Part 2: Five Categories of Choices

- Object parameterization: function $f(\vec{r})$ vs finite coefficient vector \boldsymbol{x}
- System physical model: $\left\{s_{i}(\vec{r})\right\}$
- Measurement statistical model $y_{i} \sim$?
- Cost function: data-mismatch and regularization
- Algorithm / initialization

No perfect choices - one can critique all approaches!

Choice 1. Object Parameterization

Finite measurements: $\left\{y_{i}\right\}_{i=1}^{n_{d}}$. Continuous object: $f(\vec{r})$. Hopeless?
All models are wrong but some models are useful.
Linear series expansion approach. Replace $f(\vec{r})$ by $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n_{p}}\right)$ where

$$
f(\vec{r}) \approx \tilde{f}(\vec{r})=\sum_{j=1}^{n_{p}} x_{j} b_{j}(\vec{r}) \leftarrow \text { "basis functions" }
$$

Forward projection:

$$
\begin{aligned}
\int s_{i}(\vec{r}) f(\vec{r}) \mathrm{d} \vec{r} & =\int s_{i}(\vec{r})\left[\sum_{j=1}^{n_{p}} x_{j} b_{j}(\vec{r})\right] \mathrm{d} \vec{r}=\sum_{j=1}^{n_{p}}\left[\int s_{i}(\vec{r}) b_{j}(\vec{r}) \mathrm{d} \vec{r}\right] x_{j} \\
& =\sum_{j=1}^{n_{p}} a_{i j} x_{j}=[\boldsymbol{A} x]_{i}, \text { where } a_{i j} \triangleq \int s_{i}(\vec{r}) b_{j}(\vec{r}) \mathrm{d} \vec{r}
\end{aligned}
$$

- Projection integrals become finite summations.
- $a_{i j}$ is contribution of j th basis function (e.g., voxel) to i th detector unit.
- The units of $a_{i j}$ and x_{j} depend on the user-selected units of $b_{j}(\vec{r})$.
- The $n_{d} \times n_{p}$ matrix $\boldsymbol{A}=\left\{a_{i j}\right\}$ is called the system matrix.

(Linear) Basis Function Choices

- Fourier series (complex / not sparse)
- Circular harmonics (complex / not sparse)
- Wavelets (negative values / not sparse)
- Kaiser-Bessel window functions (blobs)
- Overlapping circles (disks) or spheres (balls)
- Polar grids, logarithmic polar grids
- "Natural pixels" $\left\{s_{i}(\vec{r})\right\}$
- B-splines (pyramids)
- Rectangular pixels / voxels (rect functions)
- Point masses / bed-of-nails / lattice of points / "comb" function
- Organ-based voxels (e.g., from CT), ...

Considerations

- Represent $f(\vec{r})$ "well" with moderate n_{p}
- Orthogonality? (not essential)
- "Easy" to compute $a_{i j}$'s and/or $\boldsymbol{A} \boldsymbol{x}$
- Rotational symmetry
- If stored, the system matrix \boldsymbol{A} should be sparse (mostly zeros).
- Easy to represent nonnegative functions e.g., if $x_{j} \geq 0$, then $f(\vec{r}) \geq 0$. A sufficient condition is $b_{j}(\vec{r}) \geq 0$.

Nonlinear Object Parameterizations

Estimation of intensity and shape (e.g., location, radius, etc.)
Surface-based (homogeneous) models

- Circles / spheres
- Ellipses / ellipsoids
- Superquadrics
- Polygons
- Bi-quadratic triangular Bezier patches, ...

Other models

- Generalized series $f(\vec{r})=\sum_{j} x_{j} b_{j}(\vec{r}, \boldsymbol{\theta})$
- Deformable templates $f(\vec{r})=b\left(T_{\theta}(\vec{r})\right)$
- ...

