Part 2: Five Categories of Choices

- Object parameterization: function $f(\vec{r})$ vs finite coefficient vector \boldsymbol{x}
- System physical model: $\{s_i(\vec{r})\}$
- Measurement statistical model $y_i \sim$?
- Cost function: data-mismatch and regularization
- Algorithm / initialization

No perfect choices - one can critique all approaches!

Choice 1. Object Parameterization

Finite measurements: $\{y_i\}_{i=1}^{n_d}$. Continuous object: $f(\vec{r})$. Hopeless?

All models are wrong but some models are useful.

Linear series expansion approach. Replace $f(\vec{r})$ by $\boldsymbol{x} = (x_1, \dots, x_{n_p})$ where

$$f(\vec{r}) \approx \tilde{f}(\vec{r}) = \sum_{j=1}^{n_p} x_j b_j(\vec{r}) \leftarrow$$
 "basis functions"

Forward projection:

$$\int s_i(\vec{r}) f(\vec{r}) \, \mathrm{d}\vec{r} = \int s_i(\vec{r}) \left[\sum_{j=1}^{n_p} x_j b_j(\vec{r}) \right] \, \mathrm{d}\vec{r} = \sum_{j=1}^{n_p} \left[\int s_i(\vec{r}) b_j(\vec{r}) \, \mathrm{d}\vec{r} \right] x_j$$
$$= \sum_{j=1}^{n_p} a_{ij} x_j = [\mathbf{A}\mathbf{x}]_i, \text{ where } a_{ij} \stackrel{\triangle}{=} \int s_i(\vec{r}) b_j(\vec{r}) \, \mathrm{d}\vec{r}$$

- Projection integrals become finite summations.
- a_{ij} is contribution of *j*th basis function (*e.g.*, voxel) to *i*th detector unit.
- The units of a_{ij} and x_j depend on the user-selected units of $b_j(\vec{r})$.
- The $n_d \times n_p$ matrix $A = \{a_{ij}\}$ is called the system matrix.

(Linear) Basis Function Choices

- Fourier series (complex / not sparse)
- Circular harmonics (complex / not sparse)
- Wavelets (negative values / not sparse)
- Kaiser-Bessel window functions (blobs)
- Overlapping circles (disks) or spheres (balls)
- Polar grids, logarithmic polar grids
- "Natural pixels" $\{s_i(\vec{r})\}$
- B-splines (pyramids)
- Rectangular pixels / voxels (rect functions)
- Point masses / bed-of-nails / lattice of points / "comb" function
- Organ-based voxels (*e.g.*, from CT), ...

Considerations

- Represent $f(\vec{r})$ "well" with moderate n_p
- Orthogonality? (not essential)
- "Easy" to compute a_{ij} 's and/or Ax
- Rotational symmetry
- If stored, the system matrix A should be sparse (mostly zeros).
- Easy to represent nonnegative functions *e.g.*, if $x_j \ge 0$, then $f(\vec{r}) \ge 0$. A sufficient condition is $b_j(\vec{r}) \ge 0$.

Nonlinear Object Parameterizations

Estimation of intensity and shape (e.g., location, radius, etc.)

Surface-based (homogeneous) models

- Circles / spheres
- Ellipses / ellipsoids
- Superquadrics
- Polygons
- Bi-quadratic triangular Bezier patches, ...

Other models

- Generalized series $f(\vec{r}) = \sum_j x_j b_j(\vec{r}, \theta)$
- Deformable templates $f(\vec{r}) = b(T_{\theta}(\vec{r}))$

• ...

Considerations

- Can be considerably more parsimonious
- If correct, yield greatly reduced estimation error
- Particularly compelling in limited-data problems
- Often oversimplified (all models are wrong but...)
- Nonlinear dependence on location induces non-convex cost functions, complicating optimization

Example Basis Functions - 1D

Pixel Basis Functions - 2D

Continuous image $f(\vec{r})$

Pixel basis approximation $\sum_{j=1}^{n_p} x_j b_j(\vec{r})$

Discrete Emission Reconstruction Problem

Having chosen a basis an parameterized the emission density...

