ordering. variables.

For a system with perfect detector response the right curve would be a thin sinusoid. The thickness
of the above sinusoid comes from the finite detector response. The depth-dependence of this
(SPECT) detector response is also evident.

119 1.20
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Emission Scan

Record events in each detector unit fort; <t <to.
Yi £ number of events recorded by ith detector unit during scan, fori =1,...,ng.

A
Yi = TRt LS, Teelutl)-
The collection {Y;: i = 1,...,n4} is our sinogram. Note 0 <Y; <N.
Fact. Under Assumptions 1-6 above,
Y ~ Poisso;{/s(?))\(i) dX’} (cf “line integral”)
and Y;'s are statistically independent random variables,
where the emission density is given by
t2 1
AR =p [ —e iy (R)dt.
t1 M
(Local number of decays per unit volume during scan.)

Ingredients:

e dose (injected)

e duration of scan

e decay of radionuclide

o distribution of radiotracer ot

The emission density A(X) is proportional to the decay-weighted time integral of the radiotracer
distribution over the scan interval.

121
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Poisson Statistical Model (Emission)
Actual measured counts = “foreground” counts + “background” counts.

Sources of background counts:

cosmic radiation / room background

random coincidences (PET)

scatter not account for in s(X)

“crosstalk” from transmission sources in simultaneous T/E scans
anything else not accounted for by [ s(X)A(X) dX

Assumption 7.
The background counts also have independent Poisson distributions.

Statistical model (continuous to discrete)
Y ~ Poissor{/s(i))\(i)dx-s—ri}, i=1,...,ng

ri : mean number of “background” counts recorded by ith detector unit.

122

The detector unit sensitivity pattern s(X) in principle includes both direct (unscattered) and scat-

tered photons, i.e., !
S(Y) _ §|rect(x) 4 Sscatte(x).

For simplicity, we often only include the direct component s'"¢(X) in the integral model, i.e., one
assumes

Y~ Poissor{ / S RIA(R) AR+ ri},

in which case the remaining counts due to [s°®{X)A(X)dX should be included in the ri’s (and
determined separately by some method such as using multiple energy windows).

1.22
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Emission Reconstruction Problem List-mode acquisitions

Estimate the emission density A(-) using (something like) this model: Recall that conventional sinogram is temporally binned:
N
Y ~ Poissor{/s(x))\(i) di’—s—ri}, i=1...,ng. Y 2 z 1{Se=i, Tecltutal}-
k=1
This binning discards temporal information.

Knowns:
List-mode measurements: record all (detector,time) pairs in a list, i.e.,

r—yld .
o {Y =vyi};2, : observed counts from each detector unit {(SeT)  k=1,....N}.

¢ 5(X) sensitivity patterns (determined by system models)

e 1i's : background contributions (determined separately) List-mode dynamic reconstruction problem:
Unknown: A(X) Estimate A(Xt) given {(S, T}
1.23 1.24
How to determine the ri's is a broad topic that could occupy its own short course. It depends on Recent treatment of dynamic PET reconstruction from list-mode measurements: [57].
what effects are relevant. Here are some standard methods.
e cosmic radiation / room background: determine from a “blank” scan To be precise, the list is actually {(S, T«) : k=1,...,N, S # 0} since we only can record the times
o transmission crosstalk: determine from same energy window in another head (for multiple-head of recorded events.

SPECT systems with only one transmission head)

e random coincidences (PET): delayed-window method

e scatter: use calculated scatter contributions from attenuation map and initial estimate of A(X),
or estimate from another energy window, or ...

And of course the s’s are not really known at the outset since they include the effects of patient
attenuation which must be determined by some type of transmission scan. But that is a separate
topic...

1.23 1.24
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Emission Reconstruction Problem - lllustration Example: MRI “Sensitivity Pattern”

AX) {¥i}

X2

Each “k-space sample” corresponds to a sinusoidal pattern weighted by:
o RF receive coil sensitivity pattern

e phase effects of field inhomogeneity

e spin relaxation effects.

¥i= / f (%) Cre(X) exp(—1w(X)t ) exp(—ti /TZ(X))exp(—|2Td?(ti)~X> dX+€;

125 1.26

Of course the noise in MR is not Poisson, but this seemed like the best place for this slide...

1.25 1.26
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Part 2: Five Categories of Choices

e Object parameterization: function f(T) vs finite coefficient vector «
e System physical model: {s(r)}

e Measurement statistical model y; ~

e Cost function: data-mismatch and regularization

e Algorithm / initialization

No perfect choices - one can critique all approaches!

2.1

Often these choices are made implicitly rather than explicitly. Leaving the choices implicit forti-
fies the common belief among non-experts that there are basically two kinds of reconstruction
algorithms, FBP and “iterative.”

In fact, the choices one makes in the above five categories can greatly affect the results.

In my opinion, every paper describing iterative image reconstruction methods (or results thereof)
should make as explicit as possible what choices were made in each of the above categories.

21
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Choice 1. Object Parameterization
Finite measurements: {y;}}¥,. Continuous object: f(T). Hopeless?
All models are wrong but some models are useful.
Linear series expansion approach. Replace f(F) by & = (xy,...,X,,) Where

Np

(M) ~1()= zlx,« bj(F) « “basis functions”
]:

Forward projection:

/ S(Mf(F) dr

/s ) {iij(?]d? [/s(? by () }
- J;a”xj =[Az];, where a; é/&(?)bj(?)d?

e Projection integrals become finite summations.

e a;j is contribution of jth basis function (e.g., voxel) to ith detector unit.
o The units of &; and x; depend on the user-selected units of b;(T).

e The ng x np matrix A = {&; } is called the system matrix.

2.2

In principle it is not entirely hopeless to reconstruction a continuous f(F) from a finite set of mea-
surements. This is done routinely in the field of nonparametric regression [58] (the generalization
of linear regression that allows for fitting smooth functions rather than just lines). But it is compli-
cated in tomography...

22
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(Linear) Basis Function Choices

e Fourier series (complex / not sparse)

e Circular harmonics (complex / not sparse)

o Wavelets (negative values / not sparse)

o Kaiser-Bessel window functions (blobs)

e Overlapping circles (disks) or spheres (balls)
e Polar grids, logarithmic polar grids

e “Natural pixels” {s(F)}

e B-splines (pyramids)

e Rectangular pixels / voxels (rect functions)

e Point masses / bed-of-nails / lattice of points / “comb” function
e Organ-based voxels (e.g., from CT), ...

Considerations

e Represent f(F) “well” with moderate np

e Orthogonality? (not essential)

¢ “Easy” to compute &;’s and/or Ax

e Rotational symmetry

o If stored, the system matrix A should be sparse (mostly zeros).

o Easy to represent nonnegative functions e.g., if x; > 0, then f(F) > 0.
A sufficient condition is b;(F) > 0.

23

“Well” = approximation error less than estimation error

Many published “projector / backprojector pairs” are not based explicitly on any particular choice
of basis.

Many bases have the desirable approximation property that one can form arbitrarily accurate ap-
proximations to f(F) by taking n, sufficiently large. (This is related to completeness.) Exceptions
include “natural pixels” (a finite set) and the point-lattice “basis” (usually).

Some pixel-driven backprojectors could be interpreted implicitly as point-mass object models. This
model works fine for FBP, but causes artifacts for iterative methods.

Mazur et al. [59] approximate the shadow of each pixel by a rect function, instead of by a trapezoid.
“As the shapes of pixels are artifacts of our digitisation of continuous real-world images, consid-
eration of alternative orientation or shapes for them seems reasonable.” However, they observe
slightly worse results that worsen with iteration!

Classic series-expansion reference [60]

Organ-based voxel references include [51, 61-65]

23
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Nonlinear Object Parameterizations
Estimation of intensity and shape (e.g., location, radius, etc.)

Surface-based (homogeneous) models

o Circles / spheres

e Ellipses / ellipsoids

e Superquadrics

e Polygons

e Bi-quadratic triangular Bezier patches, ...

Other models
o Generalized series f(F) = ¥ x;b;(T,0)
o Deformable templates f(F) = b(Ty(T))

Considerations

e Can be considerably more parsimonious

o If correct, yield greatly reduced estimation error
e Particularly compelling in limited-data problems
e Often oversimplified (all models are wrong but...)

e Nonlinear dependence on location induces non-convex cost functions,

complicating optimization

2.4

Disks [66,67]
Polygons [68]
Generalized series [69]

Bi-quadratic triangular Bezier patches [70]

24
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Example Basis Functions - 1D Pixel Basis Functions - 2D

Continuous object
4 T T T T T T T T

Piecewise Constant Approximation
4 T T T T T T T T

\
il

57 ,"“ = SIS B
\ ‘ ‘ Quata o-Spine pprosmatn ‘ ‘ . ‘:‘:::’:::.:;ijgl " ‘ ‘ “\\\\\\\\\\\\t““:‘?& \ ’:":‘::::::‘;’:Ii \ " “‘%:;:‘
] =l ““ TS =¥ \\\\::‘«
[ 1 4 EESRIEXIIR 6 4 S S 6
Jj: : X, 0 o X, 0 o
1 Continuous image f(F) Pixel basis approximation
0 : : s 0 T R TR T Z?ilxj bj ®
25 26
Neither the pixels nor the blobs are ideal in the above example, though both could reduce the My tentative recommendation: use pixel / voxel basis.
average approximation error as low as needed by taking n, sufficiently large. e Simple

o Perfectly matched to digital displays
e Maximally sparse system matrix

Or use blobs (rotationally symmetric Kaiser-Bessel windows)

e Easy to compute projections “on the fly” due to rotational symmetry.
o Differentiable, nonnegative.

e Parsimony advantage using body-centered cubic packing

25 26
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Discrete Emission Reconstruction Problem Choice 2. System Model
Having chosen a basis an parameterized the emission density...
System matrix elements: a; = /s(?)bj (r)ar
Estimate the emission density coefficient vector = (xq, ... ,xnp)
(aka “image”) using (something like) this statistical model:

Np
yi ~ Poisso ajXj+rio, i=1,...,ng.
{JZ

e {yi}}4, : observed counts from each detector unit

scan geometry

collimator/detector response

attenuation

scatter (object, collimator, scintillator)

e duty cycle (dwell time at each angle)

e detector efficiency / dead-time losses

e positron range, noncollinearity, crystal penetration, ...
o A={g;} :system matrix (determined by system models) LJ

e ri’s : background contributions (determined separately) Considerations

e Improving system model can improve
o Quantitative accuracy
o Spatial resolution
Many image reconstruction problems are “find « given y” where o Contrast, SNR, detectability
vi =g ([Az]) + &, i=1...,ng e Computation ti_mg (and storage vs compute-on-fly)
e Model uncertainties
(e.g., calculated scatter probabilities based on noisy attenuation map)
e Artifacts due to over-simplifications

27 28
Also called the “discrete-discrete” estimation problem since both the measurement vector and the For the pixel basis, a; is the probability that a decay in the jth pixel is recorded by the ith detector
image vector are “discretized” (finite dimensional). unit.
In contrast, FBP is derived from the “continuous-continuous” Radon transform model. Attenuation enters &; differently in PET and SPECT.

2.7 2.8
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Measured System Model?

Determine &;'s by scanning a voxel-sized cube source over the imaging volume
and recording counts in all detector units (separately for each voxel).

e Avoids mathematical model approximations

e Scatter / attenuation added later, approximately
e Small probabilities = long scan times

e Storage

e Repeat for every voxel size of interest

e Repeat if detectors change

2.9

Certainly worth doing occasionally (at least for some voxels) to check system models, particularly
for complicated geometries.

29
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“Line Length” System Model

ith ray

X1 X2

\ a;j E length of intersection

Mathematically, the corresponding detector unit sensitivity pattern is
s(r) =38k -T—T),
where & denotes the Dirac impulse function.

2.10

This model is usually applied with the pixel basis, but can be applied to any basis.

Does not exactly preserve counts, i.e., in general
ng Np
/ f(7) dr # ZZa;ij
I=1]=

Leads to artifacts.
Units are wrong too. (Reconstructed = will have units inverse length.)

Perhaps reasonable for X-ray CT, but unnatural for emission tomography. (Line segment length is
a probability?)

In short: | recommend using almost anything else!

2.10
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“Strip Area” System Model

ith ray

AN
a; = area

211

Accounts for finite detector width.

Mathematically, the corresponding detector unit sensitivity pattern is
K-T-T
r) =rectf ———
s(7) ( W

Can exactly preserve counts, since all areas are preserved, provided that the width w is an integer
multiple of the center-to-center ray spacing.

where w is the detector width.

Most easily applied to the pixel basis, but in principle applies to any choice.

A little more work to compute than line-lengths, but worth the extra effort (particularly when pre-
computed).

211
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Sensitivity Patterns

iaﬁ ~8(f)) = is(m

Line Length Strip Area

212

Backprojection of a uniform sinogram.
Explicitly:
ng ng g
aj— /s(r)b-(r) dr— / s(7)| by(7)dF = /s(r)b-(r)dm s()
S, [smnow=[|350]o Owr=st
where T} is center of jth basis function.
Shows probability for each pixel that an emission from that pixel will be detected somewhere.

These nonuniformities propagate into the reconstructed images, except when sinograms are sim-
ulated from the same model of course.

212
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Point-Lattice Projector/Backprojector

ith ray
X1 :
. o« .

a;j’s determined by linear interpolation

213

This model is used implicitly in many pixel-driven backprojection subroutines.

Mathematically, the corresponding detector unit sensitivity pattern is
. R T— Tj
r)=tri| ———
§(F) =tri ( )

This is a reasonable enough detector response model (more realistic than an impulse at least),
but the problem arises when combining it with the bed-of-nails “basis” functions bj(F) = 5(F —T;).

where A, is the ray spacing.

213
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Point-Lattice Artifacts

Projections (sinograms) of uniform disk object:

OO
45°
0
135°
180°
r r
Point Lattice Strip Area

2.14

A little radial smoothing can reduce these artifacts, but that just hides the underlying deficiency of
the point-lattice model.

The disadvantage of the strip-area model is that it is more work to compute the areas of intersec-
tion than it is to compute line lengths or linear interpolations for point-lattice model. There may be
less “symmetries” to exploit in the strip-area model too.

For 2D we precompute and store the a;j’s, so the “extra work” is irrelevant. This becomes more
cumbersome for 3D, but it has been done.

214
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Forward- / Back-projector “Pairs”

Forward projection (image domain to projection domain):
p
)Tiz/s(?)f(?) dr=3 a = [4a], or y= Az
J:

Backprojection (projection domain to image domain):

Ng "p
Ay = { au'yi}

Often A'y is implemented as By for some “backprojector” B # A’

Least-squares solutions (for example):
& =[AA]"Ay+#[BA|'By

2.15

Algorithms are generally derived using a single A matrix, and usually the quantity A'y appears
somewhere in the derivation.

If the product A’y is implemented by some By for B # A/, then all convergence properties, statis-
tical properties, etc. of the theoretical algorithm may be lost by the implemented algorithm.

215
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Mismatched Backprojector B # A’

© & (PWLS-CG) & (PWLS-CG)

Matched Mismatched

2.16

Noiseless 3D PET data, images are ny x ny x n, = 64x 64 x 4, with n, x ny x ngx ng =62x 10x 60x 3
projections. 15 iterations of PWLS-CG, initialized with the true image. True object values range
from 0O to 2. Display windowed to [0.7, 1.3] to highlight artifacts.

In this case mismatch arises from a ray-driven forward projector but a pixel-driven back projector.

Another case where mismatch can arise is in “rotate and sum” projection / backprojection methods,
if implemented carelessly.

The problem with mismatched backprojectors arises in iterative reconstruction because multiple
iterations are generally needed, so discrepancies between B and A’ can accumulate.

Such discrepancies may matter more for regularized methods where convergence is desired, then
for unregularized methods where one stops well before convergence, but this is merely specula-
tion.

The deliberate use of mismatched projectors/backprojectors has been called the “dual matrix”
approach.

todo: add unregularized comparison with mismatched

2.16
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1.2

Horizontal Profiles

—— Matched
—©— Mismatched

10

20 30 40 50
X1

217

60

70

This was from noiseless simulated data!

(© J. Fessler, June 25, 2002

217

p2choice

System Model Tricks

e Factorize (e.g., PET Gaussian detector response)

(geometric projection followed by Gaussian smoothing)

e Symmetry
e Rotate and Sum
e Gaussian diffusion

A=SG

for SPECT Gaussian detector response

e Correlated Monte Carlo (Beekman et al.)

In all cases, consistency of backprojector with A’ requires care.

218

Separability [71]

Symmetry [72-75]

Rotators [76]

Gaussian diffusion [77,78]
Sparse storage [79]

Forward projector tricks [80-93]
Correlated Monte Carlo [94]

My recommendation: in 2D PET and SPECT, precompute and store as accurate of a system

matrix as you can, strip-area model at least.

This topic could be a talk in itself...

Other issues: include scatter in A or not?

(© J. Fessler, June 25, 2002
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SPECT System Model Choice 3. Statistical Models

After modeling the system physics, we have a deterministic “model:”
¥i ~ Gi([Ax])
for some functions g, e.g., gi(l) =1 +ri for emission tomography.

Statistical modeling is concerned with the “ ~ " aspect.

Considerations

e More accurate models:

o can lead to lower variance images,

o may incur additional computation,

o may involve additional algorithm complexity

(e.g., proper transmission Poisson model has nonconcave log-likelihood)

o Statistical model errors (e.g., deadtime)
e Incorrect models (e.g., log-processed transmission data)

Complications: nonuniform attenuation, depth-dependent PSF, Compton scatter

219 2.20

“Complexity” can just mean “inconvenience.” It would certainly be more convenient to precorrect
the sinogram data for effects such as randoms, attenuation, scatter, detector efficiency, etc., since
that would save having to store those factors for repeated use during the iterations. But such pre-
corrections destroy the Poisson statistics and lead to suboptimal performance (higher variance).

More accurate statistical models may also yield lower bias, but bias is often dominated by ap-
proximations in the system model (neglected scatter, etc.) and by resolution effects induced by
regularization.

219 220
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Statistical Model Choices for Emission Tomography

e “None.” Assume y —r = Ax. “Solve algebraically” to find x.
» White Gaussian noise. Ordinary least squares: minimize ||y — Az||?
e Non-white Gaussian noise. Weighted least squares: minimize

ng Np
2 2 A
y—Az|m =S wi(yi—[Ax])°, where [Axz]. =Y a;X;
I Iw i:§ i (i — [Aw];) [Az]; ,Z i

e Ordinary Poisson model (ignoring or precorrecting for background)
yi ~ Poissof[Ax];}

e Poisson model
yi ~ Poissof[Ax]; +ri}

o Shifted Poisson model (for randoms precorrected PET)
yi = yPOPL AR | PoissoR[Ax], +2r} — 2r;

221

These are all for the emission case.
The shifted-Poisson model for randoms-precorrected PET is described in [95-98].
Missing from the above list: deadtime model [44].

My recommendations.

o If the data is uncorrected, then use Poisson model above.

o If the data was corrected for random coincidences, use shifted Poisson model.
o If the data has been corrected for other stuff, consider using WLS, e.g. [99, 100].
e Try not to correct the data so that the first choice can be used!

Classic reason for WLS over Poisson was compute time. This has been obviated by recent algo-

rithm advances. Now the choice should be made statistically.

Preprocessing: randoms subtraction, Fourier or multislice rebinning (3d to 2d), attenuation, scat-

ter, det. eff., etc.

- 2.21
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Shifted Poisson model for PET

Precorrected random coincidences: y; = yPromPt_ ydelay
yOTP . Poissof[Ax], +ri}
Y - Poissodr;}
Ely] = [Az],
Var{y} = [Az]+2r Mean # Variance = not Poisson!

Statistical model choices
e Ordinary Poisson model: ignore randoms

[vi], ~ Poissoq[Ax];}

Causes bias due to truncated negatives
e Data-weighted least-squares (Gaussian model):

Yi~ N ([AmL 76|2) 5 6|2 = max(yi + Zr’.\ivoﬁﬂn)

Causes bias due to data-weighting
e Shifted Poisson model (matches 2 moments):

i + 2fi], ~ Poissoi[Ax]; +2f}
Insensitive to inaccuracies in fj.

222

Ideally, f; would be calculated based on block singles rates and detector efficiency information.

Practically, using f; ~ 2 or so works fine for usual whole-body FDG PET scans [95-98].

If fj is too small, then there will be many remaining negatives that will be truncated by the [],

operation, leading to biased images.