Considerations

- Can be considerably more parsimonious
- If correct, yield greatly reduced estimation error
- Particularly compelling in limited-data problems
- Often oversimplified (all models are wrong but...)
- Nonlinear dependence on location induces non-convex cost functions, complicating optimization

Example Basis Functions - 1D

Pixel Basis Functions - 2D

Continuous image $f(\vec{r})$

Pixel basis approximation

$$
\sum_{j=1}^{n_{p}} x_{j} b_{j}(\vec{r})
$$

Discrete Emission Reconstruction Problem

Having chosen a basis an parameterized the emission density...
Estimate the emission density coefficient vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n_{p}}\right)$ (aka "image") using (something like) this statistical model:

$$
y_{i} \sim \operatorname{Poisson}\left\{\sum_{j=1}^{n_{p}} a_{i j} x_{j}+r_{i}\right\}, \quad i=1, \ldots, n_{d} .
$$

- $\left\{y_{i}\right\}_{i=1}^{n_{d}}$: observed counts from each detector unit
- $\boldsymbol{A}=\left\{a_{i j}\right\} \quad$: system matrix (determined by system models)
- r_{i} 's : background contributions (determined separately)

Many image reconstruction problems are "find x given \boldsymbol{y} " where

$$
y_{i}=g_{i}\left([\boldsymbol{A} \boldsymbol{x}]_{i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n_{d} .
$$

Choice 2. System Model

$$
\text { System matrix elements: } a_{i j}=\int s_{i}(\vec{r}) b_{j}(\vec{r}) \mathrm{d} \vec{r}
$$

- scan geometry
- collimator/detector response
- attenuation
- scatter (object, collimator, scintillator)
- duty cycle (dwell time at each angle)
- detector efficiency / dead-time losses
- positron range, noncollinearity, crystal penetration, ...

Considerations

- Improving system model can improve
- Quantitative accuracy
- Spatial resolution
- Contrast, SNR, detectability
- Computation time (and storage vs compute-on-fly)
- Model uncertainties
(e.g., calculated scatter probabilities based on noisy attenuation map)
- Artifacts due to over-simplifications

Measured System Model?

Determine $a_{i j}$'s by scanning a voxel-sized cube source over the imaging volume and recording counts in all detector units (separately for each voxel).

- Avoids mathematical model approximations
- Scatter / attenuation added later, approximately
- Small probabilities \Rightarrow long scan times
- Storage
- Repeat for every voxel size of interest
- Repeat if detectors change
"Line Length" System Model

"Strip Area" System Model

Sensitivity Patterns

$$
\sum_{i=1}^{n_{d}} a_{i j} \approx s\left(\vec{r}_{j}\right)=\sum_{i=1}^{n_{d}} s_{i}\left(\vec{r}_{j}\right)
$$

Line Length

Strip Area

Point-Lattice Projector/Backprojector

$a_{i j}$'s determined by linear interpolation

Point-Lattice Artifacts

Projections (sinograms) of uniform disk object:

Point Lattice

Forward- / Back-projector "Pairs"

Forward projection (image domain to projection domain):

$$
\bar{y}_{i}=\int s_{i}(\vec{r}) f(\vec{r}) \mathrm{d} \vec{r}=\sum_{j=1}^{n_{p}} a_{i j} x_{j}=[\boldsymbol{A} \boldsymbol{x}]_{i}, \text { or } \overline{\boldsymbol{y}}=\boldsymbol{A} \boldsymbol{x}
$$

Backprojection (projection domain to image domain):

$$
\boldsymbol{A}^{\prime} \boldsymbol{y}=\left\{\sum_{i=1}^{n_{d}} a_{i j} y_{i}\right\}_{j=1}^{n_{p}}
$$

Often $\boldsymbol{A}^{\prime} \boldsymbol{y}$ is implemented as $\boldsymbol{B y}$ for some "backprojector" $\boldsymbol{B} \neq \boldsymbol{A}^{\prime}$
Least-squares solutions (for example):

$$
\hat{\boldsymbol{x}}=\left[\boldsymbol{A}^{\prime} \boldsymbol{A}\right]^{-1} \boldsymbol{A}^{\prime} \boldsymbol{y} \neq[\boldsymbol{B} \boldsymbol{A}]^{-1} \boldsymbol{B} \boldsymbol{y}
$$

Mismatched Backprojector $B \neq A^{\prime}$

Matched
Mismatched

Horizontal Profiles

System Model Tricks

- Factorize (e.g., PET Gaussian detector response)

$$
A \approx S G
$$

(geometric projection followed by Gaussian smoothing)

- Symmetry
- Rotate and Sum
- Gaussian diffusion for SPECT Gaussian detector response
- Correlated Monte Carlo (Beekman et al.)