Estimate the emission density coefficient vector $\boldsymbol{x} = (x_1, \dots, x_{n_p})$ (aka "image") using (something like) this statistical model:

$$v_i \sim \operatorname{Poisson}\left\{\sum_{j=1}^{n_p} a_{ij}x_j + r_i\right\}, \qquad i = 1, \dots, n_d.$$

- $\{y_i\}_{i=1}^{n_d}$: observed counts from each detector unit
- $A = \{a_{ij}\}$: system matrix (determined by system models)
- *r_i*'s : background contributions (determined separately)

Many image reconstruction problems are "find x given y" where

$$y_i = g_i([\mathbf{A}\mathbf{x}]_i) + \varepsilon_i, \qquad i = 1, \dots, n_d.$$

Choice 2. System Model

System matrix elements: $a_{ij} = \int s_i(\vec{r}) b_j(\vec{r}) d\vec{r}$

- scan geometry
- collimator/detector response
- attenuation
- scatter (object, collimator, scintillator)
- duty cycle (dwell time at each angle)
- detector efficiency / dead-time losses
- positron range, noncollinearity, crystal penetration, ...

• ...

Considerations

- Improving system model can improve
 - Quantitative accuracy
 - Spatial resolution
 - Contrast, SNR, detectability
- Computation time (and storage vs compute-on-fly)
- Model uncertainties

(*e.g.*, calculated scatter probabilities based on noisy attenuation map)

Artifacts due to over-simplifications

Measured System Model?

Determine a_{ij} 's by scanning a voxel-sized cube source over the imaging volume and recording counts in all detector units (separately for each voxel).

- Avoids mathematical model approximations
- Scatter / attenuation added later, approximately
- Small probabilities \Rightarrow long scan times
- Storage
- Repeat for every voxel size of interest
- Repeat if detectors change

"Line Length" System Model

"Strip Area" System Model

Sensitivity Patterns

$$\sum_{i=1}^{n_d} a_{ij} \approx s(\vec{r}_j) = \sum_{i=1}^{n_d} s_i(\vec{r}_j)$$

Line Length

Strip Area

Point-Lattice Projector/Backprojector

 a_{ij} 's determined by linear interpolation

Fessler, Univ. of Michigan

Point-Lattice Artifacts

Projections (sinograms) of uniform disk object:

Fessler, Univ. of Michigan

Forward- / Back-projector "Pairs"

Forward projection (image domain to projection domain):

$$\bar{y}_i = \int s_i(\vec{r}) f(\vec{r}) \, \mathrm{d}\vec{r} = \sum_{j=1}^{n_p} a_{ij} x_j = [\boldsymbol{A}\boldsymbol{x}]_i, \text{ or } \bar{\boldsymbol{y}} = \boldsymbol{A}\boldsymbol{x}$$

Backprojection (projection domain to image domain):

$$oldsymbol{A}'oldsymbol{y} = \left\{\sum_{i=1}^{n_d} a_{ij} y_i
ight\}_{j=1}^{n_p}$$

Often A'y is implemented as By for some "backprojector" $B \neq A'$ Least-squares solutions (for example):

$$\hat{x} = [A'A]^{-1}A'y
eq [BA]^{-1}By$$

Mismatched Backprojector $m{B} eq A'$

\hat{x} (PWLS-CG) \hat{x} (PWLS-CG)

Matched

Mismatched

 \boldsymbol{x}

Horizontal Profiles

System Model Tricks

• Factorize (*e.g.*, PET Gaussian detector response)

 $oldsymbol{A}pprox oldsymbol{S}oldsymbol{G}$

(geometric projection followed by Gaussian smoothing)

- Symmetry
- Rotate and Sum
- Gaussian diffusion for SPECT Gaussian detector response
- Correlated Monte Carlo (Beekman *et al.*)

In all cases, consistency of backprojector with A' requires care.

SPECT System Model

Complications: nonuniform attenuation, depth-dependent PSF, Compton scatter

Fessler, Univ. of Michigan

Choice 3. Statistical Models

After modeling the system physics, we have a deterministic "model:"

 $y_i \approx g_i([\mathbf{A}\mathbf{x}]_i)$

for some functions g_i , *e.g.*, $g_i(l) = l + r_i$ for emission tomography.

Statistical modeling is concerned with the " \approx " aspect.