If fi is too large, the statistical properties approach those of unweighted least squares, yielding

unnecessarily noisy images and slower convergence of EM-type algorithms.

- 2.22
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Shifted-Poisson Model for X-ray CT Choice 4. Cost Functions

Model with both photon variability and readout noise: Components:
_ . — 2 o Data-mismatch term
yi ~ Poissoryi(p)} +N(0,0%) o Regularization term (and regularization parameter f)
Shifted Poisson approximation e Constraints (e.g., nonnegativity)

yi + 0% ~ Poissod yi(p) + 0%}

or just use WLS... Y(x) = DataMismatch(y, Az) + 3- Roughness(x)
~A A .

Complications: & = argminy/(z)

e Intractability of likelihood for Poisson+Gaussian

e Poisson mixture distribution due to photon-energy-dependent detector signal. Actually several sub-choices to make for Choice 4 ...

4

Distinguishes “statistical methods” from “algebraic methods” for “y = Az’

2.23 2.24

For Poisson+Gaussian, see [101,102]. 3 sometimes called hyperparameter

For Poisson mixture, see [103,104].

224
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Why Cost Functions?
(vs “procedure” e.g., adaptive neural net with wavelet denoising)

Theoretical reasons

ML is based on minimizing a cost function: the negative log-likelihood

e ML is asymptotically consistent

e ML is asymptotically unbiased

e ML is asymptotically efficient (under true statistical model...)

e Estimation: Penalized-likelihood achieves uniform CR bound asymptotically

e Detection: Qi and Huesman showed analytically that MAP reconstruction out-
performs FBP for SKE/BKE lesion detection (T-MI, Aug. 2001)

Practical reasons

e Stability of estimates (if ¥ and algorithm chosen properly)
e Predictability of properties (despite nonlinearities)

e Empirical evidence (?)

2.25

Stability means that running “too many iterations” will not compromise image quality.

Asymptotically efficient means that the variance of ML estimator approaches that given by the
Cramer-Rao lower bound, which is a bound on the variance of unbiased estimators.

But nuclear imaging is not asymptotic (too few counts), and system models are always approxi-
mate, and we regularize which introduces bias anyway.

Uniform CR bound generalizes CR bound to biased case [105]
Bottom line: haven't found anything better, seen plenty that are worse (LS vs ML in low count)
OSEM vs MAP [71,106]

Qi and Huesman [31]

2.25
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Bayesian Framework

Given a prior distribution p(z) for image vectors x, by Bayes’ rule:

posterior: p(z|y) = p(y|z)p(z)/p(y)
so
logp(z|y) = logp(y|x) +log p(z) —log p(y)
e —logp(y|xz) corresponds to data mismatch term
e —logp(x) corresponds to regularizing penalty function
Maximum a posteriori (MAP) estimator
& = argmadogp(z|y)

e Has certain optimality properties (provided p(y|z) and p(x) are correct).
e Same form as W

2.26

| avoid the Bayesian terminology because

e Images drawn from the “prior” distributions almost never look like real objects

e The risk function associated with MAP estimation seems less natural to me than a quadratic risk
function. The quadratic choice corresponds to conditional mean estimation & = E[x|y] which is
very rarely used by those who describe Bayesian methods for image formation.

o | often use penalty functions R(x) that depend on the data y, which can hardly be called “priors.”

- 2.26
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Choice 4.1: Data-Mismatch Term

Options for PET:
e Negative log-likelihood of statistical model. Poisson emission case:
Ng

—L(z;y) = —logp(y|z) = _Z([Awh +1i) —yilog([Az]; + i) + logy;!

e Ordinary (unweighted) least squares: 39, 3(y, — fi — [Ax];)?

o Data-weighted least squares: 3, 3(y, — fi — [Ax];)?/62, 67 = max(y; + i, 0%,) »
(causes bias due to data-weighting).

¢ Reweighted least-squares: 62 = [AZ]; + |

e Model-weighted least-squares (nonquadratic, but convex!)

3 301 Fi= Az 7/ ([Az) +7)

e Nonquadratic cost-functions that are robust to outliers
o ...

Considerations

e Faithfulness to statistical model vs computation
e Ease of optimization (convex?, quadratic?)

o Effect of statistical modeling errors

2.27

Poisson probability mass function (PMF):
P(ylx) = M1 e V5 /yit where = Az +r

Reweighted least-squares [107]

Model-weighted least-squares [108, 109]

f(I):%(yfrfl)z/(l+r) F(1)=y2/(1+1)*> 0

Robust norms [110, 111]

Generally the data-mismatch term and the statistical model go hand-in-hand.

227
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Choice 4.2: Regularization

Forcing too much “data fit” gives noisy images
lll-conditioned problems: small data noise causes large image noise

Solutions :
e Noise-reduction methods
e True regularization methods

Noise-reduction methods
e Modify the data
o Prefilter or “denoise” the sinogram measurements
o Extrapolate missing (e.g., truncated) data
e Modify an algorithm derived for an ill-conditioned problem
o Stop algorithm before convergence
o Run to convergence, post-filter
o Toss in a filtering step every iteration or couple iterations
o Modify update to “dampen” high-spatial frequencies [112]

2.28

FBP with an apodized ramp filter belongs in the “modify the algorithm” category. The FBP method
is derived based on a highly idealized system model. The solution so derived includes a ramp
filter, which causes noise amplification if used unmodified. Throwing in apodization of the ramp
filter attempts to “fix” this problem with the FBP “algorithm.”

The fault is not with the algorithm but with the problem definition and cost function. Thus the fix
should be to the latter, not to the algorithm.

The estimate-maximize smooth (EMS) method [113] uses filtering every iteration.
The continuous image f(F)- discrete data problem is ill-posed.

If the discrete-discrete problem has a full column rank system matrix A, then that problem is well-
posed, but still probably ill-conditioned.

2.28
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Noise-Reduction vs True Regularization

Advantages of noise-reduction methods
e Simplicity (?)
e Familiarity
e Appear less subjective than using penalty functions or priors
o Only fiddle factors are # of iterations, amount of smoothing
e Resolution/noise tradeoff usually varies with iteration
(stop when image looks good - in principle)
e Changing post-smoothing does not require re-iterating

Advantages of true regularization methods

o Stability

e Predictability

e Resolution can be made object independent

e Controlled resolution (e.g., spatially uniform, edge preserving)
e Start with decent image (e.g., FBP) = reach solution faster.

2.29

Running many iterations followed by post-filtering seems preferable to aborting early by stopping
rules [114,115].

Lalush et al. reported small differences between post-filtering and MAP reconstructions with an
entropy prior [116].

Slijpen and Beekman conclude that post-filtering slightly more accurate than “oracle” filtering be-
tween iterations for SPECT reconstruction [117].

- 2.29
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True Regularization Methods

Redefine the problem to eliminate ill-conditioning,
rather than patching the data or algorithm!

e Use bigger pixels (fewer basis functions)
oVisually unappealing
oCan only preserve edges coincident with pixel edges
oResults become even less invariant to translations

e Method of sieves (constrain image roughness)
oCondition number for “pre-emission space” can be even worse
oLots of iterations
oCommutability condition rarely holds exactly in practice
oDegenerates to post-filtering in some cases

e Change cost function by adding a roughness penalty / prior
oDisadvantage: apparently subjective choice of penalty
oApparent difficulty in choosing penalty parameters

(cf apodizing filter / cutoff frequency in FBP)

2.30

Big pixels [118]
Sieves [119,120]

Lots of iterations for convergence [114,121]

- 2.30
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Penalty Function Considerations

o Computation

e Algorithm complexity

o Uniqueness of minimizer of W(x)

e Resolution properties (edge preserving?)

o # of adjustable parameters

e Predictability of properties (resolution and noise)

Choices

e separable vs nonseparable
e quadratic vs nonquadratic
e CONvex VS honconvex

231

There is a huge literature on different regularization methods. Of the many proposed methods,
and many anecdotal results illustrating properties of such methods, only the “lowly” quadratic
regularization method has been shown analytically to yield detection results that are superior to
FBP [31].

231
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Penalty Functions: Separable vs Nonseparable

Separable

o Identity norm: R(z) = 3a'Iz = 3°,x¢/2
penalizes large values of x, but causes “squashing bias”
o Entropy: R(z) = 3°,x;logx
)2
« Gaussian prior with mean p;, variance 0% R(z) = 3|7, "L 4"
]
e Gamma prior R(z) = z;‘il p(xj, Hj,0;) where p(x,u,o) is Gamma pdf

The first two basically keep pixel values from “blowing up.”
The last two encourage pixels values to be close to prior means ;.

p
General separable form: R(z) = Z fi(x))
J:

Simple, but these do not explicitly enforce smoothness.

232

The identity norm penalty is a form of Tikhinov-Miller regularization [122].

The Gaussian and Gamma bias the results towards the prior image. This can be good or bad
depending on whether the prior image is correct or not! If the prior image comes from a normal
database, but the patient is abnormal, such biases would be undesirable.

For arguments favoring maximum entropy, see [123]. For critiques of maximum entropy regular-
ization, see [124-126].

- 2.32
(© J. Fessler, June 25, 2002 p2reg



Penalty Functions: Separable vs Nonseparable

Nonseparable (partially couple pixel values) to penalize roughness

X1 Xo X3 Example
R(z) = (X2 —X1)+ (Xa — X2)* + (X6 — Xa)?
Xa X5 + (X —X1)2+ (X5 — X2)2
2 3 1 1 3 1
2 2 2 2
Rxz)=1 R(z)=6 R(z) =10

2.33

Rougher images =- greater R(x)

If diagonal neighbors were included there would be 3 more terms in this example.

(© J. Fessler, June 25, 2002

233

p2reg

Roughness Penalty Functions

First-order neighborhood and pairwise pixel differences:

Np l
Rlz)= = i —
£)=3 3 % W0y -%

N; £ neighborhood of jth pixel (e.g., left, right, up, down)
Y called the potential function

Finite-difference approximation to continuous roughness measure:

R(FO) = [ 110 2o = [ |20

Second derivatives also useful:

(More choices!)

2+'%f(?)2

Np
Rx)=Y W(Xjt1—2X+Xj-1)+ -
JZL j+1 j j—1

2.34

2

0
a_zf

(F)

2

ar.

2
Z1(r) ]Hj ~ F(Fan) —26(F) + £(7j0)

For differentiable basis functions (e.g., B-splines), one can find [||0f(F)||2dr exactly in terms of

coefficients, e.g., [127].

See Gindi et al. [128,129] for comparisons of first and second order penalties.

(© J. Fessler, June 25, 2002
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Penalty Functions: General Form

’R(m): Zwk([Cm]k) where [Czl= icijj

Example :
X1 X2 X3
X4 Xs

-1 10 00| |x Xo—X1
0-11 00| |x X3—X2
Cx = 0 00-11 X3 | = | Xs—Xa
-1 00 10| (x4 Xg4— X1
0-10 01 |xs X5 — X2

R(z) = % W([Cz]k) = W1 (Xo—X1) +Wa (X —X2) + P3(Xs — Xa) +Wa(Xa— X1) + Ws(Xs — X2)
s

2.35

This form is general enough to cover nearly all the penalty functions that have been used in
tomography. Exceptions include priors based on nonseparable line-site models [130-133]. and
the median root prior [134, 135], both of which are nonconvex.

It is just coincidence that C is square in this example. In general, for a ny x ny image, there are
ny(ny — 1) horizontal pairs and ny(n, — 1) vertical pairs, so C will be a (2n,ny — ny—ny) x (nkny) very
sparse matrix (for a first-order neighborhood consisting of horizontal and vertical cliques).

Concretely, for a n, x ny image ordered lexicographically, for a first-order neighborhood we use

I, ® D,
o= [fomn]
By
where ® denotes the Kronecker product and D,, denotes the following (n— 1) x n matrix:
-1 1 0 00
A 0-1 1 00
D,= 0 0. .0
0 0 0-11

2.35
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Penalty Functions: Quadratic vs Nonquadratic
R(z) = Zwk([Cw‘]k)

Quadratic Wy

If Wi(t) =12/2, then R(z) = 32'C’'Cz, a quadratic form.
e Simpler optimization

e Global smoothing

Nonguadratic ik

e Edge preserving

e More complicated optimization. (This is essentially solved in convex case.)
e Unusual noise properties

e Analysis/prediction of resolution and noise properties is difficult

e More adjustable parameters (e.g., )

2
Example: Huber function. y(t) 2 { t5|{|2’_ &/2 m ig

2.36

2.36
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Quadratic vs Nonquadratic Potential Functions ) )
35 T T T T T Edge-Preserving Reconstruction Example

---  Quadratic (parabola)
3} '\ |—— Nonquadratic (Huber, &=1) L]

Potential Function  (t)
= N
2] N Ul

[E
T

0.5f : Phantom Quadratic Penalty Huber Penalty
A transmission example would be preferable...
0
-3 _ 3
t= Xj - Xk
Lower cost for large differences = edge preservation
237 2.38

In terms of ROI quantification, a nonquadratic penalty may outperform quadratic penalties for
certain types of objects (especially phantom-like piecewise smooth objects). But the benefits of
nonquadratic penalties for visual tasks is largely unknown.

The smaller & is in the Huber penalty, the stronger the degree of edge preservation, and the more
unusual the noise effects. In this case | used & = 0.4, for a phantom that is 0 in background, 1 in
white matter, 4 in graymatter. Thus & is one tenth the maximum value, as has been recommended
by some authors.

237 2.38
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Penalty Functions: Convex vs Nonconvex

Convex
e Easier to optimize
e Guaranteed unique minimizer of W (for convex negative log-likelihood)

Nonconvex

e Greater degree of edge preservation

e Nice images for piecewise-constant phantoms!

e Even more unusual noise properties

e Multiple extrema

e More complicated optimization (simulated / deterministic annealing)
e Estimator & becomes a discontinuous function of data Y’

Nonconvex examples
e “broken parabola”

W(t) = min(t?, t7,)
e true median root prior:

2 (x; — median(z))?

R(gc):lzl median(z) where median(z) is local median

Exception: orthonormal wavelet threshold denoising via nonconvex potentials!

2.39

The above form is not exactly what has been called the median root prior by Alenius et al. [136].
They have used median(z™) which is not a true prior since it depends on the previous iteration.

For nice analysis of nonconvex problems, see the papers by Mila Nikolova [137].

For orthonormal wavelet denoising, the cost functions [138] usually have the form

W(z) = ||y — Az|*+ 5 i
(@) =ly H JZ\LIJ(XJ)

where A is an orthonormal. When A is orthonormal we can write: ||y — Az|? = || A’y — z||?, so

"p

Y(x) = —[A'y];)? i
() IZl(XJ [A'y]j)"+W(x)

which completely separates into n, 1-D minimization problems, each of which has a unique mini-

mizer for all useful potential functions.

Potential Functions

[EEY

Potential Function (1)

o
&)

- - - Paraboloa (quadratic)
--= Huber (convex)
—— Broken parabola (hon—convex)

=
ul

0
tzﬁ—x

2.40

- 2.39
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Local Extrema and Discontinuous Estimators
Y(z)

€T

Small change in data = large change in minimizer .
Using convex penalty functions obviates this problem.

241

[111] discuss discontinuity

- 241
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Augmented Regularization Functions
Replace roughness penalty R(z) with R(z|b) + aR(b),
where the elements of b (often binary) indicate boundary locations.
e Line-site methods
e Level-set methods
Joint estimation problem:
(&,b) = arg mli)nlIJ(m, b), Y(z,b) = —L(x;y) + BR(x|b) + aR(d).

Example: by indicates the presence of edge between pixels j and k:
Np

1
R(z|b) = (1 bj) 5 (% —x)?
JZLKEZN] 2
Penalty to discourage too many edges (e.g.):
R(®) =Y bj.
2

e Can encourage local edge continuity
e Require annealing methods for minimization

2.42

Line-site methods: [130-133].
Level-set methods: [139-141].

For the simple non-interacting line-site penalty function R(b) given above, one can perform the

minimization over b analytically, yielding an equivalent regularization method of the form R(x) with
a broken parabola potential function [142].

More sophisticated line-site methods use neighborhoods of line-site variables to encourage local
boundary continuity [130-133].

- 242
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Modified Penalty Functions Choice 4.3: Constraints

np e Nonnegativity

1
R(z) = Zﬁ z Wik W (X) — %) e Known support
=1 “keN; e Count preserving
e Upper bounds on values
Adjust weights {wj} to e.g., maximum p of attenuation map in transmission case

e Control resolution properties
e Incorporate anatomical side information (MR/CT)

. . ) . Considerations
(avoid smoothing across anatomical boundaries)

e Algorithm complexity

Recommendations * Computation
e Emission tomography: ° C_onvgrgence rate .
o begin with quadratic (nonseparable) penalty functions » Bias (in low-count regions)
o Consider modified penalty for resolution control and choice of 3 M
o Use modest regularization and post-filter more if desired
e Transmission tomography (attenuation maps)
o consider convex nonguadratic (e.g., Huber) penalty functions
o choose 0 based on attenuation map units (water, bone, etc.)
o choice of regularization parameter 3 remains nontrivial,
learn appropriate values by experience for given study type

243 2.44
Resolution properties [25, 143, 144] Sometimes it is stated that the ML-EM algorithm “preserves counts.” This only holds when r; =0
in the statistical model. The count-preserving property originates from the likelihood, not the
Side information (a very incomplete list) [145-156]. algorithm. The ML estimate, under the Poisson model, happens to preserve counts. It is fine that

ML-EM does so every iteration, but that does not mean that it is superior to other algorithms that
get to the optimum & faster without necessarily preserving counts along the way.

I do not recommend artificially renormalizing each iteration to try to “preserve counts.”

- 243 _ 2.44
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Open Problems Summary

Mode!lng_ , e 1. Object parameterization: function f(F) vs vector
o Noise in &;'s (System model errors) _

« Noise in f;’s (estimates of scatter / randoms) e 2. System physical model: s(x)

o Statistics of corrected measurements ¢ 3. Measurement statistical model Y; ~

e Statistics of measurements with deadtime losses . . o .
e 4. Cost function: data-mismatch / regularization / constraints

Cost functions

o Performance prediction for nonquadratic penalties ]Reconstruction Method = Cost Function + Algorithm \
e Effect of nonquadratic penalties on detection tasks
e Choice of regularization parameters for nonquadratic regularization

Naming convention:
e ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, ...

2.45 2.46

Deadtime statistics are analyzed in [45, 46]. Bottom line: in most SPECT and PET systems with
paralyzable deadtime, the measurements are non-Poisson, but the mean and variance are nearly
identical. So presumably the Poisson statistical model is adequate, provided the deadtime losses
are included in the system matrix A.

2.45 2.46
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Part 3. Algorithms Why iterative algorithms?

Method = Cost Function + Algorithm e For nonquadratic W, no closed-form solution for minimizer.
e For quadratic W with nonnegativity constraints, no closed-form solution.

Outline ) e For quadratic W without constraints, closed-form solutions:
o Ideal algorithm L , n

o Classical general-purpose algorithms PWLS: z= [A/WX‘}JCR] AWy
e Considerations: OLS: z=[AA] Ay

o nonnegativity
o parallelization
o convergence rate
o monotonicity
e Algorithms tailored to cost functions for imaging
o Optimization transfer
o EM-type methods
o Poisson emission problem
o Poisson transmission problem
e Ordered-subsets / block-iterative algorithms

Impractical (memory and computation) for realistic problem sizes.
A is sparse, but A A is not.

All algorithms are imperfect. No single best solution.

3.1 3.2

Choosing a cost function is an important part of imaging science.

Choosing an algorithm should be mostly a matter of numerical methods. Singular value decomposition (SVD) techniques have been proposed for the OLS cost function as
a method for reducing the computation problem, e.g., [157-166].

Nevertheless, it gets a lot of attention by imaging scientists since our cost functions have forms

that can be exploited to get faster convergence than general-purpose methods. The idea is that one could precompute the pseudo-inverse of A “once and for all.” However A
includes physical effects like attenuation, which change for every patient. And for data-weighted
least squares, W changes for each scan too.

Image reconstruction never requires the matrix inverse [A’A]™%; all that is required is a solution to
the normal equations [A' A]& = A'y which is easier, but still nontrivial.

3.1 32
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General Iteration

Projection - :
Measurements Calibration ...
! System l
Model

z™ Iteration gD

W

!
Parameters
Deterministic iterative mapping: 2™ =M ()

33

There are also stochastic iterative algorithms, such as simulated annealing [130] and the stochas-
tic EM algorithm [167].