In all cases, consistency of backprojector with \boldsymbol{A}^{\prime} requires care.

SPECT System Model

Complications: nonuniform attenuation, depth-dependent PSF, Compton scatter

Choice 3. Statistical Models

After modeling the system physics, we have a deterministic "model:"

$$
y_{i} \approx g_{i}\left([\boldsymbol{A} \boldsymbol{x}]_{i}\right)
$$

for some functions g_{i}, e.g., $g_{i}(l)=l+r_{i}$ for emission tomography.
Statistical modeling is concerned with the " \approx " aspect.

Considerations

- More accurate models:
- can lead to lower variance images,
- may incur additional computation,
- may involve additional algorithm complexity (e.g., proper transmission Poisson model has nonconcave log-likelihood)
- Statistical model errors (e.g., deadtime)
- Incorrect models (e.g., log-processed transmission data)

Statistical Model Choices for Emission Tomography

- "None." Assume $\boldsymbol{y}-\boldsymbol{r}=\boldsymbol{A} \boldsymbol{x}$. "Solve algebraically" to find \boldsymbol{x}.
- White Gaussian noise. Ordinary least squares: minimize $\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|^{2}$
- Non-white Gaussian noise. Weighted least squares: minimize

$$
\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{W}^{2}=\sum_{i=1}^{n_{d}} w_{i}\left(y_{i}-[\boldsymbol{A} \boldsymbol{x}]_{i}\right)^{2}, \text { where }[\boldsymbol{A} \boldsymbol{x}]_{i} \triangleq \sum_{j=1}^{n_{p}} a_{i j} x_{j}
$$

- Ordinary Poisson model (ignoring or precorrecting for background)

$$
y_{i} \sim \operatorname{Poisson}\left\{[\boldsymbol{A} \boldsymbol{x}]_{i}\right\}
$$

- Poisson model

$$
y_{i} \sim \operatorname{Poisson}\left\{[\boldsymbol{A} \boldsymbol{x}]_{i}+r_{i}\right\}
$$

- Shifted Poisson model (for randoms precorrected PET)

$$
y_{i}=y_{i}^{\text {prompt }}-y_{i}^{\text {delay }} \sim \operatorname{Poisson}\left\{[\boldsymbol{A} \boldsymbol{x}]_{i}+2 r_{i}\right\}-2 r_{i}
$$

Shifted Poisson model for PET

Precorrected random coincidences: $\quad y_{i}=y_{i}^{\text {prompt }}-y_{i}^{\text {delay }}$

$$
\begin{aligned}
y_{i}^{\text {prompt }} & \sim \operatorname{Poisson}\left\{[\boldsymbol{A} \boldsymbol{x}]_{i}+r_{i}\right\} \\
y_{i}^{\text {delay }} & \sim \operatorname{Poisson}\left\{\boldsymbol{r}_{i}\right\} \\
E\left[y_{i}\right] & =[\boldsymbol{A} \boldsymbol{x}]_{i} \\
\operatorname{Var}\left\{y_{i}\right\} & =[\boldsymbol{A} \boldsymbol{x}]_{i}+2 r_{i} \quad \text { Mean } \neq \text { Variance } \Rightarrow \text { not Poisson! }
\end{aligned}
$$

Statistical model choices

- Ordinary Poisson model: ignore randoms

$$
\left[y_{i}\right]_{+} \sim \operatorname{Poisson}\left\{[\boldsymbol{A} \boldsymbol{x}]_{i}\right\}
$$

Causes bias due to truncated negatives

- Data-weighted least-squares (Gaussian model):

$$
y_{i} \sim \mathcal{N}\left([\boldsymbol{A} \boldsymbol{x}]_{i}, \hat{\boldsymbol{\sigma}}_{i}^{2}\right), \quad \hat{\mathrm{\sigma}}_{i}^{2}=\max \left(y_{i}+2 \hat{r}_{i}, \sigma_{\text {min }}^{2}\right)
$$

Causes bias due to data-weighting

- Shifted Poisson model (matches 2 moments):

$$
\left[y_{i}+2 \hat{r}_{i_{+}}\right]_{+} \sim \operatorname{Poisson}\left\{[\boldsymbol{A} x]_{i}+2 \hat{r}_{i}\right\}
$$

Insensitive to inaccuracies in \hat{r}_{i}.