Considerations

- More accurate models:
 - \circ can lead to lower variance images,
 - may incur additional computation,
 - may involve additional algorithm complexity

(*e.g.*, proper transmission Poisson model has nonconcave log-likelihood)

- Statistical model errors (*e.g.*, deadtime)
- Incorrect models (*e.g.*, log-processed transmission data)

Statistical Model Choices for Emission Tomography

- "None." Assume y r = Ax. "Solve algebraically" to find x.
- White Gaussian noise. Ordinary least squares: minimize $\|m{y} m{A}m{x}\|^2$
- Non-white Gaussian noise. Weighted least squares: minimize

$$\|oldsymbol{y} - oldsymbol{A}oldsymbol{x}\|_{oldsymbol{W}}^2 = \sum_{i=1}^{n_d} w_i (y_i - [oldsymbol{A}oldsymbol{x}]_i)^2, ext{ where } [oldsymbol{A}oldsymbol{x}]_i \stackrel{ riangle}{=} \sum_{j=1}^{n_p} a_{ij} x_j$$

• Ordinary Poisson model (ignoring or precorrecting for background)

 $y_i \sim \text{Poisson}\{[\boldsymbol{A}\boldsymbol{x}]_i\}$

Poisson model

$$y_i \sim \text{Poisson}\{[Ax]_i + r_i\}$$

• Shifted Poisson model (for randoms precorrected PET)

 $y_i = y_i^{\text{prompt}} - y_i^{\text{delay}} \sim \text{Poisson}\{[\mathbf{A}\mathbf{x}]_i + 2r_i\} - 2r_i$

Shifted Poisson model for PET

Statistical model choices

• Ordinary Poisson model: ignore randoms

 $[y_i]_+ \sim \text{Poisson}\{[Ax]_i\}$

Causes bias due to truncated negatives

• Data-weighted least-squares (Gaussian model):

$$y_i \sim N\left([\boldsymbol{A}\boldsymbol{x}]_i, \hat{\boldsymbol{\sigma}}_i^2\right), \qquad \hat{\boldsymbol{\sigma}}_i^2 = \max\left(y_i + 2\hat{r}_i, \boldsymbol{\sigma}_{\min}^2\right)$$

Causes bias due to data-weighting

• Shifted Poisson model (matches 2 moments):

 $[y_i+2\hat{r}_i]_+ \sim \text{Poisson}\{[Ax]_i+2\hat{r}_i\}$

Insensitive to inaccuracies in \hat{r}_i .

Shifted-Poisson Model for X-ray CT

Model with both photon variability and readout noise:

 $y_i \sim \text{Poisson}\{\bar{y}_i(\boldsymbol{\mu})\} + N(0, \sigma^2)$

Shifted Poisson approximation

$$y_i + \sigma^2 \sim \text{Poisson}\{\bar{y}_i(\boldsymbol{\mu}) + \sigma^2\}$$

or just use WLS...

Complications:

- Intractability of likelihood for Poisson+Gaussian
- Poisson mixture distribution due to photon-energy-dependent detector signal.

Choice 4. Cost Functions

Components:

- Data-mismatch term
- *Regularization* term (and regularization parameter β)
- Constraints (*e.g.*, nonnegativity)

 $\Psi(\boldsymbol{x}) = \overline{\mathsf{DataMismatch}(\boldsymbol{y}, \boldsymbol{A}\boldsymbol{x}) + \beta \cdot \mathsf{Roughness}(\boldsymbol{x})}$ $\hat{\boldsymbol{x}} \stackrel{\triangle}{=} \arg\min_{\boldsymbol{x} \ge \boldsymbol{0}} \Psi(\boldsymbol{x})$

Actually *several* sub-choices to make for Choice 4 ...

Distinguishes "statistical methods" from "algebraic methods" for "y = Ax."

Why Cost Functions?

(vs "procedure" *e.g.*, adaptive neural net with wavelet denoising)

Theoretical reasons

ML is based on minimizing a *cost function*: the negative log-likelihood

- ML is asymptotically consistent
- ML is asymptotically unbiased
- ML is asymptotically efficient (under true statistical model...)
- Estimation: Penalized-likelihood achieves uniform CR bound asymptotically
- Detection: Qi and Huesman showed analytically that MAP reconstruction outperforms FBP for SKE/BKE lesion detection (T-MI, Aug. 2001)

Practical reasons

- Stability of estimates (if Ψ and algorithm chosen properly)
- Predictability of properties (despite nonlinearities)
- Empirical evidence (?)

Bayesian Framework

Given a prior distribution p(x) for image vectors x, by Bayes' rule: posterior: p(x|y) = p(y|x)p(x)/p(y)

SO

 $\log p(\boldsymbol{x}|\boldsymbol{y}) = \log p(\boldsymbol{y}|\boldsymbol{x}) + \log p(\boldsymbol{x}) - \log p(\boldsymbol{y})$

• $-\log p(\boldsymbol{y}|\boldsymbol{x})$ corresponds to data mismatch term

• $-\log p(x)$ corresponds to regularizing penalty function

Maximum a posteriori (MAP) estimator:

 $\hat{\boldsymbol{x}} = rg\max_{\boldsymbol{x}} \log p(\boldsymbol{x}|\boldsymbol{y})$

• Has certain optimality properties (provided p(y|x) and p(x) are correct).