33
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Ideal Algorithm

. arg n;ionklw'(;c) (global minimizer)

Properties

stable and convergent
converges quickly
globally convergent
fast

robust

user friendly

parallelizable
simple
flexible

{x™} converges to z* if run indefinitely
{xz™} gets “close” to z* in just a few iterations
lim,2™ independent of starting image =@
requires minimal computation per iteration
insensitive to finite numerical precision

nothing to adjust (e.g., acceleration factors)

(when necessary)
easy to program and debug
accommodates any type of system model

(matrix stored by row or column or projector/backprojector)

Choices: forgo one or more of the above

3.4

One might argue that the “ideal algorithm” would be the algorithm that produces z"™€. In the
framework presented here, it is the job of the cost function to try to make z* ~ x'™¢, and the job of
the algorithm to find * by minimizing W.

In fact, nothing in the above list really has to do with image quality. In the statistical framework,
image quality is determined by W, not by the algorithm.

Note on terminology: “algorithms” do not really converge, it is the sequence of estimates {z“‘)}
that converges, but everyone abuses this all the time, so | will too.

(© J. Fessler, June 25, 2002
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Classic Algorithms

Non-gradient based

e Exhaustive search

o Nelder-Mead simplex (amoeba)

Converge very slowly, but work with nondifferentiable cost functions.

Gradient based
e Gradient descent

™MD 2 g abw(z™)

Choosing a to ensure convergence is nontrivial.
e Steepest descent

™D 2 20 _ g m0w(z™) where a2 arg minLP(a:“‘) - a[lw(mm)))
a
Computing o, can be expensive.

Limitations
e Converge slowly.
e Do not easily accommodate nonnegativity constraint.

3.5

Nice discussion of optimization algorithms in [168].

Row and column gradients:

0 5} 5}
= 2w %y . Zu,  op=¢
0X1 /6X2 ? ’

EW(x) o

Using gradients excludes nondifferentiable penalty functions such as the Laplacian prior which

involves |x; —X¢|. See [169-171] for solutions to this problem.

Gradients & Nonnegativity - A Mixed Blessing

Unconstrained optimization  of differentiable cost functions:
OW(xz) =0 when z =x"

e A necessary condition always.
o A sufficient condition for strictly convex cost functions.
e |terations search for zero of gradient.

Karush-Kuhn-Tucker conditions

Nonnegativity-constrained minimization
0
an

is {
T=x*
e A necessary condition always.
o A sufficient condition for strictly convex cost functions.
o |terations search for ???
e 0= x}aiijP(a:*) is a necessary condition, but never sufficient condition.

, X

0. x*
j
Y(x) 0 X

IV

0
0

Vol

3.6

35
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Karush-Kuhn-Tucker Illustrated
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\ ]
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\ /
\ 1
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- 3F \ 1 -
3 ) '
\ /
\ /
\ /
2k \ 1 g
\ /
\ /
\ /
\ ’
~ 7
1k ~ - 4
— Inactive constraint
— - Active constraint
: : : : : :
-4 -3 -2 -1 0 1 2 3 4 5 6
x
3.7

The usual condition %H—'(m) = 0 only applies for pixels where the nonnegativity constraint is inac-

tive.

3.7
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Why Not Clip Negatives?

WLS with Clipped Newton—-Raphson

Newton-Raphson with negatives set to zero each iteration.

Fixed-point of iteration is not the constrained minimizer!

3.8

By clipped negatives, | mean you start with some nominal algorithm Mo(x) and modify it to be:
2D =M (z) where M (z) = [Mo(z)],. and the jth element of [z], is x; if x; >0 or 0 if x; < 0.
Basically, you run your favorite iteration and then set any negatives to zero before proceeding to

the next iteration.
Simple 2D quadratic problem. Curves show contours of equal value of the cost function W.

Same problem arises with upper bounds too.
The above problem applies generally to simultaneous update iterative methods. For sequential

update methods, such as coordinate descent, clipping works fine.

3.8
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Newton-Raphson Algorithm Newton’s Quadratic Approximation

M = g — [DZW(SU(”))Tl['W(w(n))‘ 2nd-order Taylor series:

Advantage : ~ ol ™) 2 (g " 0 1+ L1 O\ TR "
o Super-linear convergence rate (if convergent) (@)~ @a;z™) = P(™) +B¥(@")(z —x )+§($—w ) O (™) (x—z™)

Disadvantages : Set (™Y to the (“easily” found) minimizer of this quadratic approximation:

o Requires twice-differentiable W 2D 2 argming(z; ")

« Not guaranteed to converge @

« Not guaranteed to monotonically decrease W = 2" — (0P (™) T (")

e Does not enforce nonnegativity constraint

o Impractical for image recovery due to matrix inverse Can be nonmonotone for Poisson emission tomography log-likelihood,

even for a single pixel and single ray:

General purpose remedy: bound-constrained Quasi-Newton algorithms
W(X) = (x+r1) —ylog(x+r)

3.9 3.10

thp(z) is called the Hessian matrix. It is a ny x n, matrix (where n, is the dimension of x). The
j,kth element of it is (,X‘i’%kw(m)_

A “matrix inverse” actually is not necessary. One can rewrite the above iteration as (™ = (™ —
d™ where d" is the solution to the system of equations: 1?W(z™)d™ = OW(x™). Unfortunately,
this is a non-sparse n, x n,, system of equations, requiring O(ng) flops to solve, which is expensive.
Instead of solving the system exactly one could use approximate iterative techniques, but then it
should probably be considered a preconditioned gradient method rather than Newton-Raphson.

Quasi-Newton algorithms [172—-175] [176, p. 136] [177, p. 77] [178, p. 63].

bound-constrained Quasi-Newton algorithms (LBFGS) [174,179-182].

3.9 3.10
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Nonmonotonicity of Newton-Raphson

0.5F

= —05f

Log-Likelihood
— - Newton Parabola

311

8

9

10
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Consideration: Monotonicity

An algorithm is monotonic if
WD) <), vz,

Three categories of algorithms:

e Nonmonotonic (or unknown)

e Forced monotonic (e.g., by line search)

e Intrinsically monotonic (by design, simplest to implement)

Forced monotonicity

Most nonmonotonic algorithms can be converted to forced monotonic algorithms
by adding a line-search step:

2P 2 M (a:(n))7 d = pemP_ 2™
™D 2 2 g d" where a,Z arg minw(:z:(") - ad“”)
o

Inconvenient, sometimes expensive, nonnegativity problematic.

3.12

Although monotonicity is not a necessary condition for an algorithm to converge globally to z*, it
is often the case that global convergence and monotonicity go hand in hand. In fact, for strictly
convex W, algorithms that monotonically decrease W each iteration are guaranteed to converge
under reasonable regularity conditions [183].

Any algorithm containing a line search step will have difficulties with nonnegativity. In principle
one can address these problems using a “bent-line” search [184], but this can add considerable
computation per iteration.

3.12
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Conjugate Gradient Algorithm

Advantages :

e Fast converging (if suitably preconditioned) (in unconstrained case)
e Monotonic (forced by line search in nonquadratic case)

e Global convergence (unconstrained case)

e Flexible use of system matrix A and tricks

e Easy to implement in unconstrained quadratic case

e Highly parallelizable

Disadvantages :
e Nonnegativity constraint awkward (slows convergence?)
e Line-search awkward in nonquadratic cases

Highly recommended for unconstrained quadratic problems (e.g., PWLS without
nonnegativity). Useful (but perhaps not ideal) for Poisson case too.

3.13

CG is like steepest descent, but the search direction is modified each iteration to be conjugate to
the previous search direction.

Preconditioners [185, 186]

Poisson case [106, 187, 188].

3.13
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Consideration: Parallelization

Simultaneous (fully parallelizable)
update all pixels simultaneously using all data
EM, Conjugate gradient, ISRA, OSL, SIRT, MART, ...

Block iterative (ordered subsets)
update (nearly) all pixels using one subset of the data at a time
OSEM, RBB], ...

Row action
update many pixels using a single ray at a time
ART, RAMLA

Pixel grouped (multiple column action)

update some (but not all) pixels simultaneously a time, using all data
Grouped coordinate descent, multi-pixel SAGE

(Perhaps the most nontrivial to implement)

Sequential (column action)

update one pixel at a time, using all (relevant) data
Coordinate descent, SAGE

3.14

Sequential algorithms are the least parallelizable since one cannot update the second pixel until
the first pixel has been updated (to preserve monotonicity and convergence properties).

SAGE [189,190]

Grouped coordinate descent [191]
Multi-pixel SAGE [192]

RAMLA [193]

OSEM [15]

RBBI [194-196]

ISRA [197-199]

OSL [200, 201]

- 3.14
(© J. Fessler, June 25, 2002 p3alg



Coordinate Descent Algorithm

aka Gauss-Siedel, successive over-relaxation (SOR), iterated conditional modes (ICM)
Update one pixel at a time, holding others fixed to their most recent values:

X — argxrjllig]llJ(xgew’m, jf‘g:XJ:X?Tl»~--7XﬁLd), i=1....np
Advantages :
e Intrinsically monotonic
e Fast converging (from good initial image)
e Global convergence
e Nonnegativity constraint trivial

Disadvantages :

e Requires column access of system matrix A

e Cannot exploit some “tricks” for A

e Expensive “arg min” for nonquadratic problems
e Poorly parallelizable

3.15

Fast convergence shown by Sauer and Bouman with clever frequency-domain analysis [202].
Any ordering can be used. Convergence rate may vary with ordering.

Global convergence even with negatives clipped [203].

One can replace the “arg min” with a one-dimensional Newton-Raphson step [191, 204—206].
However, this change then loses the guarantee of monotonicity for nonquadratic W. Also, evalu-
ating the second partial derivatives of W with respect to x; is expensive (costs an extra modified

backprojection per iteration) [191].

The paraboloidal surrogates coordinate descent (PSCD) algorithm circumvents these problems
[207].

3.15
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Constrained Coordinate Descent Illustrated

Clipped Coordinate-Descent Algorithm

-2 -15

-0.5 0

X1

3.16

In this particular case, the nonnegativity constraint led to exact convergence in 1.5 iterations.

(© J. Fessler, June 25, 2002
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Coordinate Descent - Unconstrained

Unconstrained Coordinate-Descent Algorithm

15F

0.5

X2
o

-15

-1 -0.5 0
X1

3.17

In general coordinate descent converges at a linear rate [99,202].

Interestingly, for this particular problem the nonnegativity constraint accelerated convergence.

(© J. Fessler, June 25, 2002
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Coordinate-Descent Algorithm Summary

Recommended when all of the following apply:

e quadratic or nearly-quadratic convex cost function

e nonnegativity constraint desired

e precomputed and stored system matrix A with column access
e parallelization not needed (standard workstation)

Cautions:
e Good initialization (e.g., properly scaled FBP) essential.
(Uniform image or zero image cause slow initial convergence.)
e Must be programmed carefully to be efficient.
(Standard Gauss-Siedel implementation is suboptimal.)
e Updates high-frequencies fastest = poorly suited to unregularized case

Used daily in UM clinic for 2D SPECT / PWLS / nonuniform attenuation

3.18

In saying “not good for the unregularized case” | am assuming one does not really wish to find the
minimizer of W in that case. If you really want the minimizer of W in the unregularized case, then

coordinate descent may still be useful.

3.18

(© J. Fessler, June 25, 2002

p3alg



Summary of General-Purpose Algorithms

Gradient-based

e Fully parallelizable

e Inconvenient line-searches for nonquadratic cost functions
e Fast converging in unconstrained case

e Nonnegativity constraint inconvenient

Coordinate-descent

e Very fast converging

e Nonnegativity constraint trivial

e Poorly parallelizable

e Requires precomputed/stored system matrix

CD is well-suited to moderate-sized 2D problem (e.g., 2D PET),
but poorly suited to large 2D problems (X-ray CT) and fully 3D problems

Neither is ideal.

-~ need special-purpose algorithms for image reconstruction!

3.19

Interior-point methods for general-purpose constrained optimization have recently been applied to
image reconstruction [208] and deserve further examination.

- 3.19
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Data-Mismatch Functions Revisited
For fast converging, intrinsically monotone algorithms, consider the form of Y.

WLS:

Ny

~L(w) = 3 (i [Az))? = 3 R(lAa]).  where h()

2

%Wi (yi—1)2

Emission Poisson log-likelihood
~L(@) = 3 ((As], +r) ~ylog((As] 1) =  h(l4s])
where hi(l) 2 (I+ri) —yilog(l +r).

Transmission Poisson log-likelihood
S (e A (4q) <
—L(x) = bie i) —yilog( bie” 41 ) = Y hi([Ax];
@=3 (b ) —wilog (b )= 3 hilAal)
where h(l) £ (be™' +1;) —yilog(be™ +1,).

MRI, polyenergetic X-ray CT, confocal microscopy, image restoration, ...
All have same patrtially separable form. a0

All the algorithms discussed this far are generic; they can be applied to any differentiable W.

3.20
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General Imaging Cost Function

General form for data-mismatch function:

~L(@)= 3 h(l4s])

General form for regularizing penalty function:

R(z) = Z Wi([Czli)

General form for cost function:

Yiz) = ~L(a) + BR(x) = 3 h(Az]) + B b([Cal

Properties of W we can exploit:
e summation form (due to independence of measurements)

e convexity of h; functions (usually)
e summation argument (inner product of « with ith row of A)

Most methods that use these properties are forms of optimization transfer.

3.21

- 3.21
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Optimization Transfer lllustrated

W(z) and @(x; ™)

— Cost function
- - - Surrogate function

This figure does not do justice to the problem. A one-dimensional W is usually easy to minimize.

The problem is in multiple dimensions.

(© J. Fessler, June 25, 2002
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Optimization Transfer

General iteration:

(n+1) _ ; ( . (n))
T arg;glortp ;T

Monotonicity conditions (W decreases provided these hold):

o @z (M) = W(zM) (matched current value)

o M@(x; ™) = DW(x) (matched gradient)
z=z( 2=z

o @z;zM)>W(x) Y&>0 (lies above)

These 3 (sufficient) conditions are satisfied by the Q function of the EM algorithm
(and SAGE).

The 3rd condition is not satisfied by the Newton-Raphson quadratic approxima-
tion, which leads to its nonmonotonicity.

3.23

3.23
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Optimization Transfer in 2d

oaial")

3.24

/
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Optimization Transfer cf EM Algorithm Convergence Rate: Slow

E-step: choose surrogate function @(z; ™) ' k

] .

L . High Curvature
- - ! !

M-step: minimize surrogate function 1 Small Steps

2™ = arg rgigxp(x;w(”)) \ | Slow Convergence
x>

Designing surrogate functions
e Easy to “compute”

e Easy to minimize

e Fast convergence rate

Often mutually incompatible goals .. compromises

Old New
3.25 3.26
From the point of view of “per iteration convergence rate,” the optimal “surrogate function” would
be just W itself. However, then the M-step is very difficult (in fact it is the original optimization
problem). Such an “algorithm” would converge in one very expensive “iteration.”
3.25 3.26
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Convergence Rate: Fast Tool: Convexity Inequality

Low Curvature ’
\ Large Steps /
\ Fast Convergence

X X1 CXX1+(17CX)X2 X2
old New
gconvex = g(axg+ (1—a)xp) <ag(xi)+ (1—a)g(xe) for a € [0,1]
More generally: a,>0and Jax=1 = g(Jx0X) < Sk0kg(%). Sum outside!
3.27 3.28
Tradeoff between curvature and ease of M-step... Can we beat this tradeoff? The emission Poisson ray log-likelihood h; is strictly convex on (—rj,). This turns out to be

adequate for the derivation.

3.27 3.28
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Example 1. Classical ML-EM Algorithm

Negative Poisson log-likelihood cost function (unregularized):
Ng
= Zhi([AmL), hi(l) = (1 +1i) —yilog(l + ).
i=
Intractable to minimize directly due to summation within logarithm.

Clever trick due to De Pierro (let ¥ = [Az™] +1):

oxm
n= B3 [2] ().

Since the hi’s are convex in Poisson emission model:

n (n) NQ)
(Al = b [ 5 |35 [ X aij ] X
hi([Az];) =hi (sz 7 } <x§">y' )) < Z{ e }h. (X] y; )

L)

w<x>=§lhi<[Aw1i> < ga;a®

Replace convex cost function W(x) with separable surrogate function @(z; z™).

3.29

The clever (multiplicative) trick in the first equation is due to Alvaro De Pierro [199].

Note that the bracketed terms sum over j to unity.

| believe that this is the shortest and simplest possible derivation of the ML-EM algorithm, out of

five distinct derivations | have seen.

This derivation is complete only for the case r; = 0. It is easily generalized to r; # 0.

3.29
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“ML-EM Algorithm” M-step

E-step gave separable surrogate function:

o 2 (@™ (%
Wz z") = Zl(ﬁ xj; '), where @j(xj;z ™) :21 ) hi Wyi .
= j

M-step separates:

(1) — argmi Al x("+1 = argming; (x;; =™ i=1,....n
T angﬂrxp(mim )é angzélp]( ]1m )7 J il s Hip

Minimizing:

aa @ (xj;x Zauhl( XI/X ) Zlau{ _|J/X:|

Solving (in case rj = 0):

X [218” s } (Zaﬂ> i=1,...,n

e Derived without any statistical considerations, unlike classical EM formulation.
e Uses only convexity and algebra.

e Guaranteed monotonic: surrogate function @ satisfies the 3 required properties.
e M-step trivial due to separable surrog.saote.

=0.

X :X(J n+1)

When r; =0, (1) 2 Shi(1) = 1—yi/I.
Case where r; # 0 can also be handled with more algebra. Just replace final [Az(™]; with )7?") =
[A:l:(n)]i +Tri.

To be rigorous, we should check that the Karush-Kuhn-Tucker condition holds for our minimizer of
@ (-; ™). It does, provided z™ > 0.

| prefer this derivation over the statistical EM derivation, even though we are doing statistical image
reconstruction. Statistics greatly affect the design of W, but minimizing W is really just a numerical
problem, and statistics need not have any role in that.

3.30
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ML-EM is Scaled Gradient Descent Consideration: Separable vs Nonseparable

Separable Nonseparable

x
|

(+1) _ X{n)
I

W, e, (Y < 1 !
= i =
) R0 R0
_ | X 0 Wy L @
= X' = =— | =¥ (=), i=1....n
! (2?"16141) 0| P 9 1
2D — LM +D($(”))|Dlp(w(n)) _22 - 2 _22 - )
X1 X1

This particular diagonal scaling matrix remarkably
e ensures monotonicity,

o Contour plots: loci of equal function values.
e ensures nonnegativity.

Uncoupled vs coupled minimization.

3.31 3.32

To find the minimizer of a separable function, one can minimize separately with respect to each
argument. To find the minimizer of a nonseparable function, one must consider the variables
together. In this sense the minimization problem “couples” together the unknown parameters.

- 331 - 3.32
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Separable Surrogate Functions (Easy M-step)
The preceding EM derivation structure applies to any cost function of the form
Ng
W(z) = hi([Ax])).
Azl
cf ISRA (for nonnegative LS), “convex algorithm” for transmission reconstruction

Derivation yields a separable surrogate function

Np
W(@) < o), where glaia) = 5 0,0;2")
=

M-step separates into 1D minimization problems (fully parallelizable):

(n+1) _ ; < () (n+1) _ L) .
z _argglor‘(p(m,w ) =X argglglp,(x,,m ), i=1...,n

Why do EM / ISRA / convex-algorithm / etc. converge so slowly?

3.33

Unfortunately, choosing additively separable surrogate functions generally leads to very high cur-
vature surrogates, which gives very slow convergence rates. EM is the classic example.

The classic EM algorithm is simple to implement precisely because it uses separable surrogate
functions.

The derivation of the “convex algorithm” for the Poisson transmission problem [209] and the con-
vergence proof of the ISRA algorithm [199] use a very similar derivation.

Clarify: the self-similar surrogate function is easy to minimize because it is separable. So even
though L and Q are composed of the same ray-log likelihood functions, the latter is easier to
minimize because it is separable.

3.33
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Separable vs Nonseparable

Y W

Separable Nonseparable

Separable surrogates (e.g., EM) have high curvature .. slow convergence.
Nonseparable surrogates can have lower curvature .. faster convergence.

Harder to minimize? Use paraboloids (quadratic surrogates).

3.34

3.34
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High Curvature of EM Surrogate

1.8f

1.6f

(1) and Q(1;1")

0.6}

0.4}

0.2r

141

1.2r

0.8}

— Log-Likelihood
- - - EM Surrogates

3.35

Sublinear convergence rate of EM shown in [210].