Shifted-Poisson Model for X-ray CT

Model with both photon variability and readout noise:

$$
y_{i} \sim \operatorname{Poisson}\left\{\bar{y}_{i}(\boldsymbol{\mu})\right\}+N\left(0, \sigma^{2}\right)
$$

Shifted Poisson approximation

$$
y_{i}+\sigma^{2} \sim \operatorname{Poisson}\left\{\bar{y}_{i}(\boldsymbol{\mu})+\sigma^{2}\right\}
$$

or just use WLS...
Complications:

- Intractability of likelihood for Poisson+Gaussian
- Poisson mixture distribution due to photon-energy-dependent detector signal.

Choice 4. Cost Functions

Components:

- Data-mismatch term
- Regularization term (and regularization parameter β)
- Constraints (e.g., nonnegativity)

$$
\begin{gathered}
\Psi(x)=\text { DataMismatch }(\boldsymbol{y}, \boldsymbol{A} \boldsymbol{x})+\beta \cdot \text { Roughness }(\boldsymbol{x}) \\
\hat{x} \triangleq \arg \min _{x \geq 0} \Psi(x)
\end{gathered}
$$

Actually several sub-choices to make for Choice 4 ...
Distinguishes "statistical methods" from "algebraic methods" for " $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$."

Why Cost Functions?

(vs "procedure" e.g., adaptive neural net with wavelet denoising)

Theoretical reasons

ML is based on minimizing a cost function: the negative log-likelihood

- ML is asymptotically consistent
- ML is asymptotically unbiased
- ML is asymptotically efficient
- Estimation: Penalized-likelihood achieves uniform CR bound asymptotically
- Detection: Qi and Huesman showed analytically that MAP reconstruction outperforms FBP for SKE/BKE lesion detection (T-MI, Aug. 2001)

Practical reasons

- Stability of estimates (if Ψ and algorithm chosen properly)
- Predictability of properties (despite nonlinearities)
- Empirical evidence (?)

Bayesian Framework

Given a prior distribution $p(\boldsymbol{x})$ for image vectors \boldsymbol{x}, by Bayes' rule:

$$
\text { posterior: } p(\boldsymbol{x} \mid \boldsymbol{y})=p(\boldsymbol{y} \mid \boldsymbol{x}) p(\boldsymbol{x}) / p(\boldsymbol{y})
$$

so

$$
\log p(\boldsymbol{x} \mid \boldsymbol{y})=\log p(\boldsymbol{y} \mid \boldsymbol{x})+\log p(\boldsymbol{x})-\log p(\boldsymbol{y})
$$

- $-\log p(\boldsymbol{y} \mid x)$ corresponds to data mismatch term
- $-\log p(x)$ corresponds to regularizing penalty function

Maximum a posteriori (MAP) estimator:

$$
\hat{\boldsymbol{x}}=\arg \max _{\boldsymbol{x}} \log p(\boldsymbol{x} \mid \boldsymbol{y})
$$

- Has certain optimality properties (provided $p(\boldsymbol{y} \mid \boldsymbol{x})$ and $p(\boldsymbol{x})$ are correct).
- Same form as Ψ

Choice 4.1: Data-Mismatch Term

Options for PET:

- Negative log-likelihood of statistical model. Poisson emission case:

$$
-L(\boldsymbol{x} ; \boldsymbol{y})=-\log p(\boldsymbol{y} \mid \boldsymbol{x})=\sum_{i=1}^{n_{d}}\left([\boldsymbol{A} \boldsymbol{x}]_{i}+r_{i}\right)-y_{i} \log \left([\boldsymbol{A} \boldsymbol{x}]_{i}+r_{i}\right)+\log y_{i}!
$$

- Ordinary (unweighted) least squares: $\sum_{i=1}^{n_{d}} \frac{1}{2}\left(y_{i}-\hat{r}_{i}-[\boldsymbol{A} x]_{i}\right)^{2}$
- Data-weighted least squares: $\sum_{i=1}^{n_{d}} \frac{1}{2}\left(y_{i}-\hat{r}_{i}-[\boldsymbol{A} \boldsymbol{x}]_{i}\right)^{2} / \hat{\sigma}_{i}^{2}, \hat{\sigma}_{i}^{2}=\max \left(y_{i}+\hat{r}_{i}, \sigma_{\min }^{2}\right)$, (causes bias due to data-weighting).
- Reweighted least-squares: $\hat{\mathrm{\sigma}}_{i}^{2}=[\boldsymbol{A} \hat{\boldsymbol{x}}]_{i}+\hat{r}_{i}$
- Model-weighted least-squares (nonquadratic, but convex!)