• Same form as Ψ

Choice 4.1: Data-Mismatch Term

Options for PET:

• Negative log-likelihood of statistical model. Poisson *emission* case:

$$-L(\boldsymbol{x};\boldsymbol{y}) = -\log p(\boldsymbol{y}|\boldsymbol{x}) = \sum_{i=1}^{n_d} \left([\boldsymbol{A}\boldsymbol{x}]_i + r_i \right) - y_i \log([\boldsymbol{A}\boldsymbol{x}]_i + r_i) + \log y_i!$$

- Ordinary (unweighted) least squares: $\sum_{i=1}^{n_d} \frac{1}{2} (y_i \hat{r}_i [Ax]_i)^2$
- Data-weighted least squares: $\sum_{i=1}^{n_d} \frac{1}{2} (y_i \hat{r}_i [\mathbf{A}\mathbf{x}]_i)^2 / \hat{\sigma}_i^2$, $\hat{\sigma}_i^2 = \max(y_i + \hat{r}_i, \sigma_{\min}^2)$, (causes bias due to data-weighting).
- Reweighted least-squares: $\hat{\sigma}_i^2 = [\hat{A}\hat{x}]_i + \hat{r}_i$
- Model-weighted least-squares (nonquadratic, but convex!)

$$\sum_{i=1}^{n_d} \frac{1}{2} (y_i - \hat{r}_i - [\mathbf{A}\mathbf{x}]_i)^2 / ([\mathbf{A}\mathbf{x}]_i + \hat{r}_i)$$

Nonquadratic cost-functions that are robust to outliers

• ...

Considerations

- Faithfulness to statistical model vs computation
- Ease of optimization (convex?, quadratic?)
- Effect of statistical modeling errors

Choice 4.2: Regularization

Forcing too much "data fit" gives noisy images Ill-conditioned problems: small data noise causes large image noise

Solutions:

- Noise-reduction methods
- True regularization methods

Noise-reduction methods

- Modify the *data*
 - Prefilter or "denoise" the sinogram measurements
 - Extrapolate missing (*e.g.*, truncated) data
- Modify an algorithm derived for an ill-conditioned problem
 - Stop algorithm before convergence
 - \circ Run to convergence, post-filter
 - $\circ\,$ Toss in a filtering step every iteration or couple iterations
 - Modify update to "dampen" high-spatial frequencies [112]

Noise-Reduction vs True Regularization

Advantages of noise-reduction methods

- Simplicity (?)
- Familiarity
- Appear less subjective than using penalty functions or priors
- Only fiddle factors are # of iterations, amount of smoothing
- Resolution/noise tradeoff usually varies with iteration (stop when image looks good - in principle)
- Changing post-smoothing does not require re-iterating

Advantages of true regularization methods

- Stability
- Predictability
- Resolution can be made object independent
- Controlled resolution (*e.g.*, spatially uniform, edge preserving)
- Start with decent image (*e.g.*, FBP) \Rightarrow reach solution faster.

True Regularization Methods

Redefine the *problem* to eliminate ill-conditioning, rather than patching the data or algorithm!

- Use bigger pixels (fewer basis functions)
 - Visually unappealing
 - Can only preserve edges coincident with pixel edges
 - Results become even less invariant to translations
- Method of sieves (constrain image roughness)

 Condition number for "pre-emission space" can be even worse
 Lots of iterations
 Commutability condition rarely holds exactly in practice
 Degenerates to post-filtering in some cases
- Change cost function by adding a roughness penalty / prior

 Disadvantage: apparently subjective choice of penalty
 Apparent difficulty in choosing penalty parameters
 (cf apodizing filter / cutoff frequency in FBP)

Penalty Function Considerations

- Computation
- Algorithm complexity
- Uniqueness of minimizer of $\Psi({m x})$
- Resolution properties (edge preserving?)
- # of adjustable parameters
- Predictability of properties (resolution and noise)