(© J. Fessler, June 25, 2002
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1D Parabola Surrogate Function
Find parabola qi(”)(l) of the form:
: 1
A" (1) = h(e™) + ()1 = 67) +75(0 — 677, where 7 2[4,
Satisfies tangent condition. Choose curvature to ensure “lies above” condition:

2 min{cz 0. q"(M)>h(), VI> o},

Surrogate Functions for Emission Poisson

12l — Negative log-likelihood
- - Parabola surrogate function
- - EM surrogate function ’
10 ’
1 ,/
s 1
@
4]
=
g6
<
]
2 4
2
B
S 2

Lower
A |
s | — curvature!

3.36
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Paraboloidal Surrogate Example: PSCD for PET Transmission Scans

Combining 1D parabola surrogates yields paraboloidal surrogate:
FEP PL-OSTR-16 PL-PSCD

ng g
_ ! ()N (n)
w(m)*i;h'([Aw]i) < Gz )*;Qi ([A=]) 4 iterations 10 iterations
Rewriting: @& +z™;2™) = W(z™) +B8W(zM)s + %J’A’diag{ci(m } Aé
Advantages

e Surrogate @(x; ") is quadratic, unlike Poisson log-likelihood
= easier to minimize

e Not separable (unlike EM surrogate)

e Not self-similar (unlike EM surrogate)

e Small curvatures = fast convergence

e Instrinsically monotone global convergence

e Fairly simple to derive / implement

Quadratic minimization * square-pixel basis
e Coordinate descent * strip-integral system model
+ fast converging e shifted-Poisson statistical model
+ Nonnegativity easy e edge-preserving convex regularization (Huber)
- precomputed column-stored system matrix : :Lc;r;?i%%ztlzilrt_gl(e:OSrLStr%IPtt constraint
* Gradient-based quadratic minimization methods e paraboloidal surroggte coordinate descent (PSCD) algorithm
- Nonnegativity inconvenient . 238

Instead of coordinate descent, one could also apply nonnegativity-constrained conjugate gradient.

PSCD recommended for 2D emission Poisson likelihood when system matrix precomputed and
stored by columns.

3.37 3.38
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Separable Paraboloidal Surrogate

To derive a parallelizable algorithm apply another De Pierro trick:
Np -
aj ) (n)} 0 ™
Ax| =Y Ti; {— Xj—X)+4", 67 = [Ax'"];.
L JZL ] T[ij( ] j ) i i [ }I

Provided 15; > 0 and Z?ilﬂij =1, since parabola q; is convex:
) <. o a NG
Axz),) Hix—xMy+eM | < e <—' xj — X" +£-”>
([ <an |: ) = Zlqul Tﬁj( | ] ) i
o] TE_ My, 0
L exzM) = Zlq ([Az);) < (p(a: z(" Zzln'”q, ( Xj—=X;")+4 )

Separable Paraboloidal Surrogate:

@(m;w(”))inzpl%(xj;w(”)), o x5z )—ELEJQ. ( 7 'n)HZi(n))

Parallelizable M-step (cf gradient descent!):

X" = argming; (x;;2™) = [x\" — 10 — (M) d = S a”
1T A X ) = a° qmax © ’ i n-”
+

Natural choice is T5; = |&;|/|ali, |ai = j?é‘ai”

De Pierro’s “additive trick” in [211].

For the natural choice 5; = |a;|/|ali, we have

< ™
n
SLIEE
P

3.39
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Example: Poisson ML Transmission Problem

Transmission negative log-likelihood (for ith ray):
hi(l) = (bie”' + 1) —yilog(bie™" +ri) .
Optimal (smallest) parabola surrogate curvature (Erdogan, T-Ml, Sep. 1999):
,N(0) —h(l) +h()

e h), =4 5P o0
[h(D] " I =0.
Separable Paraboloidal Surrogate Algorithm
Precompute [af = 3°1a;,  i=1,...,ng
(" = [Az™];,  (forward projection)
v = be " +r (predicted means)
hi(n> = 1*Yi/yin) (slopes)
cd” = c(™,h) (curvatures)
RPN ()
XD iiw(m(n)) X _ _Sihah 7 j=1...,n
j 1T gy j g A (a0 P
jp n Yidiaglalic | |
Monotonically decreases cost function each iteration. No logarithm!
3.40

Note that this algorithm never takes the logarithm of the transmission data, since it is based
directly on a statistical model for the raw measurements. This is a significant part of the reason
why it works well for low-count measurements.

Optimal parabola surrogate curvature for transmission problem [207]. Emission problem [212].

A Matlab m-file for this algorithm is available from

http://www.eecs.umich.edu/ ~fessler /code
as transmission/tml _sps.m
Related m-files also of interest include transmission/tpl _osps.m

3.40
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The MAP-EM M-step “Problem” De Pierro’s MAP-EM Algorithm

Add a penalty function to our surrogate for the negative log-likelihood: Apply separable paraboloidal surrogates to penalty function:
— _ "p
W(x) = np'—(w) +BR(z) R(z) < Rspdz;z") = ZRJ(Xj;w(n>)
o(z;z™) = Z¢j (x;;2") +BR(z) 1=
J:

"p p
Overall separable surrogate: @(z;z") = Z¢;(x;;w<”>)+BZRj(xj;m<”>)
= =

"p
M-step: =™ = argming(z; ™) = argminy @;(x;;z™) +BR(z) = ?
zZU“p( ) 20 JZL i ) (@) The M-step becomes fully parallelizable:

For nonseparable penalty functions, the M-step is coupled .. difficult. xg”“) = argming; (x;; ) — BRj(x;; ™), i=1...,n,
Xj=>0
Suboptimal solutions Consider quadratic penalty R(z) = 3, W([Cz]x), where Y(t) =t?/2.
e Generalized EM (GEM) algorithm (coordinate descent on @) If yxj > 0 and z?ilykj = 1then
Monotonic, but inherits slow convergence of EM. no )
e One-step late (OSL) algorithm (use outdated gradients) (Green, T-Ml, 1990) [Cxl= Zlykj [%(xj 7X§n))+ [Cm(")}k} .
= Ykj
3 (ol e a : i 28 : 2 ]
ac®(@z®) = £ (x;; 2) + BLR(x) = F-0i(x; ") + B R™) Since Y is convex:
Nonmonotonic. Known to diverge, depending on 3. p Cj " ®
Temptingly simple, but avoid! Y([Cxl) = Y Zlej {W(Xi -X)+[Cz ]k}
Contemporary solution o 1= .
e Use separable surrogate for penalty function too (De Pierro, T-MI, Dec. 1995) < ykw(%(x. —x(-”)) + [Cm(”)]k)
Ensures monotonicity. Obviates all reasons for using OSL! - ]Zl ! v3k£{2 4
OSL [200,201] Often we just choose
GEM [213-215] . 0
Yij = number of nonzero ¢;'s in kth row of C* Cj 7
De Pierro’s separable penalty derived in [211]. , otherwise,
which satisfies the two conditions yy; > 0 and z?ilykj =1l eg
-1 10 00 11000
0-11 00 013100
C=| 0 00-11|, {u}=|{000%1%].
-1 00 10 10040
0-10 01 031003
Alternatively we use the choice
Yi=<m 7 1%l
J’pzl ij/‘

which happens to yield the same result when the elements of C are just +1 as in the above
example. For non-unity c;’s, the latter ratio seems to be preferable in terms of convergence rate.

341 3.42
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De Pierro’s Algorithm Continued
So R(z) < R(z;z™) 2 %4 Ri(x;;z™) where
Rk £ 5 w05 )+ 02
M-step: Minimizing @;(x;;z™) + BR; (x;; =) yields the iteration:
(D) _ X" st a/5"
B+ \/BJZJF (Xﬁm Xi”ilaijyi/)_/fn)) (Bchﬁj/VkJ)

i
Al|l Cﬁj o) .
where B; =2 |:izlaij +BZ <ck,-[Cm(“)}kyzjj , i=1,...,np

and y" = [Az™]; +r;.

Advantages: Intrinsically monotone, nonnegativity, fully parallelizable.
Requires only a couple % more computation per iteration than ML-EM

Disadvantages: Slow convergence (like EM) due to separable surrogate

3.43

As a concrete example, consider R(z) = 5 °; 3 5 ien, 304 — %02 with N; corresponding to the [N
nearest neighbors to the jth pixel. For this penalty with the choice yi; = |cj|/cc where ¢ =
z?il |ekj| = IN;j|, the separable surrogate is [211]:

11 2
Riiz™) = § S (N} (x = x™) + X7 —x(¥) "
IASAY kelez‘NJ‘< ] ] ] j )

Matlab m-file available from http://www.eecs.umich.edu/ ~fessler /code
as emission/eql  _emdp.m

Caution: use stable quadratic roots [168] (slightly more complicated than above).

One can make an ordered-subsets version of De Pierro’s MAP-EM easily. Such an approach is
preferable to the OSL version of OS-EM mentioned by Hudson and Larkin [15].

One can do multiple M-step subiterations for minimal additional computation with some improve-
ment in convergence rate.

For a tomography problem with a 64 x 64 image, 64 x 80 sinogram, and strip-area system matrix,
De Pierro’s MAP-EM algorithm requires 4% more flops per iteration than classic ML-EM.

3.43
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Ordered Subsets Algorithms
aka block iterative or incremental gradient algorithms

The gradient appears in essentially every algorithm:

%W@:Z%WM%)

This is a backprojection of a sinogram of the derivatives {hi([Az];)}.

Intuition: with half the angular sampling, this backprojection would be fairly similar

LS ah()~ = Y ah()
ndi; - |S‘iEZ m
where S is a subset of the rays.

To “OS-ize” an algorithm, replace all backprojections with partial sums.

3.44

The dramatic improvements in apparent “convergence rate” of OSEM over classic ML-EM are due
largely to the fact that the latter converges so slowly.

Modern, faster converging algorithms may benefit much less from OS modifications.

Richard Larkin (personal communication) has described the development of OSEM as something
of a fortuitous programming “accident.” In the course of developing software to implement the
E-ML-EM algorithm, he first implemented a version that updated the image immediately after the
reprojection of each view. Later he implemented the classical E-ML-EM algorithm but found it
to give worse images (in the early iterations). (Due of course to its slow convergence.) The
“immediate update” version turns out to be OSEM with 1 view per subset.

Several publications hinted at the use of subsets of projection views for acceleration, e.g., [216—
219], and D. Politte’s 1983 dissertation. But it was the paper by Larking and Hudson that incited
widespread use of OSEM [15].

In the general optimization literature, such algorithms are called incremental gradient methods
[220-224].

3.44
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Geometric View of Ordered Subsets Incremental Gradients (WLS, 2 Subsets)

0 fWLS(X) 10 200 f (X) 10 2[00 ded(X) 10

even

Vi, (xk

X -40 -40 -40

=i

gk -
’ ::/’ . 0 x° 1
argmax f,(X)
Two subset case: W(x) = fi(x) + fo(x) (e.9., odd and even projection views).
For z(" far from z*, even partial gradients should point roughly towards z*.
0

difference 5 difference

For ™ near «*, however, IW(x) ~ 0, so Mfy(z) ~ —0f,(z) = cycles!
Issues. Subset balance: DWW (x) ~ MOf(x). Choice of ordering. (full - subset)

3.46

3.45

Here the initial image «(© is far from the solution so the incremental gradients, i.e., the gradients
computed from just the even or odd angles, agree well with the full gradient.

3.45 3.46
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Of

wis®)

10

Subset Imbalance

2 fo_go(x) 10 20 f90—180(x)

-40

difference HS difference

N

1§ © 1

2-
-5

(full = subset)

3.47

-40

&)

Here the first subset was angles 0-90°, and the second subset was angles 90-180°, roughly speak-
ing. Now the incremental gradients do not agree as well with the full gradient. (Of course the sum
of the two incremental gradients would still equal the full gradient.) This imbalance is expected to
slow “convergence.”

(© J. Fessler, June 25, 2002
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Problems with OS-EM

e Non-monotone
e Does not converge (may cycle)

e Byrne’s RBBI approach only converges for consistent (noiseless) data

e - unpredictable
e What resolution after n iterations?

Object-dependent, spatially nonuniform

e What variance after n iterations?

e ROl variance? (e.g., for Huesman’s WLS kinetics)

3.48

Soares and Glick et al. [30] [29] have extended the work of Barrett et al. [22] to the OSEM case.

Wang et al. have extended it to the penalized case, for the OSL algorithm [28].

(© J. Fessler, June 25, 2002
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OSEM vs Penalized Likelihood

e 64 x 62image

e 66x 60 sinogram

e 10° counts

e 15% randoms/scatter

e uniform attenuation

e contrast in cold region

¢ within-region ¢ opposite side

3.49
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Contrast-Noise Results

0.7 T T
—©— OSEM 1 subset
o6f| - OSEM 4 subset
x OSEM 16 subset
osk| * PL-PSCA
X
X
X
0.4}F (64 angles) X
5 ¥
= :
0.3f %
ox.
0.2F .
o1r Lo "
Uniform image
0 0.2 0:4 0:6 0:8
Contrast

3.50
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15

=

Relative Activity

o
o

Horizontal Profile

—— OSEM 4 subsets, 5 iterations
—6— PL-PSCA 10 iterations

3.51
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An Open Problem

Still no algorithm with all of the following properties:
e Nonnegativity easy

e Fast converging

e Intrinsically monotone global convergence

e Accepts any type of system matrix

e Parallelizable

Relaxed block-iterative methods

2 FD/K) — (HKK) _ g D (M) Dy (MK k=0,...,K-1
Relaxation of step sizes:
ap—0asn— oo, ap = o, a2 < oo
o ART

¢ RAMLA, BSREM (De Pierro, T-Ml, 1997, 2001)
e Ahn and Fessler, NSS/MIC 2001

Proper relaxation can induce convergence, but still lacks monotonicity.
Choice of relaxation schedule requires experimentation.
3.52

Until such an algorithm is developed, OSEM will probably remain very popular...
RAMLA [193] (for ML only)
Kudo [225] does not give convergence proof in English...

BSREM [226] convergence proof requires some “a posteriori” assumptions

- 352
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Relaxed OS-SPS OSTR

x 10

1475 FBP PL-OSTR-1B PL-PSCD
va7- o0 00 0e O] 4 iterations 10 iterations
o]
o O
o o
1.465 o q
O A A AL A A A A - R - SRR SRRy S
& & B R
g 146 x x x B
g 2 x
B 14551 x 1
g :
< : x
E B
= 1.45F q
°
Q
N X
S 1445 |
[
o
raal 2 Original 05 SPs J Ordered subsets version of separable paraboloidal surrogates
O Relaxed 0S-SPS for PET transmission problem with nonquadratic convex regularization
1.4351 7 . .
Matlab m-file http://www.eecs.umich.edu/ ~fessler
L4zl s ‘ ‘ s ‘ s s ‘ /code/transmission/tpl _osps.m
2 4 6 8 10 12 14 16 18 20
Iteration
3.53 3.54
[227] Ordered subsets transmission [228].
3.53 3.54
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Precomputed curvatures for OS-SPS

Separable Paraboloidal Surrogate (SPS) Algorithm
1) _ [ _ 3 agh([A= "))

X; = I J = 17---7np
] ]
Z?ilaajlalici(") N

Ordered-subsets abandons monotonicity, so why use optimal curvatures cf”)?
Precomputed curvature:

a=h(i), fi=argmirhi()

Precomputed denominator (saves one backprojection each iteration!):

g
dj= aij\a\ici, j=1,...,np.
2

OS-SPS algorithm with M subsets:

(1.
(n+1) M) 2iesm &j hi([Az™];) .
Xp =X - , i=1,...,n
! { ) di/M . P

3.55

Precomputed parabola surrogate curvature for transmission problem and ordered subsets [207,

228].
For emission problem, ¢ = 1/y;.

For transmission problem, ¢ ~ y;.

3.55

(© J. Fessler, June 25, 2002

Summary of Algorithms

e General-purpose optimization algorithms
e Optimization transfer for image reconstruction algorithms
e Separable surrogates =- high curvatures = slow convergence
e Ordered subsets accelerate initial convergence
require relaxation for true convergence
e Principles apply to emission and transmission reconstruction
o Still work to be done...

3.56

3.56
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Part 4. Performance Characteristics Spatial Resolution Properties

e Spatial resolution properties Choosing [ can be painful, 5o ...

* Noise properties For true minimization methods:
e Detection properties & =argmin¥(x)
the local impulse response is approximately (Fessler and Rogers, T-Ml, Sep. 1996):

| () im ELE +6eg-} —E[2[a]

3—0
Depends only on chosen cost function and statistical model.
Independent of optimization algorithm.

~ [_20w] 1M1y i—
~ [-0°%] 0 LPaxjy(:n).

e Enables prediction of resolution properties
(provided W is minimized)

e Useful for designing regularization penalty functions
with desired resolution properties

li(z) ~ [AW A+BR|"AW Az"™e

e Helps choose 3 for desired spatial resolution

4.1 4.2

[25,143, 229]

A commonly cited disadvantage of regularized methods is the need to select the regularization
parameter 3. One must also select the cutoff frequency for FBP, but at least that value is intuitive
and works the same (resolution-wise) for all patients. Not so for stopping rules. The analysis in
[25,143,229] brings some of the consistency of FBP-like resolution selection to statistical methods.

4.1 4.2
(© J. Fessler, June 25, 2002 p4prop (© J. Fessler, June 25, 2002 p4prop



Modified Penalty Example, PET Modified Penalty Example, SPECT - Noiseless

Conventional PWLS

Target filtered object

a) b) c)

f

(

( )

a) filtered backprojection

b) Penalized unweighted least-squares

¢) PWLS with conventional regularization
d) PWLS with certainty-based penalty [25]
e) PWLS with modified penalty [143]

Truncated EM Post-filtered EM Modified Regularization
43 4.4
Figure from [143]. Figure from [144].
43 4.4

(© J. Fessler, June 25, 2002 p4prop (© J. Fessler, June 25, 2002 p4prop



Modified Penalty Example, SPECT - Noisy

Conventional PWLS

Target filtered object

Truncated EM Post-filtered EM Modified Regularization

45

Figure from [144].

These are preliminary results, but they cast doubt on the claim sometimes made that post-filtered
EM (or OSEM) is equivalent to truly regularized image reconstruction.

45

© J. Fessler, June 25, 2002 p4prop

Reconstruction Noise Properties

For unconstrained (converged) minimization methods, the estimator is implicit:
& =z(y) =argmin¥(z,y).
x
What is Cov{Z}? New simpler derivation.
Denote the column gradient by g(z,y) 2 O,¥(x,y).

Ignoring constraints, the gradient is zero at the minimizer: g(z(y),y) = 0.
First-order Taylor series expansion:

9(2.y) ~ g(x"™y) +Eug(z" y) (& — =)
—_ g(mtrue’ y) 4 Dilp(m"ue,y)(ﬁ _ ztrue).

Equating to zero:

~ -1

P mtrue_ [Diw(wtrue7y)] mzw(wtrue’y).
If the Hessian 0¥ is weakly dependent on y, then

Cov{@) ~ [2W(@™,g)] " Cov{,W(@"™,y)} [(2W(™,5)] .
If we further linearize w.r.t. the data: g(x,y) ~ 9(z,y) + E,9(x,y)(y — y), then
Cov{#} ~ [2W] (1,8, W) Cov{y} (I,8,Ww) [M2w] .

4.6

The latter approximation was derived in [24].

4.6
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Covariance Continued

Covariance approximation:

Cov{@} ~ [2W (2" y)]  Cov{ M, W(x" y)} [(2W("™ )]

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm.

e Enables prediction of noise properties

e Can make variance images

e Useful for computing ROI variance (e.g., for weighted kinetic fitting)

e Good variance prediction for quadratic regularization in nonzero regions
e Inaccurate for nonquadratic penalties, or in nearly-zero regions

4.7

Qi has developed an approximation that may help with the nonnegativity constraint [230].

4.7
(© J. Fessler, June 25, 2002

paprop

Qi and Huesman’s Detection Analysis
SNR of MAP reconstruction > SNR of FBP reconstruction (T-MI, Aug. 2001)
quadratic regularization
SKE/BKE task

prewhitened observer
non-prewhitened observer

4.8

[31].

4.8
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Part 5. Miscellaneous Topics PET Attenuation Correction (J. Nuyts)

(Pet peeves and more-or-less recent favorites)

Short transmission scan

e Short transmission scans

e 3D PET options

e OSEM of transmission data (ugh!)
e Precorrected PET data

e Transmission scan problems
e List-mode EM
e List of other topics | wish | had time to cover...

