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Part 4. Performance Characteristics

• Spatial resolution properties

• Noise properties

• Detection properties
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Spatial Resolution Properties

Choosing β can be painful, so ...

For true minimization methods:

x̂= argmin
x

Ψ(x)

the local impulse response is approximately (Fessler and Rogers, T-MI, Sep. 1996):

l j(x) = lim
δ→0

E[x̂|x+δe j ]−E[x̂|x]
δ

≈
[
−∇20Ψ

]−1∇11Ψ
∂

∂xj
ȳ(x).

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm.

• Enables prediction of resolution properties
(provided Ψ is minimized)

• Useful for designing regularization penalty functions
with desired resolution properties

l j(x)≈ [A
′WA+βR]−1A′WAxtrue.

• Helps choose β for desired spatial resolution
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Modified Penalty Example, PET

a) b) c)

d) e)

a) filtered backprojection
b) Penalized unweighted least-squares
c) PWLS with conventional regularization
d) PWLS with certainty-based penalty [25]
e) PWLS with modified penalty [143]
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Modified Penalty Example, SPECT - Noiseless

Target filtered object FBP Conventional PWLS

Truncated EM Post-filtered EM Modified Regularization
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Modified Penalty Example, SPECT - Noisy

Target filtered object FBP Conventional PWLS

Truncated EM Post-filtered EM Modified Regularization
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Reconstruction Noise Properties

For unconstrained (converged) minimization methods, the estimator is implicit :

x̂= x̂(y) = argmin
x

Ψ(x,y).

What is Cov{x̂}? New simpler derivation.

Denote the column gradient by g(x,y)
4
= ∇xΨ(x,y).

Ignoring constraints, the gradient is zero at the minimizer: g(x̂(y),y) = 0.
First-order Taylor series expansion:

g(x̂,y) ≈ g(xtrue,y)+∇xg(xtrue,y)(x̂−xtrue)

= g(xtrue,y)+∇2
xΨ(x

true,y)(x̂−xtrue).

Equating to zero:

x̂≈ xtrue−
[
∇2
xΨ(x

true,y)
]−1∇xΨ(xtrue,y).

If the Hessian ∇2Ψ is weakly dependent on y, then

Cov{x̂} ≈
[
∇2
xΨ(x

true, ȳ)
]−1

Cov
{

∇xΨ(xtrue,y)
}[

∇2
xΨ(x

true, ȳ)
]−1
.

If we further linearize w.r.t. the data: g(x,y)≈ g(x, ȳ)+∇yg(x, ȳ)(y− ȳ), then

Cov{x̂} ≈
[
∇2
xΨ
]−1
(∇x∇yΨ) Cov{y} (∇x∇yΨ)′

[
∇2
xΨ
]−1
.
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Covariance Continued

Covariance approximation:

Cov{x̂} ≈
[
∇2
xΨ(x

true, ȳ)
]−1

Cov
{

∇xΨ(xtrue,y)
}[

∇2
xΨ(x

true, ȳ)
]−1

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm.

• Enables prediction of noise properties

• Can make variance images

• Useful for computing ROI variance (e.g., for weighted kinetic fitting)

• Good variance prediction for quadratic regularization in nonzero regions

• Inaccurate for nonquadratic penalties, or in nearly-zero regions
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Qi and Huesman’s Detection Analysis

SNR of MAP reconstruction > SNR of FBP reconstruction (T-MI, Aug. 2001)

quadratic regularization
SKE/BKE task
prewhitened observer
non-prewhitened observer
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Part 5. Miscellaneous Topics

(Pet peeves and more-or-less recent favorites)

• Short transmission scans

• 3D PET options

• OSEM of transmission data (ugh!)

• Precorrected PET data

• Transmission scan problems

• List-mode EM

• List of other topics I wish I had time to cover...
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PET Attenuation Correction (J. Nuyts)
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Iterative reconstruction for 3D PET

• Fully 3D iterative reconstruction
• Rebinning / 2.5D iterative reconstruction
• Rebinning / 2D iterative reconstruction
◦ PWLS
◦ OSEM with attenuation weighting

• 3D FBP
• Rebinning / FBP
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OSEM of Transmission Data?

Bai and Kinahan et al. “‘Post-injection single photon transmission tomography
with ordered-subset algorithms for wholebody PET imaging”
• 3D penalty better than 2D penalty
• OSTR with 3D penalty better than FBP and OSEM
• standard deviation from a single realization to estimate noise can be misleading

Using OSEM for transmission data requires taking logarithm,
whereas OSTR does not.



5.5Fessler, Univ. of Michigan

Precorrected PET data

C. Michel examined shifted-Poisson model, “weighted OSEM” of various flavors.

concluded attenuation weighting matters especially
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Transmission Scan Challenges

• Overlapping-beam transmission scans
• Polyenergetic X-ray CT scans
• Sourceless attenuation correction

All can be tackled with optimization transfer methods.
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List-mode EM

x(n+1)
j = x(n)j

[
nd

∑
i=1

ai j
yi

ȳ(n)i

]
/

(
nd

∑
i=1

ai j

)

=
x(n)j

∑nd
i=1ai j

∑
i :yi 6=0

ai j
yi

ȳ(n)i

• Useful when ∑nd
i=1yi ≤ ∑nd

i=11
• Attenuation and scatter non-trivial
• Computing ai j on-the-fly
• Computing sensitivity ∑nd

i=1ai j still painful
• List-mode ordered-subsets is naturally balanced
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Misc

• 4D regularization (reconstruction of dynamic image sequences)

• “Sourceless” attenuation-map estimation

• Post-injection transmission/emission reconstruction

• µ-value priors for transmission reconstruction

• Local errors in µ̂ propagate into emission image (PET and SPECT)
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Summary

• Predictability of resolution / noise and controlling spatial resolution
argues for regularized cost function
• todo: Still work to be done...