Choices

- separable vs nonseparable
- quadratic vs nonquadratic
- convex vs nonconvex

Penalty Functions: Separable vs Nonseparable

Separable

- Identity norm: $R(x) = \frac{1}{2}x'Ix = \sum_{j=1}^{n_p} x_j^2/2$ penalizes large values of x, but causes "squashing bias"
- Entropy: $R(\boldsymbol{x}) = \sum_{j=1}^{n_p} x_j \log x_j$
- Gaussian prior with mean μ_j , variance σ_j^2 : $R(\boldsymbol{x}) = \sum_{j=1}^{n_p} \frac{(x_j \mu_j)^2}{2\sigma_i^2}$
- Gamma prior $R(\boldsymbol{x}) = \sum_{j=1}^{n_p} p(x_j, \mu_j, \sigma_j)$ where $p(x, \mu, \sigma)$ is Gamma pdf

The first two basically keep pixel values from "blowing up." The last two encourage pixels values to be close to prior means μ_j .

General separable form:
$$R(\boldsymbol{x}) = \sum_{j=1}^{n_p} f_j(x_j)$$

Simple, but these do not explicitly enforce smoothness.

Penalty Functions: Separable vs Nonseparable

Nonseparable (partially couple pixel values) to penalize *roughness*

x_1	<i>x</i> ₂	<i>x</i> ₃
<i>x</i> ₄	<i>x</i> 5	

Example $R(\boldsymbol{x}) = (x_2 - x_1)^2 + (x_3 - x_2)^2 + (x_5 - x_4)^2$ $+ (x_4 - x_1)^2 + (x_5 - x_2)^2$

Rougher images \Rightarrow greater R(x)

Roughness Penalty Functions

First-order neighborhood and pairwise pixel differences:

$$R(\boldsymbol{x}) = \sum_{j=1}^{n_p} \frac{1}{2} \sum_{k \in N_j} \Psi(x_j - x_k)$$

 $N_j \stackrel{\triangle}{=} neighborhood of jth pixel (e.g., left, right, up, down)$ $<math>\psi$ called the *potential function*

Finite-difference approximation to continuous roughness measure:

$$R(f(\cdot)) = \int \|\nabla f(\vec{r})\|^2 \,\mathrm{d}\vec{r} = \int \left|\frac{\partial}{\partial x}f(\vec{r})\right|^2 + \left|\frac{\partial}{\partial y}f(\vec{r})\right|^2 + \left|\frac{\partial}{\partial z}f(\vec{r})\right|^2 \,\mathrm{d}\vec{r}.$$

Second derivatives also useful: (More choices!)

$$\frac{\partial^2}{\partial x^2} f(\vec{r}) \Big|_{\vec{r}=\vec{r}_j} \approx f(\vec{r}_{j+1}) - 2f(\vec{r}_j) + f(\vec{r}_{j-1})$$

$$R(\boldsymbol{x}) = \sum_{j=1}^{n_p} \Psi(x_{j+1} - 2x_j + x_{j-1}) + \cdots$$

Penalty Functions: General Form

$$R(\boldsymbol{x}) = \sum_{k} \psi_k([\boldsymbol{C}\boldsymbol{x}]_k)$$
 where $[\boldsymbol{C}\boldsymbol{x}]_k = \sum_{j=1}^{n_p} c_{kj} x_j$

Example:

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
<i>x</i> ₄	<i>x</i> ₅	

$$\boldsymbol{C}\boldsymbol{x} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ x_5 - x_4 \\ x_4 - x_1 \\ x_5 - x_2 \end{bmatrix}$$

 $R(\boldsymbol{x}) = \sum_{k=1}^{5} \Psi_{k}([\boldsymbol{C}\boldsymbol{x}]_{k}) = \Psi_{1}(x_{2} - x_{1}) + \Psi_{2}(x_{3} - x_{2}) + \Psi_{3}(x_{5} - x_{4}) + \Psi_{4}(x_{4} - x_{1}) + \Psi_{5}(x_{5} - x_{2})$

Penalty Functions: Quadratic vs Nonquadratic

$$R(\boldsymbol{x}) = \sum_{k} \psi_k([\boldsymbol{C}\boldsymbol{x}]_k)$$

Quadratic ψ_k

If $\psi_k(t) = t^2/2$, then $R(x) = \frac{1}{2}x'C'Cx$, a quadratic form.

- Simpler optimization
- Global smoothing

Nonquadratic ψ_k

- Edge preserving
- More complicated optimization. (This is essentially solved in convex case.)
- Unusual noise properties
- Analysis/prediction of resolution and noise properties is difficult
- More adjustable parameters (*e.g.*, δ)

Example: Huber function.
$$\psi(t) \stackrel{ riangle}{=} \left\{ \begin{array}{l} t^2/2, & |t| \leq \delta \\ \delta|t| - \delta^2/2, & |t| > \delta \end{array} \right.$$

Lower cost for large differences \Rightarrow edge preservation

Edge-Preserving Reconstruction Example

A transmission example would be preferable...