5.1 5.2

5.1 52
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Iterative reconstruction for 3D PET OSEM of Transmission Data?

e Fully 3D iterative reconstruction Bai and Kinahan et al. “Post-injection single photon transmission tomography
e Rebinning / 2.5D iterative reconstruction with ordered-subset algorithms for wholebody PET imaging”
e Rebinning / 2D iterative reconstruction e 3D penalty better than 2D penalty

o PWLS e OSTR with 3D penalty better than FBP and OSEM

o OSEM with attenuation weighting e standard deviation from a single realization to estimate noise can be misleading
e 3D FBP
e Rebinning / FBP Using OSEM for transmission data requires taking logarithm,

whereas OSTR does not.

5.3 5.4

[100,231,232] [233]

53 5.4
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Precorrected PET data Transmission Scan Challenges

C. Michel examined shifted-Poisson model, “weighted OSEM” of various flavors. e Overlapping-beam transmission scans
_ o _ e Polyenergetic X-ray CT scans
concluded attenuation weighting matters especially e Sourceless attenuation correction

All can be tackled with optimization transfer methods.

5.5 5.6

[234,235] Overlapping beams [236].

Polyenergetic X-ray CT [34, 237].

55 5.6
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List-mode EM Misc

e 4D regularization (reconstruction of dynamic image sequences)

XY = xS a a e “Sourceless” attenuation-map estimation
J zl J fn ]
e Post-injection transmission/emission reconstruction

)
- Z 7' e p-value priors for transmission reconstruction

zi:la” i1%i70 yi e Local errors in 1 propagate into emission image (PET and SPECT)
e Useful when 38,y < 574,
e Attenuation and scatter non- trivial
o Computing a; on-the- fIy
o Computing sensitivity 3¢ 1&;j still painful
e List-mode ordered-subsets is naturally balanced

5.7 5.8

Dynamic reconstruction

e nonlinear models [47,48,50,51, 54,63, 68,238-246]
o linear models [49,52,53,55,57,247-251]

e KL-based approaches [56,252-257]

e Motion/gating [258]

Sourceless attenuation [259-265]

5.7 5.8
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Summary
o Predictability of resolution / noise and controlling spatial resolution

argues for regularized cost function
e todo: Still work to be done...

Off the record

- P Y
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5.9

5.9

(© J. Fessler, June 25, 2002

p5misc

References

[10]

[11]

[12]
[13]

[14]

[15]

[16]
171
[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

132]

[33]

[34]

S. Webb. From the watching of shadows: the origins of radiological tomography. A. Hilger, Bristol, 1990.

G. Hounsfield. A method of apparatus for examination of a body by radiation such as x-ray or gamma radiation, 1972. US Patent 1283915. British
patent 1283915, London. Issued to EMI Ltd. Filed Aug. 1968. See [1, Ch. 5].

R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (ART) for the three-dimensional electron microscopy and X-ray
photography. J. Theor. Biol., 29:471-81, 1970.

R. Gordon and G. T. Herman. Reconstruction of pictures from their projections. Comm. ACM, 14:759-68, 1971.

G. T. Herman, A. Lent, and S. W. Rowland. ART: mathematics and applications (a report on the mathematical foundations and on the applicability
to real data of the algebraic reconstruction techniques). J. Theor. Biol., 42:1-32, 1973.

R. Gordon. A tutorial on ART (algebraic reconstruction techniques). /EEE Tr. Nuc. Sci., 21:78-93, 1974.
R. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 62(1):55-9, January 1972.
L. Lucy. An iterative technique for the rectification of observed distributions. The Astronomical J., 79(6):745-54, June 1974.

A. J. Rockmore and A. Macovski. A maximum likelihood approach to emission image reconstruction from projections. IEEE Tr. Nuc. Sci., 23:1428—
32, 1976.

A and A. ki. A
24(3):1929-35, June 1977.

likelihood approach to transmission image reconstruction from projections. /EEE Tr. Nuc. Sci.,

A. P. Dempster, N. M. Laird, and D. B. Rubin. i likelihood from i
1977.

data via the EM algorithm. J. Royal Stat. Soc. Ser. B, 39(1):1-38,

L. A. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomography. IEEE Tr. Med. Im., 1(2):113-22, October 1982.

K. Lange and R. Carson. EM reconstruction algorithms for emission and transmission tomography. J. Comp. Assisted Tomo., 8(2):306-16, April
1984.

S. Geman and D. E. McClure. Bayesian image analysis: an application to single photon emission tomography. In Proc. of Stat. Comp. Sect. of
Amer. Stat. Assoc., pages 12-8, 1985.

H. M. Hudson and R. S. Larkin. Accelerated image reconstruction using ordered subsets of projection data. /EEE Tr. Med. Im., 13(4):601-9,
December 1994,

M. Goitein. Three-dimensional density reconstruction from a series of two-dimensional projections. Nucl. Instr. Meth., 101(15):509-18, June 1972.
T. F. Budinger and G. T. Gullberg. Three dimensional reconstruction in nuclear medicine emission imaging. /EEE Tr. Nuc. Sci., 21(3):2-20, 1974.
R. H. Huesman, G. T. Gullberg, W. L. Greenberg, and T. F. Budinger. RECLBL library users manual. Lawrence Berkeley Laboratory, Berkeley, CA,

1977. B.1

R. H. Huesman. A new fast algorithm for the evaluation of regions of interest and uncertainty in Phys. Med. Biol.,
29(5):543-52, 1984.

D. W. Wilson and B. M. W. Tsui. Noise properties of filtered-backprojection and ML-EM reconstructed emission tomographic images. /IEEE Tr. Nuc.
Sci., 40(4):1198-1203, August 1993.

D. W. Wilson and B. M. W. Tsui. Spatial resolution properties of FB and ML-EM reconstruction methods. In Proc. IEEE Nuc. Sci. Symp. Med. Im.
Conf., volume 2, pages 1189-1193, 1993.

H. H. Barrett, D. W. Wilson, and B. M. W. Tsui. Noise properties of the EM algorithm: I. Theory. Phys. Med. Biol., 39(5):833-46, May 1994.

D. W. Wilson, B. M. W. Tsui, and H. H. Barrett. Noise properties of the EM algorithm: Il. Monte Carlo simulations. Phys. Med. Biol., 39(5):847-72,
May 1994.

J. A. Fessler. Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): Applications to tomography. IEEE
Tr. Im. Proc., 5(3):493-506, March 1996.

J. A. Fessler and W. L. Rogers. Spatial resolution properties of penalized-likelihood image reconstruction methods: Space-invariant tomographs.
IEEE Tr. Im. Proc., 5(9):1346-58, September 1996.

W. Wang and G. Gindi. Noise analysis of regularized EM SPECT reconstruction. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 3, pages
1933-7, 1996.

C. K. Abbey, E. Clarkson, H. H. Barrett, S. P. Mueller, and F. J. Rybicki. Approximate distributions for maximum likelihood and maximum a posteriori
estimates under a Gaussian noise model. In J. Duncan and G. Gindi, editors, /nformation Processing in Medical Im., pages 167-75. Springer-Verlag,
Berlin, 1997.

W. Wang and G. Gindi. Noise analysis of MAP-EM algorithms for emission tomography. Phys. Med. Biol., 42(11):2215-32, November 1997.

S. J. Glick and E. J. Soares. Noise characteristics of SPECT iterative reconstruction with a mis-matched projector-backprojector pair. IEEE Tr. Nuc.
Sci, 45(4):2183-8, August 1998.

E. J. Soares, C. L. Byrne, T-S. Pan, S. J. Glick, and M. A. King. Modeling the population covariance matrices of block-iterative expectation-
maximization reconstructed images. In Proc. SPIE 3034, Med. Im. 1997: Im. Proc., volume 1, pages 415-25, 1997.

J. Qiand R. H. Huesman. Theoretical study of lesion detectability of MAP reconstruction using computer observers. IEEE Tr. Med. Im., 20(8):815-22,
August 2001.

J. A. Fessler, |. Elbakri, P. Sukovic, and N. H. Clinthorne. Maximum-likelihood dual 0)
Medical Imaging 2002: Image Proc., pages 38-49, 2002.

lic image reconstruction. In Proc. SPIE 4684,

Bruno De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens. An iterative maximum-likelihood polychromatic algorithm for CT. IEEE Tr. Med.
Im., 20(10):999-1008, October 2001.

I. A. Elbakri and J. A. Fessler. Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE Tr. Med. Im., 21(2):89-99,

February 2002.
B.2



99
dw 01 panwigns ‘100z ‘sweibours Aydeibowio) paindwiod Aei-x Buiepoiy anjod 'O ' pue ‘ouiubejuop ¢ 1 ‘Bul

2002 “SAYd "pPa 200z Buibew [eaipay ‘z89t JidS 0.4 u] ‘Aydeibowo) payndwod Aei-x ur sansnels reubis ‘m Y ‘g

S66T Ateniged '€8-2.z:(2)2T
'V Wy 208 1dO T "sebew @D U 8siou NOPeal 1o} uoesuAdWoD "SNYM T Y PUE ‘[esied N ‘UBWISIUET '] Y ‘WONSIOH M "D 19pAus T1°'a

'£66T ABW '€2—¥TOT:(S)0T
'V ‘wy 90S 1do T "eiswed ad1nep-ajdnod-abireyd e yum palinboe ejep wouy A19n0da1 abew| BNy 1 Y pue ‘pnowiweH ‘W Y 18pAus 1 'a

'866T 2UNC ‘6-€80T:(€)SY “10S 9NN L
333/ Bulspow [eansie)s areinode Yim erep | 3d dE JO UONONASU0Ial ISe "PUSBSUMOL ‘M ' PUE ‘[BYDI "D ‘asiyad ‘W ‘ueyeury ‘3 d ‘1ewod 0

V66T

aunr ‘00£-062:(2)€T “wy ‘paw L 333/ AydeiBowo) uol 9 uonisod 1o} uononnsuodal abewr sarenbs-1ses| payblam pazieusd “I9|ssed 'V T

'666T 1snBny ‘v/-599:(8)8T “w/
‘PO UL FFF| 'SUBIS UoISSIWSUeL) | 34 Pa)Ia1I0da1d-SWOpUR] 10} SISA[eUR 8SI0U PUB SIOJeWIISe POOYI|e)I|-pazZI[eudd ‘I8|SSed 'V ‘T pue ZnAeA ‘W

'866T ‘828-69€:(V)Z ‘eUY ‘W] ‘PaN "SUeIS | 3d Pe1oali0daid-SWOpUE 1o} SPOYIBW LONINASU0IaI abew [eansnels 19|ssad 'V T pue ZnaeA "W

*/66T ‘uiag ‘Bepiap 1abunds "£0z-06T sabed ‘aousios saindwo) ul SajoN 81n1237 J0 OEZT SWNJOA ‘W] [BIIPSN Ul
Buissao0.d uolew.ou] ‘SI0Npa ‘Ipuld ‘9 pue ueaunq °f Ul "SuUeds | 3d Paloaliodald-SWopuel J0j S|apoL [BINSNEIS MBN I3|SSa 'Y T PUB ZNABA ‘W

"966T ‘T2~L90T sabed ‘Z awnjon ‘yuod “wj pay “dwAs
19S "ONN F3J3J| "90id U] 'SUBDS |3d Paldaii0daid-SWopUe] WOl Uononisuodal olydelfowo) Joj suonounj aAndslqo 49Issed 'V T pue ZnAea ‘W

"100Z Arenigad ‘v9-8S:(T)8v ‘195 9NN L 3331
‘uonosl8p Pedlo) paseq-uonnjoAuod Buisn uoneinwis 1J3dS Ol4eD SIUOIA JO UONEIBedY "uewnaag ' 4 pue ‘uadlis d 'L '3 ‘Buor op W V¥ M H

966T 1snbny ‘Z6-6£¥T:(8)TY “JoIg ‘Pa sAyd “ybuaj uiq uondaloid anndaya Juspuadap uonisod e Buisn ejep 1 D34S Weaq ue} Jo UonoNIISU0dal
10} uonoaloidxorq palall JO UoHeIUSWS|dLI USALIP [9XId YEZOZSEr [ “H PUE ‘UBWSI0D ' "y 498D T "M HOIWIODIN ‘M T ‘BueMm H ‘uosuyor 13

‘¥66T Isnbny ‘S99T
10} SPOYIBaL JO L [eaLBWNN "MagaH ' 'L pue ‘ledos 'S 'S ‘Buenyz ‘m

—099T:(¥)TY /oS 9NN L 333/ "suonosfoid

‘7661 Jaquiardas
,mlcmmxm:N “PaW "oNN ‘[ N3 "UONN|OAUOD pajelnaiqge pue mc_::_n uonoafoid d|qenen m:_m: uondonnsuodal abew! |Aesa) UN)DEE_ “ulplwyods d

'€66T 1snbny
_mNHHI?hHH“Qva “198 "ONN i 33| "Siou8 m::uc._mm pue sso| uonn|osal JIayl JO Swid) Ul spoyiawt co_uowqo‘amh jo )U_‘:w ,mtm_‘_I ‘D'Spuensdd

*€66T 1840100 ‘6YS—L¥S:(1)Z “00id "Wy 4L 333/ "uonejodisiul Jeaul| yim uondsfoidsoeq Joy wiyioble 1sey v "a|BeA 3 'V pue Jsuiyes ‘g

‘£66T Jaquwaldas ‘655-555:(€)2T “wi ‘pa 1L F331 “smain uondafoid Buoure
diysuonejas ay) o uonez|NN pue swWayds Moy Buiyoress ay) jo uonesyipow :wiyoBble uondsloidioeq [eIUBWAIOU| “UNS "V T PUB 1eD 'V '9H T A

59 ‘66T 'L8S'6T "PON NN T N3

‘SJuawaja@ uonaaloid o) suonnquIuod [axid payyblam ynm uononnsuodas abewr aanela)| "uabapuauia4 "3 7 pue ‘mesog d ‘BoziaH "H ‘suowalz )

066T dun ‘21-202:(2)6
“wy ‘paw 1L 333/ -semawoab |ajesed loj swayds uondsloidyoeq 1se; mau e—uwiyuoble [eluswaidul 987 ‘A 'S pue ‘usyd ‘W "D ‘0Yyd ‘H ‘Z

'886T J9quia29Q ‘€9
—GGe:(¥)L “wy "pay 1L 333/ "suondaloid 1D reuoneindwiod oy K108y} payiun v :xurew [axid arenbs e yum spesfbiazul yyed aull pue dins '07°g DS

'986T ABW ‘S5E-0SE:(E)ET "SAUL PaN
‘AydeiBowoy paindwoa uoissiwe uojoyd ajbuis u uonaaloidal eyep Joj uonejodiaiul leuonnjoauod palybiam ealry “Bury N pue ‘00D 'S 1ebuimyds -y

‘G86T YU ‘552-252:(2)2T “SAlYd ‘pap Aeire 1D [euoisuawip-aaiy) e Joj yred [ealbojoipel 10exa ay) Jo uone|ndfed 1sed "uoppis 1Y

‘Z86T JaqWIanoN ‘9-z6T:()T “wi ‘pay 4L 333/ "sabewn jexid ybnouyr shes Bunoaloidal 1oy wiyiuobe panoidwi uy ‘ydasor ‘W d

T86T ISnBNY ‘Ly9e-TY9€E:(y)82 “10S 9NN UL 3331 AL ) ur 1 pue -40eq 158} 10} WyILoB|Y 'sidled ‘N L
‘p/6T duUNC ‘2/—2/:TZ “19S "ONN “IL 3FF| "UONINISUOIDI [UOISUSWIP-E SANI) Jo) Swipioble sjeindoe alol ‘wisyuaddo '3 g

‘2661 Joqwaldas 'TT-0TLT:(6)EE "PON NN T "UONONIISUOIB) POOYIISMI|-WNWIXEW 1SB "SII[BAM ‘M T PUe JB|IIN d 'L

‘1661 Joquindas ‘9ey-9zy:(€)0T “wi

‘PaW AL 3331 "siossad01d [9jfeed paroauu0d-ysaw Huisn sawn uonenduwios fe: Ul 1O3dS pooylaxi| wnwixew Is|iA 1 " pue AYLeDdN ‘M Y

1667 |udy ‘L2ZE-€22€:88 "I9S PRIV IEN "00id "S108S8201d
|olrered Ajpaissew uo Joud ssauybnos s,poos Bunelodioour AydesBowo) uoissiwa 1oy uononisuodal abew ueisakeg ‘wesAoy g pue J3JIIN ‘| ‘W

"G66T ‘05—-9vTT sabed ‘Z BWN|OA “JuoD ‘Wi ‘pa "dwAS “10S "onN 333/ 201
U] "swipuoBle UONINNSUOIBI SAIEIS) 10} SPOYISW Paskq-UoNelo) Jo uostiedwoD Iafeyds M " pue ‘Jausig "1y ‘Aejoreg ‘g v ‘eleg I ¥ A 3

'966T '8-v65T Sabed ‘g swnjon ‘Juoo
‘wy pay “dwAs 19S “onN 333/ 90id Ul “wiyioble IOVS 8yl eIA 13d ag AjInj ul uononisuodal pooyiax wnwixe "uibboo ‘v pue sebulo ‘W T

'§66T ISNBNY ‘L—£22T:(Y)ey "I9S onN UL 3331 “wyiloble W3 ay) Buisn
elep 13d muamm‘um«um:m‘_ 4O uondNNSUOIBI gE Y} 104 walshs v .coonm‘_ms_\s‘mnzmﬂ "3 "W pUe ‘ouney " 'Y ‘Uosie)d "3 Y ‘UBA ‘A ‘uosuyor Y ‘D

0667 Iudy '85.~1SGL:(2)L€ “10S "onN *IL 333/ “wyitoBle W3 8y ur uonenuape Buipnjour 1o} SpoLyaW Ised Ayea "y pue 1ageH € 'L

‘8861 '6-519:(T)SE
qussaidal sejod sreipawisiul pue Buisn 1 D3dS 40} I 1Sed "ybuis ‘W pue Ayea Y ‘UageH L

19S "onN 4L 333/ uouad Buiddols e pue uor

"L66T ‘DA "INN puE ‘pey Ul U029y dbew] ag Ajin< uo Bunaa iUl L66T ‘Pi09ay JuoD Ul *13doslu
10} UONINNSU03] dbew! Ueisakeg @ uonnjosal YBIH “reynbied “H ‘L pue ‘nouueolZIeyd 'y ALy Y °S NiBondwn ‘N ‘3 Ayeat W Yy 10 T

'0002 “001d 8bew :000Z Buibew [eaPSI :6/6€ FIdS 00.d Ul "Suonelien
Aysua1ul Jousul Yloows Yim S|apow ajqewojep Buisn elep 103dS 1UNOI-MO| WO SUOHONAISUda) Ay "YdIAoyaT 'V pue weybuiuund 's ‘o

[vot]
[eot]

[eot]

[tot]

[ooT]

[66]

[86]
[26]

[96]

[s6]

[v6l

[e6]

[z6]

[t6l

[os]
[68]

[8s]

[z8]

[98]

[s8]

[v8l
[es]
[es]
[t8]
[os]
[62]

[82]

(2]

[o2]

[s2]

[v2]
[ez]

[ez

17}

[o2]

v'a

'266T 'G8T—L9:b 'SUIOIPBIN Ul 80UBUOSBY dIBUBBI JO SMaINSY
‘BuiBew Y Ul SPOYISW UONINASUOIAI PAUIRNSUOD "YIWS " "IN PUE ‘IngiaineT "D d ‘aoeeH "W '3 ‘a|qeIsuod L 'Y ‘epeog '3 H ‘Buer d 'z

"YB6T BuUNr ‘9z-LTZ:(2)ET "W PaN
41 333/ " 103 buisn saipnis deIpIed JlWeuAp 10j UOBWINSS PAse]-[9PO "0I8H O "V pue I8|ssad "y °C ‘auloyiuld ‘H °N ‘s1aboy 1M ‘0elyd "0 d

"066T 420010 ‘T0L-€69T:(0T)TE “"PW 9NN T "duldIpawW

Jeajonu ul uy uenb 1o} |9pow ' :UONRWNSd POC -WNWIXeN "UBWIOH " 'g PUe ‘8100 D 'S ‘Dismaliyl 4 "W IS|INN d S

