Statistical Methods for Image Reconstruction

Jeffrey A. Fessler

EECS Department The University of Michigan

EMBS Summer School

June 2002

Image Reconstruction Methods (Simplified View)

Analytical (FBP)

Image Reconstruction Methods / Algorithms

Outline

Part 0: Introduction / Overview

Part 1: From Physics to Statistics (Emission tomography)

- Assumptions underlying Poisson statistical model
- Emission reconstruction problem statement

Part 2: Four of Five Choices for Statistical Image Reconstruction

- Object parameterization
- System physical modeling
- Statistical modeling of measurements
- Cost functions and regularization

Part 3: Fifth Choice: Iterative algorithms

- Classical optimization methods
- Considerations: nonnegativity, convergence rate, ...
- Optimization transfer: EM etc.
- Ordered subsets / block iterative / incremental gradient methods

Part 4: Performance Analysis

- Spatial resolution properties
- Noise properties
- Detection performance

Part 5: Miscellaneous topics (?)

• ...

History

- Iterative method for X-ray CT (Hounsfield, 1968) ART for tomography (Gordon, Bender, Herman, JTB, 1970) Richardson/Lucy iteration for image restoration (1972, 1974)Weighted least squares for 3D SPECT (Goitein, NIM, 1972) Proposals to use Poisson likelihood for emission and transmission tomography Emission: (Rockmore and Macovski, TNS, 1976) Transmission: (Rockmore and Macovski, TNS, 1977) First expectation-maximization (EM) algorithms for Poisson model Emission: (Shepp and Vardi, TMI, 1982) Transmission: (Lange and Carson, JCAT, 1984) First regularized (aka Bayesian) Poisson emission reconstruction Geman and McClure, ASA, 1985 Ordered-subsets EM algorithm Hudson and Larkin, TMI, 1994
 - Commercial introduction of OSEM for PET scanners

circa 1997

Why Statistical Methods?

- Object constraints (*e.g.*, nonnegativity, object support)
- Accurate physical models (less bias

 improved quantitative accuracy)
 improved spatial resolution?
 - (*e.g.*, nonuniform attenuation in SPECT)
- Appropriate statistical models (less variance ⇒ lower image noise) (FBP treats all rays equally)
- Side information (*e.g.*, MRI or CT boundaries)
- Nonstandard geometries ("missing" data)

Disadvantages?

- Computation time
- Model complexity
- Software complexity

Analytical methods (a different short course!)

- Idealized mathematical model
 - Usually geometry only, greatly over-simplified physics
 - Continuum measurements
- No statistical model
- Easier analysis of properties (due to linearity)
 - e.g., Huesman (1984) FBP ROI variance for kinetic fitting

What about Moore's Law?

Benefit Example: Statistical Models

	NRMS Error	
Method	Soft Tissue	Cortical Bone
FBP	22.7%	29.6%
PWLS	13.6%	16.2%
PL	11.8%	15.8%

Benefit Example: Physical Models

a. True object

b. Unocrrected FBP

c. Monoenergetic statistical reconstruction

a. Soft-tissue corrected FBP

b. JS corrected FBP

c. Polyenergetic Statistical Reconstruction

Benefit Example: Nonstandard Geometries

Truncated Fan-Beam SPECT Transmission Scan

One Final Advertisement: Iterative MR Reconstruction

Spin Echo

Iterative NUFFT with min-max

Uncorrected

Conjugate Phase

Field Map in Hz

SPHERE

