Part 1: From Physics to Statistics

or "What quantity is reconstructed?" (in emission tomography)

Outline

- Decay phenomena and fundamental assumptions
- Idealized detectors
- Random phenomena
- Poisson measurement statistics
- State emission tomography reconstruction problem

What Object is Reconstructed?

In *emission imaging*, our aim is to image the *radiotracer distribution*.

The what?

At time t = 0 we inject the patient with some *radiotracer*, containing a "large" number N of metastable atoms of some radionuclide.

Let $\vec{X}_k(t) \in \mathbb{R}^3$ denote the position of the *k*th *tracer atom* at time *t*. These positions are influenced by blood flow, patient physiology, and other unpredictable phenomena such as Brownian motion.

The ultimate imaging device would provide an exact list of the spatial locations $\vec{X}_1(t), \ldots, \vec{X}_N(t)$ of all tracer atoms for the entire scan.

Would this be enough?

Atom Positions or Statistical Distribution?

Repeating a scan would yield different tracer atom sample paths $\left\{ \vec{X}_k(t) \right\}_{k=1}^{N}$.

: statistical formulation

Assumption 1. The spatial locations of individual tracer atoms at any time $t \ge 0$ are *independent* random variables that are all *identically distributed* according to a common probability density function (pdf) $f_{\vec{X}(t)}(\vec{x})$.

This pdf is determined by patient physiology and tracer properties.

Larger values of $f_{\vec{X}(t)}(\vec{x})$ correspond to "hot spots" where the tracer atoms tend to be located at time *t*. Units: inverse volume, *e.g.*, atoms per cubic centimeter.

The *radiotracer distribution* $f_{\vec{X}(t)}(\vec{x})$ is the quantity of interest.

(Not
$$\left\{ \vec{X}_k(t) \right\}_{k=1}^N$$
!)

Example: Perfect Detector

True radiotracer distribution $f_{\vec{X}(t)}(\vec{x})$ at some time *t*.

A realization of N = 2000 i.i.d. atom positions (dots) recorded "exactly."

Little similarity!

Binning/Histogram Density Estimator

Estimate of $f_{\vec{X}(t)}(\vec{x})$ formed by histogram binning of N = 2000 points. Ramp remains difficult to visualize.

Kernel Density Estimator

Gaussian kernel density estimator for $f_{\vec{X}(t)}(\vec{x})$ from N = 2000 points.

Horizontal profiles at $x_2 = 3$ through density estimates.

Poisson Spatial Point Process

Assumption 2. The number of injected tracer atoms N has a Poisson distribution with some mean

$$u_N \stackrel{\triangle}{=} E[N] = \sum_{n=0}^{\infty} nP[N=n].$$

Let N(B) denote the number of tracer atoms that have spatial locations in any set $B \subset \mathbb{R}^3$ (VOI) at time t_0 after injection.

 $N(\cdot)$ is called a *Poisson spatial point process*.

Fact. For any set B, N(B) is Poisson distributed with mean:

$$E[N(B)] = E[N]P[\vec{X} \in B] = \mu_N \int_B f_{\vec{X}(t_0)}(\vec{x}) \, \mathrm{d}\vec{x}.$$

Poisson *N* injected atoms + i.i.d. locations \Rightarrow Poisson point process

Illustration of Point Process ($\mu_N = 200$)

Radionuclide Decay

Preceding quantities are all unobservable. We "observe" a tracer atom only when it decays and emits photon(s).

The time that the *k*th tracer atom decays is a random variable T_k .

Assumption 3. The T_k 's are statistically *independent* random variables, and are independent of the (random) spatial location.

Assumption 4. Each T_k has an exponential distribution with mean $\mu_T = t_{1/2}/\ln 2$.

Cumulative distribution function: $P[T_k \le t] = 1 - \exp(-t/\mu_T)$

Statistics of an Ideal Decay Counter

Let K(t, B) denote the number of tracer atoms that decay by time t, and that were located in the VOI $B \subset \mathbb{R}^3$ at the time of decay.