"¥86T 1SnBNY ‘906-988:(v)2€ “20id OIS dS 1SN0y UL 3331 "sishjeue ssauisngos
pue sisAjeue aguewIOlad (|| B | SHied—S193(qo JO uonewNSa pue uoNd8lap Uo paseq suondsloid woly uondINASU0IBY AYS|IIM 'S 'V pue 1SS0y ¢ 'd

€66T ‘00T—06:2T "W/ "pay 1L 333/ ‘AydeiBowo) UoISSIWAa Ul uonen[eAs Isalalul-jo-uolbal 1o} wylobe sarenbs jsea

001WIo4 Y 'Y

9861

Anc ‘€9-¥59:(¥)0T “owoar pasissy ‘dwoD  “Aydeibowo) uoissiwa Ui uonen[ens 1saisul-jo-uoifial 10} POyIBW PO WNWIXeW v "UosIeD ‘3 'y

'G86T YdIeN ‘Z-02:(68€)08 “Ssv 78IS “wy T “wyniobe uononnsuodal abew; omswered N3 ay L ebueq ) pue uosied '3 'y

'S86T ‘02d 92 “PaN
NN T "senfen (J0y) 1saiaiul-jo-uoiBiai oiydeifowos Jo uoie|Ndes J0j PoyIBW POOYaYI WNWIXeW V¥ "UoSIeT “IN 'S pue ‘Usald ‘A "I ‘Uosied 3 Y

$86T Ateniqad ‘2—eeS:(T)TE "19S "onN 1L 333/ Aydesfowo) uoissiwa ul uopewloyul apis buizinn “1epAus 1 °q

‘£86T YU ‘6TH—60v:(€)TL ‘FITI 9044 "SPOLISU UONINASUOIDI UOISURAXD SBLIBS allUlS “JOSUSD ‘A

'G66T Arenuer ‘9-zg:(T)eg “1ndwoo
bu3z ‘Jo1g ‘pay ‘Aydeibowoy paindwoa 1o} Buiuonnred weaq noyim senbiuydsl uondnisuodal dreigable aanejodisiul “UOPIOD Y pue Inzey * '3

'G86T
Buiyroows aujds ay) o $199dSe BWOS "UEWIBAIIS "M 'S

‘2S-T:(T)LY 'g 495 "00S 18IS [efod T "Bumy aAINd L ol d-uou 0}
2002 udy ‘v0r—96€:(v)TZ "Wl PN 1L 333/ "BYep 13d PO Is] JO uooNAISuodas elodwaloneds AyeaT N Y pue ‘Bwsy 3 ‘1O T ‘SIOYdIN '3 L

1002 1snBny ‘v9-2GyTi(2-¥)8Y “10S "onNN L 333/ "Swa|qoid uonoNISu0dal
IsAjeue [enoads [enuauodxe o) uonoa|as siseq Ananoe-awn rewndo “zieiN 'S C

2 olwreuAp abie| Jo uonn|os auy 0} uor

‘0002 AelN '0S—vEv:(S)6T Wi ‘paw 1L 3331 "sauljds-g [eiodwa) pue uonejuawbas feneds e Huisn
suondaloid 193dS dlweuAp wouy suonnquisip [elodwsioneds jo uonewiise sasenbs 1ses| 108.1Q “UBWSaNH ‘H Y pue ‘Biaqno ‘L 'O Jennay ‘M ‘g

"0002 12qWANON ‘62-ETVE(TT)SY “J0Ig PO ‘SAYd "siseq
Auanode-swi paonpal-uoisuawip Buisn suonosfoid 193 aiweuAp Jusisisuooul Ajesodwa) wouy sonauny Jagel) [euolbal jo A18A0d81 108114 “ZIeN 'S T

'6667T 1SNBNY ‘T9-550T:(2-7)9v
“198 onN 1L 3331 *(LD3AJSP) uonejol eiawed a|buls e Buisn Buibew | D34S alweukq ‘doueH "y pue ybaew ¢ ‘ION ‘Q 49180 'V ‘aquiodure ‘|

ed
"666T UdIB ‘T9-25Z:(€)8T "W/ "PaN L 3331 *LDIdS dlwreuAp Joj wiplioble NI Uy “ulemiog ‘W °C pue J3)j30 'V ‘lION " ‘fyosneg H 'H

'866T 12quia2ad ‘€T-200€:(9)SY “105
uly “uewsanH "H "y pue ‘61aqIn9 ‘L 'O ‘4ennay ‘M ‘g

onN ‘i 3331 ‘Sluswainseaw uondaloid | D34S parenusne wol uonewnsa islswered

‘8667 1AV ‘Z8-€.6:(V)EV “101g PIN 'SAYd
SjusawaInseaw uondsfoid weaq-auod | D34S Woly uolewnsa Jajawered anaury "B1aqno ‘L 'O pue ‘Busz ~1 'O “annay M g ‘uewsanH ‘H 'y

*166T Jaqwadad ‘0e-G2rei(2-9)vy

“19S onN 1L 3331 ‘AydesBowo) 1D3S ul sislaweled dlweUAp Jo UoNeWNSS 198 J8||9D Y pue ‘aquiodoured ‘L ‘Binquaplo ‘a “4eqgeH ‘3

"G66T Ja0Wad3Q ‘9y—6EEZ:(2-9)2Y “IOS ONN UL FFF| "SIUBWAINSeIW
uonoaloid wouy Apoauip sierewered onaury ayewnss o) A10ay) walsAs Jueleaul-awn Jeaul| Buisn ‘uewsanH ‘H "y pue ‘Biaq|no ‘L 'O ‘Busz 1 'O

'G66T 1snBNY ‘95-6vZT:(v)zy “19S NN
4l 333/ " 103dS dlweuAp loj s1a1ewered [eUONOUN) JO LONONIISUOJ3I 19811 "UIBMIOg “IAl °C pue ‘Asuleg 'S °C 49)|9D "V Jaqui] "N "IN 4aqui Y Il

~readde ol "z00z ‘¢ “yrew asuf jonN “awnpeap yum Bununod uojoyd 82UapIOUIOD JO SOUBLIEA PUB UBSIA 'I[SS8H 'Y T Pue DA 4 '
'0002 AINC '95-€102:(2)GY “101g ‘Pa 'sAud "swnpeap yum Bununod uojoyd sejbuls Jo soueleA pue UBS “I9ISS84 'Y T Pue NA 4 'Q
"866T 1900100 ‘Ly—6£62:(0T)EY “/0Ig ‘PO "SAY4 eiowed ewweh ay) Jo sonsness ares-unod “BinT "H pue 1exs L ‘puepbul n
"GGBT SHOA MON ‘[lIH-MEIDIN 'SNajonu Jjuwiole ay "suen3 ‘d 'y

*/86T ‘UONIPa Z ‘elydjepeliyd ‘SIapunes ‘susaipaw Jeajonu uj saisAlid 'sdisyd "3 "W pue UuosuaIos v T

'986T MI0A MaN ‘|[eH pue uewdeyD ‘sisAfeue elep pue SSElS J0j UOHEWNSS ASUSq "UeULIdAIS ‘M 'S

'866T UoeN
'e6-L£2:(9)z 'ssaudx3 sondo “yoeoidde uonewnss Aysusp v :ubisep walsAs BuiBeuw: sjoyuid ui syoapes) asiou pue uonn|osal feneds UsIssad v T

"TEET eadde ol 2002
,mt\mmg:ﬁuﬁm_.tgm .QE\AM, ‘AUl 3331 0014 U] “[HIN 10} UONINAISUOIDI abeuw Pa1081102-pIaly ‘BAIRISY ‘ISed “J9|sSH "V ‘[ pue ‘||ION D 'Q ‘UoNNS d ‘g

'T00Z ‘€9, 9bed “papy 'say “Bep 00S fuj
*001d Ul "sabewl YN Jo uopoNISU0dBI dAReIY pidel 10} 44 G-N Wiojunuou sy} 0} yoroidde Xew-ulw v “|ION 'Q pue ‘19|SS84 'V T ‘UONNS d ‘g

‘uoneuasaid paAul "Z00Z

‘1z abed Yyoog 10B45qY “10S bulbew| JuoD WyIS Ul 144 wioyunuou sy Buisn uononnsuodal abe ydeiBowo] ‘uonns d ‘g pue Ja|ssa v

"166T 1SnBnY ' L-2SST: (Vv

195 "oNN UL 3331 “erep Buissiw o} uonesuadwiod ynm |34 Ul uononnsuodas abewn [eansnels ‘diey ‘S T pue ‘19|ssa4 v ' ‘ueyeury '3 d

g/ 1T “readde o) 'z0oz ‘Buibew eaipaworg ‘dwAs
‘fup 3331 2014 u| AydeiBowo) paindwoa Aei-x anabiauakjod io uononnsuosas abewl [eonsnels salj-uoneluswbas Ja|ssad "V ‘T pue Lyeq3 v |

[69]

[89]

[z9]

[99]
[s9]

[vol
[eal

[zal
[tal
[09]

[6s]

[8g]
[z6]

[os]

[ss]

[vsl

[es]

[zs]

[tsl

los]

[6v]

[sv]

[zv]
[ov]
[sv]
[vv]
[ev]
[ev]
[t

[ov]

[6€]

[}

[z€]

[og]

[sel



ore ‘€L6T '2S-LEYT
01U T VIS "S[EUONIUN) 1SOD d|qenuSIaYIPUOL LM Swalqoid uoneziwndo 10) POyIaL [e2LIBWINU JUBISAP V “IANIN “ 'S pue sexasiag d '

'266T 1snbny ‘25
—prTT:(b)6E 195 9NN 1L 333/ ‘uoneziwndo paseq uonejuswhas Buisn sweibowo) uoISSIWSUE) JO UonewNss uelsakeg ‘uewNOg " pue Janes

"I66T ‘£6—680¢ sabed ‘€ awn|on ‘yuoDd “wj
ueisakeg "uewnog "D pue Janes "y

‘PN “dwAS *19S "onN 333] *20.id u| ‘suonesado uoneziwndo [edo| buisn 1SS! j0
‘886T “IOA MAN ‘SSald ‘AU abpuque) "D ul sadioal feauawny “Bulllana L ‘M pue ‘Aysjoinal v 'S ‘Aiauueld d ‘g ‘'ssald 'H ‘M

'S66T

‘L1-€:(T)zp ‘Buissaooid [eubls eyep a1a|dwooul Jo 8sed 8y} Ul uoiewNSS dyawered-uou pue olawesed ioj wupobe onseydols v ajjsineT ‘N

‘266T aunC (2)TT “"wy
"PAN UL FFF| "SISINUI XLTEW pazifelaual Buisn safew! | DTS JO UONONISUOISY “UBWSI0D ‘T Y Pue ‘Nezozser r Y ‘PAoid '3 O ‘ynws 4 W

686T Arenuer ‘piojuels ‘sansnels
40 1da@ ‘0TE Moday [eIIUYDBL "SUONIUN JO SBSSBID SSAULIOOWS PUE LLIOJSURIL UOPEY By} 10} SUONISodwodap anfea Jeinbuis uQ "auoisuyor ‘I |

'S66T udv ‘vzy
—16€:(2)TT "qoid asianuy ‘sioyesado uonezire|nBal Juasayip-aiul Jo uedUBIS Ay L ¢paselq Siojewnsa Jajeweled N0 a1y Neld 'O Y pue AIQ T

'€66T YoLe ‘€ T-T:(T)T2 ‘78IS ‘uuy "swajqoid Jejnbuis uj SIOIewnsa paselqun SAIBWIOMUI JO BOUSISIXBUON ‘umolg ' “1pue NI "y

“YIBAl Ul SRJON 8IMDaT

‘9861 “obuuds ‘uineg “29-zpT sabed ‘SzzT awnjon “qoid asionu) ‘ionpe ‘nusel © ul swajgoid pasod-|i Jo Juswiean [edLBWNN IBINEN o

'986T ‘29-T5Z:(€)8y “rewayren

ayosuawnNp “wiojsuel) sjbue pa; ay1 Jo uomsodwoaap anjea renbuis °| AydesBowo) pazuaindwod Aes-x ui swajqod eyep a)9jdwodu] 'SIN0T ") 'V

'266T 1840100 'S02T
—T6TT:(G)ET “"qoid 8sianu] “uonnjosal pue uonisodwodap anfea reinbuis :suondafoid jo 19s anuy e yum Aydesbowol "oiapiag "W pue onauuode) v

'966T UdseN
‘6-¥9v:(E)ET 'V Wy "20S 7dO T “In|q eLeA-93edS YIm sabewl Jo uonelo)sal Joj poyiaw gAS Buluueas “eid "y 3 pue ‘BoIfewy2019 r ‘ysid v '

"986T UOSeIN ‘Yy—GEi(T)G "Wl ‘PO UL
333/ A19n0981 uonnjosal 1o} sanbiuyasl AAS Aq sabewr aiydesbuios ur uondelep uoisa) Jo Juswanoidwi "88pusH Y M PUeR ‘pnoas N ‘d ‘Hed ‘N

“186T 1SNBNY ‘606-106:(1)62 “00id “BIS ‘dS 1SN02Y UL FFJ| “UONINISUOII DB UOISIBAUIOPNASA AAS "0UD "H 'Z PUB WIYS 'S ‘A

*666T IudY ‘8€—026:(€)SY “A10ayL ojuf IL 3331 "S|9pow duljds-g pue
UE:QEDO UOISSIWS XBWIUIN “J3ISS84 'V [ PUe ‘'SNiiL "Y °S ‘Nyinwelld " ‘0I18H 'O 'V

o apis jonnjosal ybiy Buisn

'866T ‘S—TS9T sebed ‘¢ awn|oa ‘JuoD ‘wj ‘pay ‘dwAs 195 “anN 3331 20id Ul "S|9qe| [edlworeue paunq
Buisn e1ep 13d Apog-ajoym pe JO UORONISUODDY [BYDIN "D Pue ‘8slyad "W ‘PUSSUMOL ‘M ‘d ‘1948 'L 18|sSa4 'V T ‘Ueyeuly '3 d 1eIwoD 'O

68 ‘8661
*buissa201d abew| uo Juod puj 3331 2014 ul AydeiBowoy uoissiwa TN 10} pouyrew Buibelane uonewlojul SPIS "0J9H ‘O Y PUB NYINWeIld

*166T 12qwadad ‘T9-05L:(9)9T “W/ ‘PaN L 3331 “|apow
uomsodwod anssh e :AydesBowo) uoissiwa uonisod ul uononisuodal abeuw 1oy wyoble ueisakeg AuepowniniA "uosied '3 'Yy pue Anses ‘s

'966T 1200100 '98-£29:(S)ST “wi ‘pay L 333/ ‘AydeiBowoy uoissiwa Joj uopew.oul Loud
B [edIWojeue JO 8sn pue uononisuodal Cm_w®>mm ‘uews|o) ‘3 'y pue ,ﬁ\»OE ‘3 D ezozser * Y ,:Oum:_v_:ﬁ_’ 91 ,COWCr_Oﬁ ‘3 A Jaysmog ‘3

‘GB6T ‘¢ I9MN ‘W [RIIPSN Ul BUISS90.1d UONEBLLIOjU| ‘SIONPS ‘Bloed ‘Q " pue ‘10|ueg D
'sfezig ‘A U] "uononnsuodal 103ds ueisakeg ui sioud ubisep o) erep yina-punosb Buisn uefeseBuey v pue ‘feqnz 'O | IpUID Y 'O ‘997 T 'S

"P66T 19qwa0aqd ‘L29:(V)ET "W/ PIN
4l 333/ "uondniisuodal abewl 134 ul safew [einjonis palea.iod jo uonelodiodu| “usyd ‘L-O pue ‘nH "X ‘uosuyor ‘3 A ‘Buop ‘H ‘M ‘Bueino X

"€66T 12qWadad ‘089-0L9:(V)ZT “W/ ‘PIN
41 333/ "sioud se uonew.ojur [ediworeue Buisn sabew [euonouny Jo UONONAISUODa) Ueisakeg ‘[eqnz 'o °| pue ‘uelesefuey v ‘997 I ‘IpUID ‘D

'266T el '£96:(S)EE ‘(joog 'sqv) ‘paw onN r sioud
se sebew [eajworeue pasasifal Buisn sebewi | D34S Jo uononisuodal ueisakeg “Ipulo "9 pue ‘|laieH "y "D ‘uelerebuey ‘v ‘@97 ' ‘reqnZ ‘9 |

"Z66T 1900100 T~V T:(S)6E

“/0S "ONN 4L 3FJ/ “uonewlojul apis 10apadwi Buisn uononnisuodal sbew! UoIssiwa pazieinBay ‘si9BoY 1 M PUE ‘BuIoUID *H 'N J3ISsed 'V T

‘T66T '0T-T
sabied "00ssy TeIS UaWY JO 199S ‘dW0D TEIS JO "20id U] "UONINNSUOIBI dbewl 134 10} SPOLIBW PUR S|9POW [INSIEIS “UBA "H "X pue AyeaT Y

“(10e089Y) "T66T ‘2902 bed ‘€ SWN|oA *Ju0D ‘W "Pan “dwAS 195 “oNN
3331 001d u| "sabew djworeue uonnjosal-yBiy Buisn uonoNsUoda) abew! | Jd J0 Wawaroidwl “NH "X pue ‘BUOM ‘H ‘M ‘BueAnO "X ‘uayd ‘L D

“T00Z ‘T-TW sabed ‘Juoo “wy ‘pap ‘dwAs
“19S "9NN 3331 "20id Ul "UoNdNIISUOIAI pooyii-pazifeuad Joj ubisap Ajeuad oneipenb aluyep aAneBBULON “19|SS84 'V ‘T pue uewAels M T

"000Z dune ‘ST-T09:(9)6T “wf

‘PaW L 3331 "uondnnsuodal abew pooyyx-pazireuad ui saniadoid uonnjosal [eneds wioyun 1o} uonezirenbay “18|ssed 'V T pue uewAeIS ‘M T

"966T AINC ‘T6-2G:(T)6T WOISIA "dwioD
T Ul "uoISIA Ajrea uj suoneajdde ynm sonsie)s 1sngol pue ‘uonodsfal Jaiino ‘sassaooid aull Jo uonedyun ay) uQ “uelerebuey v pue xoe|g T N

1002 '9-€€ sabed 'z awn|on ‘Buissasold abew uo
JuoD puj 3331 201 U] ‘sajdwes Jaunoj asieds woly uononIsuoIal abewl 1oj poyial 19s-[aAs] Bulduaiael-|as v "UIINO d pue ‘19|saig ‘A ‘SA T

200c
Areniqad ‘€/-6ST:(2)TZ “Ww/ ‘Paw 1L 33J/ “uonezire;nBal [e20UoU YIM UORONAISU0DaI dlydelBowo) Buiniasaid-aBpa “Iajssad v T pue A 4 'd

‘866T '€€—6¢ Sabed ‘T awnjon
‘BuISsa001d abeuwy uo JuoD puj 333| 9014 U "uonezirenbal eaojuou yum uondnnsuodal dlydelbowo) Buiniesaid-abp3 “8|sse4 'V T pue NA 4 'a

[t21]

[oz1]

[691]
[891]

[z01]

[991]

[go1]

[votl
[eaT]

[eot]

[to1]

[og1]

[6sT]

[8sT]
[zsT]

[osT]

[ssT]

[vsT]

[esT]

[esT]

[tsT]

[osT]

l6v1]

[8y1]

[zv1]

[ovT]

[ayT]

[vv1]

[evT]

[evT]

[ty1]

lov1]

[6€T]

8'd
*T00Z 12qwaldas ‘56-6£6:(S5¥)96 'SSY 1EIS Wy T "suonewixoidde 19janem pue uonezienbay "ued ‘C pue SIpeIuoILY Y
0002 Joquiasaq ‘05—LEvE:(2T)8Y “20.d “BIS 1L 3331 "uonezireinbal oneipenb payeounsy Aq paidwi BuipjoysaiyL "eAojoxIN ‘Il
'866T 18qWa2aq ‘YOT—L60€:(9)SY “10S "9NN *iL FFJ/ "UORONISUODBI
abew AydeiBowo) uoissiwe aaiela) ul uonnguisip Joud ay) Jo uoned0| 8yl Se uelpaw [edo] Buisn "ejoISY ‘C pue ‘uaurefesiony N ‘snUdlY 'S

*166T ‘9zLT 9bed ‘JuoD ‘wy ‘pap ‘dwAS 10S onN F3J| "90Id U] "UORINASUOIAL
abew AydeiBowol uoissiwe aanelal ul uonnqguisip Joud ay) Jo uoned0| 8yl Se uelpaw [edo] Buisn "ejoISY ‘C pue ‘uaurefesiony ‘N ‘sNIUdlY 'S