$$
\sum_{i=1}^{n_{d}} \frac{1}{2}\left(y_{i}-\hat{r}_{i}-[\boldsymbol{A} \boldsymbol{x}]_{i}\right)^{2} /\left([\boldsymbol{A} \boldsymbol{x}]_{i}+\hat{r}_{i}\right)
$$

- Nonquadratic cost-functions that are robust to outliers
- ...

Considerations

- Faithfulness to statistical model vs computation
- Ease of optimization (convex?, quadratic?)
- Effect of statistical modeling errors

Choice 4.2: Regularization

Forcing too much "data fit" gives noisy images III-conditioned problems: small data noise causes large image noise

Solutions:

- Noise-reduction methods
- True regularization methods

Noise-reduction methods

- Modify the data
- Prefilter or "denoise" the sinogram measurements
- Extrapolate missing (e.g., truncated) data
- Modify an algorithm derived for an ill-conditioned problem
- Stop algorithm before convergence
- Run to convergence, post-filter
- Toss in a filtering step every iteration or couple iterations
- Modify update to "dampen" high-spatial frequencies [112]

Noise-Reduction vs True Regularization

Advantages of noise-reduction methods

- Simplicity (?)
- Familiarity
- Appear less subjective than using penalty functions or priors
- Only fiddle factors are \# of iterations, amount of smoothing
- Resolution/noise tradeoff usually varies with iteration (stop when image looks good - in principle)
- Changing post-smoothing does not require re-iterating

Advantages of true regularization methods

- Stability
- Predictability
- Resolution can be made object independent
- Controlled resolution (e.g., spatially uniform, edge preserving)
- Start with decent image (e.g., FBP) \Rightarrow reach solution faster.

True Regularization Methods

Redefine the problem to eliminate ill-conditioning, rather than patching the data or algorithm!

- Use bigger pixels (fewer basis functions)
- Visually unappealing
- Can only preserve edges coincident with pixel edges
- Results become even less invariant to translations
- Method of sieves (constrain image roughness)
-Condition number for "pre-emission space" can be even worse
- Lots of iterations
-Commutability condition rarely holds exactly in practice
- Degenerates to post-filtering in some cases
- Change cost function by adding a roughness penalty / prior
- Disadvantage: apparently subjective choice of penalty
- Apparent difficulty in choosing penalty parameters (cf apodizing filter / cutoff frequency in FBP)

Penalty Function Considerations

- Computation
- Algorithm complexity
- Uniqueness of minimizer of $\Psi(x)$
- Resolution properties (edge preserving?)
- \# of adjustable parameters
- Predictability of properties (resolution and noise)

Choices

- separable vs nonseparable
- quadratic vs nonquadratic
- convex vs nonconvex

Penalty Functions: Separable vs Nonseparable

Separable

- Identity norm: $R(x)=\frac{1}{2} x^{\prime} \boldsymbol{I} \boldsymbol{x}=\sum_{j=1}^{n_{p}} x_{j}^{2} / 2$ penalizes large values of x, but causes "squashing bias"
- Entropy: $R(x)=\sum_{j=1}^{n_{p}} x_{j} \log x_{j}$
- Gaussian prior with mean μ_{j}, variance $\sigma_{j}^{2}: R(x)=\sum_{j=1}^{n_{p}} \frac{\left(x_{j}-\mu_{j}\right)^{2}}{2 \sigma_{j}^{2}}$
- Gamma prior $R(x)=\sum_{j=1}^{n_{p}} p\left(x_{j}, \mu_{j}, \sigma_{j}\right)$ where $p(x, \mu, \sigma)$ is Gamma pdf

The first two basically keep pixel values from "blowing up."
The last two encourage pixels values to be close to prior means μ_{j}.

$$
\text { General separable form: } R(x)=\sum_{j=1}^{n_{p}} f_{j}\left(x_{j}\right)
$$

Simple, but these do not explicitly enforce smoothness.