Fact. K(t, B) is a *Poisson counting process* with mean

$$E[K(t,B)] = \int_0^t \int_B \lambda(\vec{x},\tau) \, \mathrm{d}\vec{x} \, \mathrm{d}\tau,$$

where the (nonuniform) emission rate density is given by

$$\lambda(\vec{x},t) \stackrel{ riangle}{=} \mu_N rac{e^{-t/\mu_T}}{\mu_T} \cdot f_{\vec{X}(t)}(\vec{x}).$$

Ingredients: "dose," "decay," "distribution"

Units: "counts" per unit time per unit volume, *e.g.*, μ Ci/cc.

"Photon emission is a Poisson process"

What about the actual measurement statistics?

Idealized Detector Units

A nuclear imaging system consists of n_d conceptual *detector units*.

Assumption 5. Each decay of a tracer atom produces a recorded count in at most one detector unit.

Let $S_k \in \{0, 1, ..., n_d\}$ denote the index of the incremented detector unit for decay of *k*th tracer atom. ($S_k = 0$ if decay is undetected.)

Assumption 6. The S_k 's satisfy the following conditional independence:

$$P\left(S_1,\ldots,S_N | N, T_1,\ldots,T_N, \vec{X}_1(\cdot),\ldots,\vec{X}_N(\cdot)\right) = \prod_{k=1}^N P\left(S_k | \vec{X}_k(T_k)\right).$$

The recorded bin for the *k*th tracer atom's decay depends only on its position when it decays, and is independent of all other tracer atoms.

(No event pileup; no deadtime losses.)

PET Example

$$n_d \leq (n_{\text{crystals}} - 1) \cdot n_{\text{crystals}}/2$$

SPECT Example

 $n_d = n_{\text{radial_bins}} \cdot n_{\text{angular_steps}}$

Detector Unit Sensitivity Patterns

Spatial localization:

 $s_i(\vec{x}) \stackrel{\triangle}{=}$ probability that decay at \vec{x} is recorded by *i*th detector unit.

Idealized Example. Shift-invariant PSF: $s_i(\vec{x}) = h(\vec{k}_i \cdot \vec{x} - r_i)$

- r_i is the radial position of *i*th ray
- \vec{k}_i is the unit vector orthogonal to *i*th parallel ray
- $h(\cdot)$ is the shift-invariant radial PSF (*e.g.*, Gaussian bell or rectangular function)

Example: SPECT Detector-Unit Sensitivity Patterns

Two representative $s_i(\vec{x})$ functions for a collimated Anger camera.

Example: PET Detector-Unit Sensitivity Patterns

Detector Unit Sensitivity Patterns

 $s_i(\vec{x})$ can include the effects of

- geometry / solid angle
- collimation
- scatter
- attenuation
- detector response / scan geometry
- duty cycle (dwell time at each angle)
- detector efficiency
- positron range, noncollinearity
- ...

System sensitivity pattern:

$$s(\vec{x}) \stackrel{\triangle}{=} \sum_{i=1}^{n_d} s_i(\vec{x}) = 1 - s_0(\vec{x}) \le 1$$

(probability that decay at location \vec{x} will be detected at all by system)

System Sensitivity Pattern $s(\vec{x})$

Example: collimated 180° SPECT system with uniform attenuation.

Detection Probabilities $s_i(\vec{x}_0)$ (vs det. unit index *i*)

Summary of Random Phenomena

- Number of tracer atoms injected N
- Spatial locations of tracer atoms $\{\vec{X}_k\}_{k=1}^N$
- Time of decay of tracer atoms $\{T_k\}_{k=1}^N$
- Detection of photon $[S_k \neq 0]$
- Recording detector unit $\{S_k\}_{i=1}^{n_d}$

Emission Scan

Record events in each detector unit for $t_1 \le t \le t_2$.