'L66T 'S9

—852:(€)¥g “paw “onN r In3 “1oud 1001 ueIpsw uo paseq AydeiBouwio) uoissiwe 1oy uononnsuodal abew ueisaAeg “usurelesiony ‘N pue sniusly ‘s

‘¥66T YOI ‘Tr—0€2:(S2h)68 “'SSY 18IS "Wy T "sabewl Asjou jo sisAfeue pue uoneluawbas 1o} [9pow v "uosuyor '3 ‘A

T66T AW ‘SZ-€TH:(S)ET "I/ Yo ‘Teuy Ned ‘Il 333 “1erewerediadAy jo
uonoajas pue ‘buiinig Jo yuswiean ‘Buijepow Arepunog :sioud sqqio buisn uoneioisal abew| "uayd ‘L "D pue ‘nH "X ‘BUOM "H ‘M ‘uosuyor ‘3 ‘A

"066T J900R0 'vZ-LTOT(0T)ZT "Il "YoBIN ‘feuy

ned 4L 333/ "sabew jexid sejnbain pue rejnbai ioj sanfeuad abpa Jo uoneoyDAdS BYL "UMOIG "D "L PUE JSPUEIS ‘T ‘UOSIUUSL D ‘UBWIBAIS ‘M 'S

86T 19qUIANON
“Tr—T22:(9)9 "1l ‘yoeW ‘Jeuy Ned ‘11 3331 ‘sebews jo uoneloisal ueisakeg pue ‘sUONNGLISIP SAQID ‘UOIEXE[a] JISBYD0IS UBWSD ‘d PUB UBWAD 'S

"G66T J9qWa00Q ‘08-699:(V)YT “wy
‘paw 4L 333/ "sioud se sjppow [ediueydaw Japlio saybiy Buisn 1934S ul uononisuodal abew ueisakeg “Ipulo "o pue ‘uelerebuey 'y ‘997 T-S

"766T ‘002T-969T Sabed ‘v BWIN|OA JuoD ‘Wi "pay ‘dWAS 10 "anN 333| 20id
Ul "uoNANAISU093I 1DIJS Ul sioud [edlueydaw Japio 1aybiy Buisn Jo s1oaya syl Jo Apnis aateredwod v “Ipulo ‘O pue ‘uelerebuey 'y ‘997 T 'S

'966T
Ren ‘£5-0v2:(S)s o014 ‘wy 1L 333/ ‘AydeiBowo) weaq-ja|jesed aAnesa) Joj wyioble JaLNo sleIndde pue Ise) v “19|salg ‘A pue Aeuelpq ‘H v

‘066T
udy ‘sz-ZT:(T)PT ‘Suioipajy Ul 8uLUO0SaY Ji18ube)y "uondNAsU0dal abewl Y Ul 3Iom 1ou S80p INIIN AUM "UBWISNUSH ‘W " PUe 8|qeIsuod L "y

T66T
I8-TH(T)¥S ‘g YaS 005 LIS [eAoy T 199[qo >oelq Ajreau ay) pue Adonus WNWIXe "UIBIS 'S 'V PUE ‘4OOH "D °T ‘auoisuyor ‘W °| ‘oyouod 1 °a

"066T AN '8-9905:(€T).8

“10S 'peIY IeN 0014 Aunmsuss anoidwi poyisw Adonus wnwixew sy $80Q YIOH "Of Pue ‘UIBIS 'S "V ‘sucisuyor ‘W | ‘oyouod 1A

‘T66T
'99-2£02:(v)6T “181S "uuy "swajqoid asiaAul Jeaul| 10} sduaiajul 0} yoroidde onewoixe uy ¢Adonus wnwixew pue sarenbs ises| AYm “1ezsis) |

*LL6T I0A MaN AS|IM swajqoud pasod-fji Jo uoiNJOS "UIUSSIY ‘A Pue AOUOUNIL 'Y

<8 ‘2661
M M °C pue J9IIN Y L

19quWiadas ‘¥8—8.9T:(6)EE PO ONN T "UONONIISUOIBI POOYIBNI|-WINWIXEW JO SINSLS)oeIeyd Juenodw)

10

"L86T Jaqialdas ‘8e-82Z:(€)9 "Wl ‘paw UL 333/
winwixew ul sjoejie abpa pue asIoN “anljod *O 'd PUe ‘Sewoy L T T Y9IIN | ‘I ‘1epAus 1°a

‘Ayde1Bowo) UOISSIWS 10} SUOIINIISUOIBI POOU[S:

'G86T 1900100 'T/~+98¢€:(5)2e
198 "onN 4L 333/ ‘AydeiBowoy uoissiwa 1oy wylLoble W3 ayy yim paonpoid sabewr azijiqels 0} SAAAIS JO asN ayL “J9|IN ‘| "IN pue JapAus 1 °a

*116T ‘T2S-TTG:(€)22 “101g ‘PO "SAYJ "UONINASUOIB UOIIS SSISASUEI) U
sJoud [eansness jo uonehedoid ayy uo suonaaloid jo Buldwes [esare| ayuy pue sajbue uopaaloid Jo Jaguinu ayul B JO S108Yd aYL "UBWSaNH 'H 'Y

'666T Jaqwa0aq ‘8-££22:(9)9%
10§ "ONN Il FJJ| "UORONASUODBI | DTS 0} suoness) ussmiag Buusyy pue Buusyy-isod jo uospedwod uewnseg ‘¢ o4 pue uadlis d 'L '3

'0002 AV ‘vy—LEL:(Y)TY PO ONN T " LOIS [elpredohu
ul uoneduny) pue uonenuape sWalXa JO SUORIPUOI I1spun mEE_‘_Dm_m UonRdNJISUOIBI 19SANS-PaISPI0 JO ddUBWIONSd INSL "IN 'g pue ysnel 's ‘a

'866T 2unC ‘0E-ETLT(9)EY “f0Ig PaN
'sAy4 sebewr 1 23dS Jo Buissaooid-1sod ayy 1o s19)l uoISNYIP spuadap-yise) Jo UondsIeS "UassaIN T ‘M pue ‘uadliS d L '3 ‘uewxsag T o

266T Rl ‘v96:(S)ee ‘(Hoog 'sqv)
‘PO "ONN T "UORONASUOIBI POOYI|N!|-WNWIXew >n 103dS ureiq Um>0‘_nE_ ...m_u\Ar_w *7°Q pue YBINN I I UBpNg S "D 'SlilemM M T UBJIIN Y L

‘066T ‘v2e-TL2:(2)2S ‘g 495 008 1eIs [efoy T AydeiBowoy uoissiwa pue ABojoalals o)
ERIEIEIET] ‘_m_:o_.:ma yum .mEm_n_D‘_Q uonewnsa 19alipul 0} _._QMD_QQM W3 payloows v ,mxr_u\AZ ‘M “0 PUR ‘UOS|IM "Q °C ‘SBUOC D ‘W ‘UBWIBA|IS ‘M ‘g

‘Z66T YareW ‘2-T2:(T)TT “wj ‘pay 1L 333/ "uoissaiddns 1oejiie asiou dlewone Ylim uononisuodal abewr aanels) panoidwi exeue] '3

€66T AINC ‘0TE-962:(£)Z "00.d "W/ 11 333/ "uonewnsa dvN Buiniasaid-abpa oy |opow abewl ueissnes pazifesauab v J1anes 'y pue uewnog "D

“T86T YIOA MON A3V 'SoISHEIS 1SNGOY “18GNH ' d

"166T 11dV ‘G9-6ST:(2)9T "W/ Pa

41 333/ ‘AydeiBowo) uoissiwa uoisod 10} SPOYIBW UONINIISU0DaI sarenbs-1ses| palybiap ‘N ‘H-O pue ‘oey ‘I ‘UreN Y g ‘uosIapuy ‘I ‘N T
'G66T '9-262T sabed ‘z swnjon

“Juod “wy ‘pay "dwAs ‘195 "onN FJJ| "20id Ul "13d 10} poyraw sarenbs-ises| pajybiem v ‘N H "D pue ‘oey ‘W ‘Ile 'Y 'g ‘uosiapuy ‘IN N T
‘86T ‘26-6VT:(2)9y 'g 495

"00S 'JBIS \m\ﬁbm ‘C "S8AITeulal|e JUeISISal pue 1SNQOJ SWOS pue ‘uoiewiSa pooyiay!| Wwnwixew 10} sarenbs iseg| _uwur_m,wgm._ >_w>;®>wu_ ‘usaI rd

'966T '€/—-69ST Sebed ‘g awn|on ‘JuoD ‘Wi ‘Pa ‘dwAS 19S 9NN FFF "00id U] 'Siauueds |34 uonnjosal ybiy
uononnsuodal abewl eansnels Joj Buispow asuodsal [eaisAyd pue omawoah sreinooy “uewyoH ‘3 pue ‘Ausy)d ‘s ‘Ayea Y ‘njfonownp ‘3

'966T 1snbny ‘Ty
—9202:(8)v¥ 0014 "6iS 1L 3331 "punog YD wiojiun ay) Buisn sjoapel; adueleA-selq Jorewnsa Buliojdx3 uewsn "N pue 18|ssa4 'Y ' ‘0I8H 'O Y

[8eT]
[zeT]

[9eT]

[seT]

[vet]
[eeT]

[eeT]

[teT]

[oeT]

[621]

[gzT]

[z21]

[ozT]

[szT]

lvetl

[ez1]
[ezt]

[te1]

[ozT]

[611]

[811]

[z11]

[ot1]

[st1]

[v1l

[etT]
[et1]
[1331]
[otT]

[60T]

[8ot]

[z0T]

[901]

[sot]



vra
'986T Arenigad ‘8-Sev:(1)e€ 1S 9NN 4L 3331 Aydesbowoy
uoissiwa-uoysod Buisn saipnis Jades ojureuAp i sweiboisiy Bunndwod 1oy polpaw panoidwi Ue Jo uolenieAs uy JspAus 7 °a pue sebulllo ‘N ¢

'G86T Asenigad ‘vS5—-8v8:(T)Z€ “19S NN UL
333/ ‘saipns-Iaden u_EMrSU ul sierewered mE-ME:mm 10§ EE:DQM 3 8yj Jo asn ayj Jo uoneness Kreunwjaid v ,‘_mU\EW 1 pue 196U IO W T

‘7867 Ildy
‘1€-G26:(2)TE "I9S 9NN UL F331 “evep apow-isi| Buiney swaisAs AydesBowo)-uoissiwa Ul Saipnis olLeUAp 10} UONRWNSS Jajewered UspAus 1°'a

“T00Z '2T-T sabed 'T awn|oA 2014 abew) 100z buibew|
[RIIPAN ‘ZZEF TIdS "20.d U] " 1D Kel-x 1o} uonoa1109 Huluapley weaq yim UondNIISU0dal UOISSILUSUEI) SI9SANS PalaplQ 13IsSa4 Y °C pue Lxeq|3 |

"000Z J2qWIANON ‘SOTT-F60T:(TT)6T “W/
‘PaW 1L 333/ "sweaq uoissiwsuen Buiddeliano 1oy uononsuodal abew! UoISSIWSUEL) POOYI[aXI| WNWIXeN 0Iedld d '3 pue Y4ajssad 'V T ‘NA 4 °'d

"666T ‘L—2STT sabed ‘g dWN|OA ‘JuoD ‘Wi pap ‘dWAS "10S "oNN 3331 "90id Ul “13d Ul UORINISUODAI WISO-AE 0} palidde
sawayds pajyblepn "asuja@ ‘W pue ‘puasumol M ‘d ‘Ueyeuy| 3 d ‘1eiwo "D ‘log 'V ‘eUBWOQIS ‘I ‘XNauuoT ‘W ‘Blgeues ‘S ‘ni "X ‘[PYdIN O

'866T '6-£2€T Sabed ‘JuoD wy ‘pap ‘dwAs 19S "IN F33 "00d Ul UONONAISUOIBI WISO PAIYBIEM LM erep | Id o SOl
uossiod Buiniasald "pussumoL ‘M ‘Q pue ‘Ueyeuly "3 d ‘TeIW0D "D ‘8siyad ‘I ‘xnauuol ‘W ‘preussg "X ‘|og vV ‘euewoqis ‘W

uajpeIRYD
IBWIN "D

“readde oL "T00Z ‘¢ “19S "onN AL 333/ “Buibewr 134 Apogajoym 1oy

swiyiobe 19sqns-paiapio Yim uojoyd a|buls uondslul-1sod ‘puasumol ‘g pue ‘1eio) O ‘esselg ‘g ‘ueyeuly ‘3 d ‘red O

"1002 1snbny ‘€T-v08:(8)0Z “wi ‘paW UL 3331
*13d 1o} W3SO+3H04 pue WISO Yim uondnisuodal dg Jo uostiedwod ‘pusasumol ‘q pue ‘asuyag ‘W ‘Ueyeury d ‘[BUdIN "D ‘Felwod "D ‘ni "X

‘6661 ‘Zy—6€ Sabed “pa NN ‘pey ul U028y Wi ag Ajind uo BN Ul 666T Y1 JO 0id
U] " L3d 10} W3SO+3-404 pue WISO YIM UoidNIsuodal g Jo uosuedwo) "pussumMoL ‘g pue ‘8suyad " ‘UBYRUIN d ‘[BYIN "D TeIwo) O ‘NIt "X

‘6667 ‘6-G€ sabed “papy onN pey ul
U028y ‘Wi ag Ajin4 uo ‘BN ‘Ul 666T dY1JO 0. Ul *13d A€ AlInj 10) uoNINISU0IaI dvIA Jo sansadoid esiou pue uonnjosay Ayes ‘I "o pue 1) T

8661 ‘6589 sebed ‘z awn|on ‘Buissasold abew) uo Juod ‘puj 333| 90id

u| "uononnsuodal abeuw pooyiiayi-pazieuad ui uonnjosal wiojiun Joj ubissp Ajeuad sseuybnol JueleA-Ajeneds s|sse v ' pue uewAels ‘M

‘666T JoqWaNoN ‘T1S-5e82Z:(TT)rY “/01g ‘Pa sAyd “AydeiBowol uoissiwsuel 1oj swyiioble slesqns paiaplO “18|ssed 'Y ‘T pue uebopi3 H

"100Z ‘Z-TIA sabed ‘Juoo
‘wy "pay “dwAs ‘19S "onN 3331 0.4 ul AydeiBowoy o) uoneoyddy :swipuoble slesqns palapio JuabiaAuod Ajleqolo “1ajssed v T pue uyy 'S

"100Z udv ‘8-082:(v)0Z

“wy paw UL 3331 AL uoIssIwa Ul Jouaisod e, 1oy spoyiaw axi-W3 Ised ‘lysiBewea ‘g '3 ‘W pue ousld 8Q H V

'666T ‘052—Lv sabed “papy -onN pey ul ‘uoday “wj
ag Alin4 uo “BiN “iuf 666T 841 JO 2014 U] "SUONIUNY ISOD XSAUOD [e1auab Joj popaL aAneIa)-}20|q 1usBIBAUOD "OleS *L pue ‘emezexeN "H ‘Opny ‘H

1002 '8€-60T:(T)2T “wndo T WYIS "uoneziwundo wﬁmacwkot_mm%_ 1o} spoyiaw JusipesBgns [eJuswaldu| ‘sexasiag d ' pue dIpaN v

"0002 “I31AaS|3 ‘suonEd)] 418y 1 pue uoneziwndo pue Aujiq! ul 110ByY [9jjered
‘I0)IpPa ‘YoIay 'S JOSUID ‘A NueuIng ‘g Ul ‘spolsw gr_m__um‘_mn_:m [eluawaloul m:o:OF_o:\Amm panquisig “sexiog ‘A pue ‘selasueg ‘g ‘OIpaN v

"000Z “HOA MaN ‘Jamn|y “y0e-€9Z sebed Wddy pue suyy X o
20SBYO0]S ‘SIONPS ‘soepied ‘N d Pue AsseAIN 'S u| swiuobe ualpelBgns [ejuaLaIoul JO alel 92usBIaAU0D 'SeNasag ‘a PUB JIPaN Y

'866T ‘1youaIpIoq 1amn|y '89-55z sabed ‘'sjgpop fearydeio
uy Bujurea 101pa ‘UBpPIOL ‘| " U] 'SIUBLIRA Jayl0 pue asieds ‘feyuswiaioul saynsnf yeyl wipliobie W3 8ul Jo MBIA V' "UOIUIH '3 "D pue [eaN d

*L66T JaquianoN ‘9z—-€16:(v)2 “wndo T WvIS "swajqoid sarenbs 1ses) 1o} spoyiaw Jualpelh [eluswaloul Jo SSejD Mau v "sexasueg d 'd

"066T IMdY ‘GE9-629:(2)L€ /oS “ONN L 333/ "swa|qo.d uoneuenb pue
9ouabianuod jo Apms v :AydeiBowo) uoissiwa 1o} UoNONANSUOIBI abewl sAeIa)| “UoSSHLT T pue ‘IsiAbuasoy ‘9 ‘ugpur v ¢ WYdS d ‘9loH 'S

"066T AINC '€T-G0ET:(L)L 'V ‘WY 905 1dO T “waishs Buibew

wa-uojoyd-ajbuis parews|jod Ajfedaluonoaje Ue Joj UORONISUOISI POOY[aY|-WNWIXew [euoisuawip-sa1yL ybuis ‘W pue Ayes "y ‘HageH ‘L

"986T YdIRI ‘22-9T:(T)S “W/ "pa "iL I35 UONeNSS POoy|Id|
wnwixew 1o} wyioBle W3 ay) uo paseq AydeiBoulo uoissiwa uonisod o) UONINASUOISI SANRISN PATEIS8IY JSUYS|IYSNI "D pue MMaT W d

'G86T ‘U0Isog ‘JOUliN-snuntei ‘e6-6.¢€ sabed “wj [eapa
ul BuIssa20id uomewoju] ‘10Npa ‘yoereydegd 7 S U] "SWelBowo) UoISSIWS JO UONONIISU0da] Ul Slurensuod AjaeBau-uou jo uonezinn ‘exeue] '3

‘2661 Jaquiaidas
'£0£-0622:(6)0v “00.d “BIS i1 371 "sioud sqqio Buisn erep uossiod Woy uononisuodal abewr dyN peseq-onsiels AyesT 'y pue LageH r 'L

'686T aunr ‘'202-v61:(2)8

“wy paw 4L 3331 -sioud sqqio Buisn erep Uossiod Wolj uononJisuodal ueisakeg g-g 10} wyploble W3 paziessusb v AyesT "y pue LageH L

"686T ‘299v—8SY sabed “ooid ‘wy i1 “wy
‘PAN ‘Z60T FIdS "20.d u| “loud pialy wopues Ao e Buisn AydeiBowoy uoissiwa 1o wipuoble uononnsuodal ueisakeg v Ayea y pue LageH ‘L

"866T ‘'G—ZETT sabed ‘Z awn|on *JuoD “wy ‘pap ‘dwAs 1S onN
331 "20.d U] "uonINASU0IDI abew! uoissIWwa poot | 1ad Juabianuod 10§ sarefouns d v ,r_mmo_u..w H pue Jg|ssad 'V T

'G66T YoteW ‘LET-ZET:(T)YT
“wy ‘pay 1L 3331 ‘AydesBowo) uoissIWa Ul uoneWNSd Pooyldl| pazieuad Joj wiyploBble uoneziwixew uopeladxa payipow ¥ ‘oudld 8Q ¥ YV

"€66T 1snbny
‘19-GS0T:(¥)oy “19S "onN UL 333/ ‘swyniobe uonannsuodal | 34 4o} saveds erep 819|dwod uo 'si8boy 7 M pue ‘suloyiuld ‘H ‘N U3Issed 'V T

‘G66T 4199010
‘8-0EVT:(0T)Y “00id “wy 41 3331 AydeiBowo) uoissiwsuen Lousisod e wnwixew Ioj swyoble 1uab1aAuod A|leqolo 18|ssad v T pue abueT y

0002 udY ‘S8-T.Z:(¥)6T "W/ ‘Pam 4L 333/ "uononisuodal | 3d a-g 1o} ABojopoyiaw juiod Jousiul J9jos 'V pue ‘[9pies ° ‘uosuyor 'y "D

lovel

leez]

[sez]

[z€2]

[oge]

[see]

[vee]

[eee]

[ee2]

[tee]

[oez]

lezz]
[8z2]

[122]

[ozz]

[sze]

[vzel

[ezz]

[eze]