Penalty Functions: Convex vs Nonconvex

Convex

- Easier to optimize
- Guaranteed unique minimizer of Ψ (for convex negative log-likelihood)

Nonconvex

- Greater degree of edge preservation
- Nice images for piecewise-constant phantoms!
- Even more unusual noise properties
- Multiple extrema
- More complicated optimization (simulated / deterministic annealing)
- Estimator \hat{x} becomes a discontinuous function of data Y

Nonconvex examples

• "broken parabola"

$$\Psi(t) = \min(t^2, t_{\max}^2)$$

• true median root prior:

$$R(\boldsymbol{x}) = \sum_{j=1}^{n_p} \frac{(x_j - \text{median}_j(\boldsymbol{x}))^2}{\text{median}_j(\boldsymbol{x})} \text{ where } \text{median}_j(\boldsymbol{x}) \text{ is local median}$$

Exception: orthonormal wavelet threshold *denoising* via nonconvex potentials!

Local Extrema and Discontinuous Estimators

Small change in data \Rightarrow large change in minimizer \hat{x} . Using convex penalty functions obviates this problem.

Augmented Regularization Functions

Replace roughness penalty R(x) with $R(x|b) + \alpha R(b)$, where the elements of *b* (often binary) indicate boundary locations.

- Line-site methods
- Level-set methods

Joint estimation problem:

$$(\hat{\boldsymbol{x}}, \hat{\boldsymbol{b}}) = \arg\min_{\boldsymbol{x}, \boldsymbol{b}} \Psi(\boldsymbol{x}, \boldsymbol{b}), \qquad \Psi(\boldsymbol{x}, \boldsymbol{b}) = -L(\boldsymbol{x}; \boldsymbol{y}) + \beta R(\boldsymbol{x}|\boldsymbol{b}) + \alpha R(\boldsymbol{b}).$$

Example: b_{jk} indicates the presence of edge between pixels *j* and *k*:

$$R(\boldsymbol{x}|\boldsymbol{b}) = \sum_{j=1}^{n_p} \sum_{k \in N_j} (1 - b_{jk}) \frac{1}{2} (x_j - x_k)^2$$

Penalty to discourage too many edges (*e.g.*):

$$R(\boldsymbol{b}) = \sum_{jk} b_{jk}.$$

- Can encourage local edge continuity
- Require annealing methods for minimization

Modified Penalty Functions

$$R(\boldsymbol{x}) = \sum_{j=1}^{n_p} \frac{1}{2} \sum_{k \in N_j} w_{jk} \Psi(x_j - x_k)$$

Adjust weights $\{w_{jk}\}$ to

- Control resolution properties
- Incorporate anatomical side information (MR/CT) (avoid smoothing across anatomical boundaries)

Recommendations

- Emission tomography:
 - begin with quadratic (nonseparable) penalty functions
 - \circ Consider modified penalty for resolution control and choice of β
 - Use modest regularization and post-filter more if desired
- Transmission tomography (attenuation maps)
 - consider convex nonquadratic (*e.g.*, Huber) penalty functions
 - \circ choose δ based on attenuation map units
 - \circ choice of regularization parameter β remains nontrivial, learn appropriate values by experience for given study type

Choice 4.3: Constraints

- Nonnegativity
- Known support
- Count preserving
- Upper bounds on values *e.g.*, maximum μ of attenuation map in transmission case

Considerations

- Algorithm complexity
- Computation
- Convergence rate
- Bias (in low-count regions)
- • •

Open Problems

Modeling

- Noise in *a_{ij}*'s (system model errors)
- Noise in \hat{r}_i 's (estimates of scatter / randoms)
- Statistics of corrected measurements
- Statistics of measurements with deadtime losses

Cost functions

- Performance prediction for nonquadratic penalties
- Effect of nonquadratic penalties on detection tasks
- Choice of regularization parameters for nonquadratic regularization

Summary

- 1. Object parameterization: function $f(\vec{r})$ vs vector \boldsymbol{x}
- 2. System physical model: $s_i(x)$
- 3. Measurement statistical model $Y_i \sim ?$
- 4. Cost function: data-mismatch / regularization / constraints

Reconstruction Method = Cost Function + Algorithm

Naming convention:

• ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, ...