Penalty Functions: Separable vs Nonseparable

Nonseparable (partially couple pixel values) to penalize roughness

Example

$$
\begin{aligned}
R(x)= & \left(x_{2}-x_{1}\right)^{2}+\left(x_{3}-x_{2}\right)^{2}+\left(x_{5}-x_{4}\right)^{2} \\
& +\left(x_{4}-x_{1}\right)^{2}+\left(x_{5}-x_{2}\right)^{2}
\end{aligned}
$$

Rougher images \Rightarrow greater $R(x)$

Roughness Penalty Functions

First-order neighborhood and pairwise pixel differences:

$$
R(\boldsymbol{x})=\sum_{j=1}^{n_{p}} \frac{1}{2} \sum_{k \in \mathbb{N}_{j}} \psi\left(x_{j}-x_{k}\right)
$$

$\mathcal{N}_{j} \triangleq$ neighborhood of j th pixel (e.g., left, right, up, down) ψ called the potential function

Finite-difference approximation to continuous roughness measure:

$$
R(f(\cdot))=\int\|\nabla f(\vec{r})\|^{2} \mathrm{~d} \vec{r}=\int\left|\frac{\partial}{\partial x} f(\vec{r})\right|^{2}+\left|\frac{\partial}{\partial y} f(\vec{r})\right|^{2}+\left|\frac{\partial}{\partial z} f(\vec{r})\right|^{2} \mathrm{~d} \vec{r} .
$$

Second derivatives also useful: (More choices!)

$$
\left.\frac{\partial^{2}}{\partial x^{2}} f(\vec{r})\right|_{\vec{r}=\vec{r}_{j}} \approx f\left(\vec{r}_{j+1}\right)-2 f\left(\vec{r}_{j}\right)+f\left(\vec{r}_{j-1}\right)
$$

$$
R(\boldsymbol{x})=\sum_{j=1}^{n_{p}} \psi\left(x_{j+1}-2 x_{j}+x_{j-1}\right)+\cdots
$$

Penalty Functions: General Form

$$
R(x)=\sum_{k} \psi_{k}\left([C x]_{k}\right) \text { where }[\boldsymbol{C} x]_{k}=\sum_{j=1}^{n_{p}} c_{k j} x_{j}
$$

Example:

$$
\boldsymbol{C} \boldsymbol{x}=\left[\begin{array}{rrrrr}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 \\
-1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
x_{2}-x_{1} \\
x_{3}-x_{2} \\
x_{5}-x_{4} \\
x_{4}-x_{1} \\
x_{5}-x_{2}
\end{array}\right]
$$

$$
R(x)=\sum_{k=1}^{5} \psi_{k}\left([C \boldsymbol{x}]_{k}\right)=\psi_{1}\left(x_{2}-x_{1}\right)+\psi_{2}\left(x_{3}-x_{2}\right)+\psi_{3}\left(x_{5}-x_{4}\right)+\psi_{4}\left(x_{4}-x_{1}\right)+\psi_{5}\left(x_{5}-x_{2}\right)
$$

Penalty Functions: Quadratic vs Nonquadratic

$$
R(\boldsymbol{x})=\sum_{k} \psi_{k}\left([\boldsymbol{C} \boldsymbol{x}]_{k}\right)
$$

Quadratic ψ_{k}

If $\psi_{k}(t)=t^{2} / 2$, then $R(x)=\frac{1}{2} x^{\prime} C^{\prime} C x$, a quadratic form.

- Simpler optimization
- Global smoothing

Nonquadratic ψ_{k}

- Edge preserving
- More complicated optimization. (This is essentially solved in convex case.)
- Unusual noise properties
- Analysis/prediction of resolution and noise properties is difficult
- More adjustable parameters (e.g., δ)

Example: Huber function. $\psi(t) \triangleq \begin{cases}t^{2} / 2, & |t| \leq \delta \\ \delta|t|-\delta^{2} / 2, & |t|>\delta\end{cases}$

Quadratic vs Nonquadratic Potential Functions

Lower cost for large differences \Rightarrow edge preservation

Edge-Preserving Reconstruction Example

Phantom

Quadratic Penalty

Huber Penalty

A transmission example would be preferable...