 $Y_i \stackrel{\triangle}{=}$ number of events recorded by *i*th detector unit during scan, for $i = 1, ..., n_d$. $Y_i \stackrel{\triangle}{=} \sum_{k=1}^N \mathbf{1}_{\{S_k = i, T_k \in [t_1, t_2]\}}$.

The collection $\{Y_i : i = 1, ..., n_d\}$ is our *sinogram*.

Note $0 \leq Y_i \leq N$.

Fact. Under Assumptions 1-6 above,

$$Y_i \sim \text{Poisson}\left\{\int s_i(\vec{x})\lambda(\vec{x})\,\mathrm{d}\vec{x}\right\}$$
 (cf "line integral")

and Y_i 's are statistically independent random variables, where the *emission density* is given by

$$\lambda(\vec{x}) = \mu_N \int_{t_1}^{t_2} \frac{1}{\mu_T} e^{-t/\mu_T} f_{\vec{X}(t)}(\vec{x}) \, \mathrm{d}t.$$

(Local number of decays per unit volume during scan.)

Ingredients:

- dose (injected)
- duration of scan
- decay of radionuclide
- distribution of radiotracer

Poisson Statistical Model (Emission)

Actual measured counts = "foreground" counts + "background" counts.

Sources of background counts:

- cosmic radiation / room background
- random coincidences (PET)
- scatter not account for in $s_i(\vec{x})$
- "crosstalk" from transmission sources in simultaneous T/E scans
- anything else not accounted for by $\int s_i(\vec{x})\lambda(\vec{x}) d\vec{x}$

Assumption 7.

The background counts also have independent Poisson distributions.

Statistical model (continuous to discrete)

$$Y_i \sim ext{Poisson}\left\{\int s_i(\vec{x})\lambda(\vec{x})\,\mathrm{d}\vec{x}+r_i
ight\}, \qquad i=1,\ldots,n_d$$

 r_i : mean number of "background" counts recorded by *i*th detector unit.

Emission Reconstruction Problem

Estimate the emission density $\lambda(\cdot)$ using (something like) this model:

$$Y_i \sim \text{Poisson}\left\{\int s_i(\vec{x})\lambda(\vec{x})\,\mathrm{d}\vec{x}+r_i\right\}, \qquad i=1,\ldots,n_d.$$

Knowns:

- $\{Y_i = y_i\}_{i=1}^{n_d}$: observed counts from each detector unit
- $s_i(\vec{x})$ sensitivity patterns (determined by system models)
- *r*_{*i*}'s : background contributions (determined separately)

Unknown: $\lambda(\vec{x})$

List-mode acquisitions

Recall that conventional sinogram is temporally binned:

$$Y_i \stackrel{\triangle}{=} \sum_{k=1}^N \mathbf{1}_{\{S_k=i, T_k \in [t_1, t_2]\}}.$$

This binning discards temporal information.

List-mode measurements: record all (detector,time) pairs in a list, *i.e.*,

$$\{(S_k,T_k): k=1,\ldots,N\}.$$

List-mode dynamic reconstruction problem:

Estimate $\lambda(\vec{x},t)$ given $\{(S_k,T_k)\}$.

Emission Reconstruction Problem - Illustration

 $\lambda(\vec{x})$

 $\{Y_i\}$

 x_1

r

Example: MRI "Sensitivity Pattern"

Each "k-space sample" corresponds to a sinusoidal pattern weighted by:

- RF receive coil sensitivity pattern
- phase effects of field inhomogeneity
- spin relaxation effects.

$$y_i = \int f(\vec{x}) c_{\rm RF}(\vec{x}) \exp(-\iota \omega(\vec{x})t_i) \exp(-t_i/T_2(\vec{x})) \exp\left(-\iota 2\pi \vec{k}(t_i) \cdot \vec{x}\right) d\vec{x} + \varepsilon_i$$

Fessler, Univ. of Michigan