[rzzl
[ozz]

[612]

[ste]

[z12]

[ote]

[ste]

[yre]

[ete]

[ete]

[trel

[ote]

[602]
[8oz]

cra
6661 Joquaidas ‘vT-T08:(6)8T "W/ ‘paw 1L 333/ AydeiBowo) uoissiwsuel) 10} swylLobe JIUOJOUOW “19|SSa4 'V °C pue uefopi3 H

"S66T 1200100 ‘05-6EVT:(0T)Y
9014 "Wy ‘1L JFF| "SULIS UOISSIWISUEL WOJ) UONONASU0da) abew olydeiBowo) Joj suonouny aAnd3[qo [elwouAjod/uossiod pUgAH “J8Issad 'V T

"966T UoreN
‘26-081:(€)S “00id "Wy 1L 337 "uoneziwndo Jus0sap dleulpiood Buisn Aydeibowo) [eansiels o) yoeoidde payiun 7 IBNeS "y pue uewnog Y ‘0

'G66T ‘0T—L06¢ sabed ‘g awn|on 2014 “BIS
yo98ds Isnody Juoo 333/ 20id ul ‘AydeiBowo) ueisakeg Joj swipLoBe Jusloyje pue sjppow a|qeldel] ‘qinbes 'S 'S pue Janes "y ‘uewnog v 'O
199 ‘Bepiap uewispaH Hur njuou pue reauly

'886T 1eaur] AU 9 3

*£66T Arenigad ‘8y—veS:(2)Ty “20id “BiS 1L 333/ suondafoid wolj uononsuoIal aAlela)l Joj ABarens arepdn [e20] v ‘uewNOg "D pue Janes
"066T ‘ZSr—EvY:(€)2S 'g 48S 00S 1RIS [efoy r “uoiewnss pooyla)i pazifeuad Joj wupliobe W3 8y} o 8sn UQ "UsdID T d
‘066T YoIeW '€6—8:(T)6 "Wy ‘papy 4L 333/ “wipLobie W3 payipow e Buisn erep AydesBowo) UoISSILS WOl SUONONASU0IA] Uelsakeg UsaID T d

‘€66T
aunr ‘ee—8ze:(2)zT "wy ‘paw 1L 3331 ‘Aydeibowol uoissiwa uomisod Joj wyioble W3 AUy pue YHS| 8yl usamiaq uonefal ay) uQ ‘oldld oa ¥ Y

‘066T U2t '8—16:(T)6 “Wwi ‘paN “iL 333/ "wypioble L IWwIXeL- ay pue uonoaloidal-uononisudal aAleId)| 1aBulO ‘N T

'986T aun( ‘99-19:(2)s
“wy pay 1L 333/ 13 awn|oA 1o} d|genns wyiuoble uononisuodal adeds abewi aAnelal uy IBuys|iyenNi ‘O pue uoodsiayim-agqned ‘3 ‘N

‘866T Arenuer
'6-00T:(T). "20id "Wy i1 FFTF| 'SPOYIBW SAIEID)I-00]q Pajedsal Aq swyiioBle aaese) parejal pue wiyoble JNWI ay) Bunels|eoy "auikg 10

L66T
Jaquialdas ‘y0E-962T:(6)9 “20id Wi 4L FFF| "erep USISISUOIUI WOI) UoNINISUIRI bkl 1oy swyiioble aAnesaN-400|q Juabieauod “sulkg 1 D

‘966T KeN ‘€-26.:(G)S “00.d "wy 41 3331 “suondaloid woly uononnsuodal abews 1oy spopaw sAneIa)-yo0|g “auIkg 1D

"966T 4200100 '66-.89:(S)ST
IXew 10} wyioBle N 8y} 01 SAIRUIBYE UONDB-MOI V/ "01I3ld 'A "Y 'V PUB 8umoig 'V ¢

“wy paw 1L 3331 “Aydesbowoy uoissiwa ui spooyidx buizi

¥66T Areniged ‘zZzTZ-60T8Y ‘I 1001V uuy ‘UeBIYdIN Jo ‘Alun ‘SD33 Jo 1daq “qe 201d "ubIS pue “wwo) ‘98z Hoday
[eoluydal “uononsuodal abew pooylayi-wnwixew pazieuad Joj swiyiobie W3 paziessuab Buneussie-soeds ‘oleH 'O 'V pue J9|ssed Y T

"L66T udy '52—-99T:(2)9T “W/ PN L F3J| "UONIN.SUOIAI
abew uoissiwsuen pooyiayi|-pazireuad Joj swyiohle Jusdse sreulpiood-padnois ‘abue 'y pue ‘suloyuld ‘H ‘N ‘0redld d '3 U9|ssed 'V T

"S66T 1200K0 ‘62-LTrT:(0T)v “20id

‘wy 4L 3331 swyiobe W3 pazijessush Buneuss)je-adeds Buisn uononsuodal abew pooyjed|-wWnWIXew pazijeusad ‘0I8H ‘O Y Pue J9|ssad v T

e
V66T
Buneu. dS "01aH 'O 'V pue 19|ssa4 Y

180010 ‘2-¥992:(0T)2y “20id OIS UL 3331 "wipuobe L

‘966T Jaquialdas ‘208T-2LLT:(6)Ty

“joig "‘paN "sAyd “sisAjeue souewopad pue ABojopoylaw :sabew! 13d JO UoRINISU0da) ueisakeg Auayd "y 'S pue “Ayes I "y ‘nifondwni N 3

"766T 12qwadaq ‘T0.-289:(E)ET "W/ ‘paN UL I35/ "sabewn
wsuel) Jo uononsuodal ueisakeq 10} spoylaw paseq-luaipelh 1sed ‘noyz 'z pue ‘Ausyd "y 'S ‘Ayea] Y ‘njfonowniy ‘N 3

"666T AeIN ‘66
\mwouﬁmvw 001d "Wy "L FFJ| ‘UoNdNNSU0IBI abewl | Jd JueLeA-)IYS 10} SpoyIaW m:_co:_ucouwﬁ “:m_uma‘mumm:ﬁzoo ‘yloog ‘g ‘'S pue J9|sse4 'Y T

"€66T YOI ‘€8-8L:(T)ZT "W/ ‘PAN AL FFTF| 'SUONINASUOIAL
aAneI)Y Ul S8)el 99ushianu0d panoidwi 1oy spoylaw Buluonipuodsld ‘sowels 'y T pue ‘s1aboy "1 M ‘0elyd O d ‘ued 'S "L ‘suloyiuld ‘H ‘N

86T Yore ‘T6—2€:(T)9 “wy ‘paw "L 333/ “AydeiBowo) uoissiwa uonisod Joy wipuobe W3 8y Buneisjaooe pue bunuswaidw ‘uewyney

‘96T
‘12-80T:(T)2T “19S ‘waisAs ndwo? r “swyniobe buiwwreiboid [eonewayrew ojuolouow Jo 80uabIaAu0d au 10} SUONIPUOD JUBIOYNS I8k H "H

0002 '96—6.0T:(¥)0T "wndo T WyiS “Buepdn uoymen-isend Alowaw paywil Aq Buiuonipuodaid onewoiny "[epadoN ¢ pue SafeloN 1 T

'0002 Jaquiadas
‘9e—£22:(T)9T€ ‘suoneayddy sy pue eigabjy sesur ‘suoneloisal abewi aanefsuuou o) yoeoidde uoimaN-isend) ‘[8boA O pue ‘ABeN 'O ¢ ‘ajueH ‘N

*666T '69—9G:(T)0T "wndo T WyIS "uoneziwndo uonouny o} sayoeoidde uoibal Jsniy uoymaN-isend) ‘abelols paonpay “uewyney| |

'S66T
Alowaw pajwil v "Nyz 'O pue ‘[epsooN ‘N1 d ‘PiAg 'H H

‘802T-06TT:9T "dWwod 0S T WIS "\ wndo paur punoq 1o}

"Z86T “I0A MaN ‘Ssaid-olwapesy ‘spoyisw Jaydinw sbueibe] pue uoneziwndo paurensuo) “sexasuad d 'd

"L86T Y0 MBN 'dU] S1EMYOS L 0 ‘uoneziwndo o uol “yekiod 'L g
666T “YHOA MaN ‘Bejiap-196unds ‘sueonsne)s o) sisAjeue feauawny “abue 3
'866T '€8-090T:(¥)8 “wndo T WvIS “Aiowaw Buikren pue Buiddnis syepdn yum SO4g "ylarezeN ] pue 'A1ea1,0 d 'd ‘eploy 'O 'L

'166T 19qWa03Q '09-05S: (V)€ ‘a/eMyos “yrew
4l WOV "uoneziwndo paurensuod-punoq afeas-abire| 10} SaUNNOIGNS U0 18-SD-48-T 182, WyiIoB|Y ‘[epadoN ‘¢ pue ‘N7 d ‘piAg ‘H 'Y ‘Nuz O

'E66T
‘vz-T:(T)e “wndo T WyIS "erepdn suo-yuel JBWIWAS ay) Jo Apnis [eluswadxa pue [ednal0ay] vV [8qeuyds ‘g "y pue ‘piAg "H "M ‘uejeyy 4 'H

'6G6T VSN “Aioreloge
[euoneN auuofiy ‘Loday uawdojarsg pue yoreasay OV ‘066S- TNV Hoday [ed1uyda] "UonezIWwuIW 10} SPOYIBW d1IdW S|qelieA "uopired O ‘M

[202]

[902]

[soz]

[voe]
[eoz]
[eoz]
[toz]
looz]

[661]
[86T]

[z6T]

[o6T]

[s61]
[ve1]

[e6T]

[e6T]

[teT]

[o6T]

[681]

[881]

[28T]

[o81]

[s81]
[v8T]

[esT]
[esT]

[t81]
lost]

[621]
[81]
[227]
[o.1]
[a21]

[re1]

[es1]

[ee1]



T

uonesa)l Y e T Jo anfen
parewnsa aq o) J019an Jalawesed olausH
fo JLRUETIETEY

il Jo pooyloqubiau
uonouny fenusiod
uonouny Ayreuad

x e ¥ZIT 1oy pueynioys
Y Jouawae Yyl
JUBWa|8 XIIeW Waisks

UN J019913P U1 10§ SIUNOD PUNOIBOEY JO JaGUINU U

A JO ueaw

A Jo uonezifeal rejnansed

ueds Buunp un 1010319p Uit Aq papiodal S1UNod
'y Jo aAneAIBp

o g  ch wONOUNY 1SO0

asodsuen xuyew

uieped Annisuas wasks

un Joj0839p Yt Jo useped Aanisuss

SN 10}9313P JO JaqUINU

sjexid Jo Jaquinu

uonouny Joyedlpul

| Jo ueaw

swoje 1a0el) Pajdalul JO JagUINU Ueaw
AKedap yp| spi0921 Jey) Jun J0joRIep
aplpnuolpel Jo ajiley

wioe Jadel) ypy Jo awn Aedsp

((3)% 4o ypd) uonouny uonnquIsIp JeveNOIPEI
3 8WI SA WO Jades ypj Jo uomisod

X Jo erewnsa

sjualoa00 uoisuedxa AISUBP UOISSILS JO 10108
Aysusp uoissiwe

¢ Jo1asgns

aoeds UeIpIoNg [euoiSUSWIP-€ Ut uonsod
aoeds UelpIjon3 [euoisusWIP-g

sjoquiAs Jo Aresso|9

zv]

or'g
Ja|ssa)~ /NPaYoIWLN"SI9 MMM

WOl 3|gejieAe S3J0U BINMD3| PUE SAPIIS

‘anIsuayaidwos
a0 0) papualUl 10U SI YIIYM ‘IS]| SIY) Ul papnjoul 1ou are suonedljgnd sjgenfen Auey “Buimolb pue snowous S| uonoNNsuodal abewr uo ainyess)| ayL

'666T Ae ‘€0L—£6€:(S)8T "W ‘pa 1L 333/ "sweibouls UoISSIWS Woly suonnqguisip AiAnoe pue
uoeNUaNE JO UONONIISUOIA] 10LIA)SOd-B WNWIXeW SNOSUBINWIS 'SUSIANS d PUE ‘SUBWISLION T “ouluuag "y ‘siueqoons 'S ‘uodng d ‘SUNN T

*T00Z UoJe ‘Ze-8T2:(€)0Z “wi ‘pa "L FF3/ *AlUO BIep UoISSIWS Woy sislewered uoissiwsuen
pue uoissiwe |D3dS Bunewnss Joj wyioble W3 uy "sewoyl ‘g 4 pue ‘reulol d ‘W ‘ullbled "H 'a ‘sojbuew ‘H 'S “aysmog '3 T ‘loI Y

‘0002 ‘T2-£79:(6)08 ! pun anj yuyosyez “uonngiisip uoienuane Buikrer-Ajeneds umouun ue buiwnsse
pue suonoduny Ieal 1o uoneziwndo Buisn Buibewr | D34S Ul UONIBII0D UONENUSANE 81RINJDY ‘feg "D Pue ‘00N o ‘BlkopyoelD " ‘nejwey 'y

'666T J9qWadaq ‘002-v6TT:(ZT)8T "W/
‘PO 1L 333/ "suondafoid UOISSIWS 82USPIOUIND pue SBJBUIS PAUIGWIOD WOJ) S1019k) UONENUSNE JO UoNeNd[eD “uolBuBinL ' 'L pue uowke] W D

“666T dUNC ‘Ty—GES:(€)9Y 105 ONN UL 333/
“SUONNGUISIP UONENUSNE Pue AJANIE 103 S JO UOIELUNSS SNOBUENNWIS 10} POLIAL UoNeNUaNe [enualayip v "eliA “H pue oukeH "4 'd ‘ueldey ‘s "W

"086T aunr "D ‘piojuels
“AIUN PIOJUEIS ‘SISBY) QUd UOHONISUODBI UOISSIWS pue uoienusne jujof Buipnjoul buibew (eaipaw Ioj suiyiiobje uosewnss 'seunN d 'y d

*6.6T Arenuer ‘(2)9z “19S NN UL FFF| "SHUL101802 AlANOR pue uonenuane
40 uone|naes snoaur)Nwis :wajqoid Aydeibowo) pazusindwod uoissiwe ay) o) yoeosdde mau v 'AnL 'H pue que7 ‘v ‘UosjeIsno ‘3 ‘g ‘I0Susd ‘A

*L66T 12qwadad ‘8-Tere:(2-9) vy
“19S "ONN "L 333/ "eyep delpsed olweuAp Jo uonisinboe spow-isi| Jo sabejueApy '9|98lS d 'd PUe ‘UOSUYOr M "L ‘9P d "3 ‘YduIy 1°Q ‘Ssoy ‘I T

'000Z AeW ,mm\muﬁAmwmam.Pm\ "PaN 4L 3331 "sabew 1D3dS pareB-oeipies Jo uoRINISU0IAI -y
uononpal uoendwod pue Ayenb abew panoidw] ‘snuojald "H d pue ‘sareos T 3 ‘auiAg "1 "D “OIUIBM "N N ‘Buiy v "IN ‘ueuekereN ‘A ‘N

'666T UoIeN
‘G6—G8T:(E)8T "W/ ‘PaW UL 331 "13d dlweuAp Joj uondnnsuodal abew [eiodwal-oneds Ise4 "JIASOJIN "N PUB ‘ouIsnjul T "3 MOILIBM ‘N ‘W

*666T 1SNBNY '8—TO0T:(2-¥)9¥ “19S 9NN L 333/ "sebewl 1D3dS pareb oelpIed Jo uonoNJIsuodal
Qv 01 WiojsueI) 9A307T-uaUNYIE Y} Jo uonedliddy SIUISM N “I PUE 'SNUoIBId H d ‘auwikg “] D ‘saieos ‘¢ '3 ‘Buiy 'V "W ‘ueuekereN A W

'866T UOIBIN '99-TS9:(E)EY "/0/g 'PIN "SAld “erep uonoaloid |3 Jo siskjeue
[enoads Buisn uoponsisuodal abew ollaweled "8dlid d pue ‘sauor “L ‘sorelalnr] -] Aajreg 1 °Q ‘weybuiuund T A ‘SMBURBIN "D T ‘SPIBIN "d 'S

166T dunr ‘€/-SSTT(9)zy “/0/g ‘PAN "SAlyd *UONINASUOIDI dANEId)
pooyiaxI|-wnwixew mc_mj elep 13d U,Em:\:u wouy sabew! o_:m_.:m‘_mn 40 uonended JoalIp ay L .Emzm:_CQ:O ‘A pue ‘20ud d ‘A3 reg ‘q ‘smaynenw ¢

“L66T 12quiaaq ‘Le—22L:(9)9T "W/ ‘paw AL 3331 “weibouls ayy
JO uoneliolsal pue uonewixoidde 19pJ0-Mo| uo paseq 13d o_ENrS_u 10j uonoNIISUOIdI mmmE_ OIS "N ‘W pue .mm:mr_v_:—z T dm> L Coey ‘W-D

‘2002 dunt '9/-659:(€)8T “qoid asiaAu|

suoneayddy ‘|| :swajqoid sIaAUl diureUAD JO uoNeZieNBal SUY) 10} SWUNIOBIE JUSIOT UBUONYNEA ‘W PUE 'SISOM "D ‘SIN0T M 'V ‘MWYdS N

200c
aunr '85-519:(€)8T “qoid asienul "AiosyL °| :swalqoid asiaul dlweuAp Jo uonezieinBal sy Joj swyioble UBYT 'SIN0T Y 'Y pue MWYIS ‘N

"0002 ‘G9-2G/ST sabed ‘Z awnjon

“JuoD ‘W ‘paw ‘dwAs 198 "onN F33| "90id Ul "eyep apowl 1si| Woij uondnnsuodas abewn 134 ay AyesT ‘W "d pue 1O C 'S|OYdIN 3 'L ‘ewsy 'J
*666T ‘Ulag 19buuds "TTT-86 sabed “wy jeaipapy ul buissasoid uonew.ioju|

Buisn Buibew 134 aiweudp awn snonunuod Ayes ‘W Y pue ‘1O ¢ ‘S|OYdIN ‘3 'L

‘1011pa ‘lews ‘I ‘eqny 'y Yadoiyod-ppoL ‘v u| “erep apouw

866T 11dV '98-5.8:(n)eV "101g ‘PIW
‘SA4 *1D3dS deipted pajeb ul sjppow uonow Loud e Buisn uononnsuodal Qv I1Se} 10j senbiuyoel sAneIs)-¥00|g ‘INSL ‘M ‘N ‘g Pue ysnel ‘s '

‘866T '€/—29GT sebed ‘g awn|on ‘JuoD ‘wj ‘pay dwAs 195 "onN 3331 2014 u| “eyep uondafoid
103 olweuAp woly uopewnss Jareweied olgiauly pue [eneds juiof Joj wiploble uoneziwndo weisniniy uebuipng o 'L pue fejod '3 ‘'z 'S T

*166T ‘86-€82:(€)LL yeWayep ayasuawnN swaisks 123dS dweuAp jo siskjeue Aljiqers ayL "uns ‘M pue ulsmiog ‘W ¢

"P66T BUNC ‘YE—L22:(2)ET "W/ PO UL FF3/ “uonezirejnbal
Arepunog Jo uonew.ojul apis A1epunog Yim Uonewnsa paseq-lspoN "0J9H 'O "V PUB ‘SuIoyuld H "N ‘J19|ssa4 "V T ‘siaboy 1M ‘oelyd "D d

"€66T Joqwaldas ‘ZTH—66€:(€)2T "Wl ‘paw 1L 3331 "yoeoidde sisAjeue ainxiw e :13d ul s1ejawered [apow Jaoelolpel buibew| "ueAlins.0 5

"186T Areniged ‘€5-6vE:(T)VE 19S5 NN UL
3331 ‘AydeiBowo) uoissiwa-uomsod Buisn saipnis Jaoen olweuAp ur sweiboisly Bupewnsa Joj wyiobe [eanoeld e Jo uoneniers uy Isbullio ‘W T

*/86T aunr ‘Gz—STT:(2)9 “wy ‘paw 1L 333/ AydeiBowo) uoissiwa-uoiysod Buisn saipnis Jadel) dlweuAp Joj swiyptobie uonewns3 uabuljo "W T

[s9z]

[voe]

[egz]

[e9z]

[t92]

[o92]

[6s2]

[sse]

[2s2]

[ose]

[ae]

[vsel

[esz]

[esz]

[1s2]

losz]

[evel

[sve]

[2v2]

lovz]
[ave]

[vvel
leve]

[evel
[tve]