Penalty Functions: Convex vs Nonconvex

Convex

- Easier to optimize
- Guaranteed unique minimizer of Ψ (for convex negative log-likelihood)

Nonconvex

- Greater degree of edge preservation
- Nice images for piecewise-constant phantoms!
- Even more unusual noise properties
- Multiple extrema
- More complicated optimization (simulated / deterministic annealing)
- Estimator $\hat{\boldsymbol{x}}$ becomes a discontinuous function of data \mathbf{Y}

Nonconvex examples

- "broken parabola"

$$
\psi(t)=\min \left(t^{2}, t_{\max }^{2}\right)
$$

- true median root prior:

$$
R(x)=\sum_{j=1}^{n_{p}} \frac{\left(x_{j}-\operatorname{median}_{j}(\boldsymbol{x})\right)^{2}}{\operatorname{median}_{j}(x)} \text { where } \text { median }_{j}(\boldsymbol{x}) \text { is local median }
$$

Exception: orthonormal wavelet threshold denoising via nonconvex potentials!

Potential Functions

Local Extrema and Discontinuous Estimators

Small change in data \Rightarrow large change in minimizer \hat{x}. Using convex penalty functions obviates this problem.

Augmented Regularization Functions

Replace roughness penalty $R(x)$ with $R(x \mid \boldsymbol{b})+\alpha R(\boldsymbol{b})$, where the elements of b (often binary) indicate boundary locations.

- Line-site methods
- Level-set methods

Joint estimation problem:

$$
(\hat{\boldsymbol{x}}, \hat{\boldsymbol{b}})=\arg \min _{x, b} \Psi(\boldsymbol{x}, \boldsymbol{b}), \quad \Psi(\boldsymbol{x}, \boldsymbol{b})=-L(\boldsymbol{x} ; \boldsymbol{y})+\beta R(\boldsymbol{x} \mid \boldsymbol{b})+\alpha R(\boldsymbol{b})
$$

Example: $b_{j k}$ indicates the presence of edge between pixels j and k :

$$
R(\boldsymbol{x} \mid \boldsymbol{b})=\sum_{j=1}^{n_{p}} \sum_{k \in \mathcal{N}_{j}}\left(1-b_{j k} \frac{1}{2}\left(x_{j}-x_{k}\right)^{2}\right.
$$

Penalty to discourage too many edges (e.g.):

$$
R(\boldsymbol{b})=\sum_{j k} b_{j k} .
$$

- Can encourage local edge continuity
- Require annealing methods for minimization

Modified Penalty Functions

$$
R(\boldsymbol{x})=\sum_{j=1}^{n_{p}} \frac{1}{2} \sum_{k \in \mathcal{N}_{j}} w_{j k} \boldsymbol{\psi}\left(x_{j}-x_{k}\right)
$$

Adjust weights $\left\{w_{j k}\right\}$ to

- Control resolution properties
- Incorporate anatomical side information (MR/CT) (avoid smoothing across anatomical boundaries)

Recommendations

- Emission tomography:
- begin with quadratic (nonseparable) penalty functions
- Consider modified penalty for resolution control and choice of β
- Use modest regularization and post-filter more if desired
- Transmission tomography (attenuation maps)
- consider convex nonquadratic (e.g., Huber) penalty functions
- choose δ based on attenuation map units
- choice of regularization parameter β remains nontrivial, learn appropriate values by experience for given study type

Choice 4.3: Constraints

- Nonnegativity
- Known support
- Count preserving
- Upper bounds on values
e.g., maximum μ of attenuation map in transmission case

Considerations

- Algorithm complexity
- Computation
- Convergence rate
- Bias (in low-count regions)

Open Problems

Modeling

- Noise in $a_{i j}$'s (system model errors)
- Noise in \hat{r}_{i} 's (estimates of scatter / randoms)
- Statistics of corrected measurements
- Statistics of measurements with deadtime losses

Cost functions

- Performance prediction for nonquadratic penalties
- Effect of nonquadratic penalties on detection tasks
- Choice of regularization parameters for nonquadratic regularization

Summary

- 1. Object parameterization: function $f(\vec{r})$ vs vector \boldsymbol{x}
- 2. System physical model: $s_{i}(\boldsymbol{x})$
- 3. Measurement statistical model $Y_{i} \sim$?
- 4. Cost function: data-mismatch / regularization / constraints
Reconstruction Method = Cost Function + Algorithm

Naming convention:

- ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, . . .

