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Outline

• Group/Lab
• Statistical image reconstruction

Choices / tradeoffs / considerations:
◦ 1. Object parameterization
◦ 2. System physical modeling
◦ 3. Statistical modeling of measurements
◦ 4. Objective functions and regularization
◦ 5. Iterative algorithms

Short course lecture notes:
http://www.eecs.umich.edu/ ∼fessler /talk

• Statistical reconstruction for X-ray CT with beam hardening
• Incomplete data tomography
• Future goals



Students

• El Bakri, Idris X-ray CT image reconstruction
• Ferrise, Gianni Signal processing for direct brain interface
• Jacobson, Matt PET image reconstruction
• Kim, Jeongtae Image registration/reconstruction for radiotherapy
• Naik, Vipul Bioluminescence imaging
• Stayman, Web Regularization methods for tomographic reconstruction
• Sotthivirat, Saowapak Optical image restoration
• Sutton, Brad MRI image reconstruction
• Yendiki, Anastasia Regularization methods for image reconstruction

Image computing laboratory, Department of Electrical Engineering and Computer Science

Collaborations with colleagues in Biomedical Engineering, EECS, Nuclear Engineering, Nu-
clear Medicine, Radiology, Radiation Oncology, Physical Medicine, Anatomy and Cell Biol-
ogy, Biostatistics



Research Goals

• Develop methods for making “better” images
(modeling of imaging system physics and measurement statistics)

• Faster algorithms for computing/processing images
• Analysis of the properties of image formation methods
• Design of imaging systems based on performance bounds

Impact

• ASPIRE (A sparse iterative reconstruction environment) software
(about 40 registered sites worldwide)

• PWLS reconstruction used routinely for cardiac SPECT at UM,
following 1996 ROC study. (several thousand patients scanned)

• Pittsburgh PET/CT “side information” scans reconstructed using ASPIRE
• Consulted for GEMS/PET for 2D and 3D OSEM implementation.



X-ray CT Data Collection

D
et

ec
to

r 
B

in
s

P
h

o
to

n
 S

o
u

rc
e

µ(~x,E)

I0(E)

Yi

Transmission scanning geometry.



X-ray CT Reconstruction Problem - Illustration

0.5

1  

1.5

2  

2.5

3  

3.5

r

θ

X−ray CT Chest Sinogram

−100 −50 0 50 100

0

20

40

60

80

100

120

140

160

Image Sinogram
µ(~x,Eeff) {Yi}



Why Statistical/Iterative Methods?
Physics of imaging
• Reduced artifacts, increased quantitative accuracy

source spectrum, beam hardening, scatter, ...
• System detector response models (possibly improved spatial resolution)

Statistics
• Appropriate statistical models (reduced image noise and/or dose)
• FBP treats all rays equally

Geometry
• Non-Radon geometries (helical, cone-beam)
• “Missing” data, e.g., truncation (long object)
• Gated cardiac helical CT

Prior knowledge
• Object constraints (e.g., nonnegativity)
• Material properties



Tradeoffs...

• Computation time
(solution: ordered-subset algorithms and multiprocessor computing)

•Model complexity

• Software / algorithm complexity

• Complexity of analysis of nonlinear methods



Reconstruction Methods
(Simplified View)

Analytical
(FBP)

Iterative
(OSEM?)



Reconstruction Methods

BPF
Gridding

...
ART

MART
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...
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...
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Five Categories of Choices

1. Object parameterization: λ(~x) or µ(~x,E) vs f = ( f1, . . . , fnp) ∈ IRnp

2. Model for system physics
3. Measurement statistical model Yi ∼ ?
4. Objective function: data-fit / regularization
5. Algorithm / initialization
No perfect choices - one can critique all approaches!

Choices impact:
• Image spatial resolution
• Image noise
• Quantitative accuracy
• Computation time
• Memory
• Algorithm complexity



Choice 1. Object Parameterization (Transmission)

attenuation map → µ(~x)≈ f (~x) =
np

∑
j=1

f j bj(~x) ←
Series expansion
“basis functions”
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Basis Functions
Choices
• Fourier series
• Circular harmonics
• Wavelets
• Kaiser-Bessel windows
• Overlapping disks
• B-splines (pyramids)

• Polar grids
• Logarithmic polar grids
• “Natural pixels”
• Point masses (Dirac δ’s)
• pixels / voxels
• ...

Considerations
• Represent object “well” with moderate np

• system matrix elements {ai j} “easy” to compute
• The nd×np system matrix: A= {ai j}, should be sparse (mostly zeros).
• Easy to represent nonnegative functions

e.g., if f j ≥ 0, then f (~x)≥ 0, i.e., bj(~x)≥ 0.



Point-Lattice Projector/Backprojector

f1 f2

ith ray

Implicit in conventional pixel-driven backprojection used for FBP.
System matrix elements (ai j ’s) determined by linear interpolation.



Point-Lattice Artifacts

Forward projections (sinograms) of a uniform disk object:

θ
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Basis: Point Lattice Square pixels
System: Linear Interpolation Strip Integrals



Choice 2. System Model (Transmission)

System matrix A= {ai j} Other physical effects
• scanner geometry
• detector width
• source size
• detector response
• collimation
• ...

• source spectrum
• detector efficiency
• Beer’s law
• scatter
• detector after-glow?
• ...

Considerations
• Accuracy vs computation
• Store ai j ’s or on-the-fly computing of forward and backprojection?
• Model uncertainties

(e.g., drifts in source spectrum with tube heating)
• Artifacts due to over-simplifications



“Line Length”
System Model

“Strip Area”
System Model

f1 f2

ai j
4
= length of intersection

ith ray

f1

f j−1

ai j
4
= area (normalized)

ith ray



Sensitivity Patterns (Emission)

nd

∑
i=1

ai j ≈ s(~xj) =
nd

∑
i=1

si(~xj)

Line Length Strip Area



Forward- / Back-projector “Pairs”
Forward projection (image domain to projection domain):

Af =

{
np

∑
j=1

ai j f j

}nd

i=1

.

Backprojection (projection domain to image domain):

A′y =

{
nd

∑
i=1

ai j yi

}np

j=1

.

Too often A′y is implemented as By for some “backprojector” B 6=A′.

Least-squares solutions (for example):

f̂ = [A′A]−1A′y 6= [BA]−1By.

Mismatches accumulate with iterations!



Mismatched Backprojector B 6=A′ (3D PET)
λ λ̂ (PWLS-CG) λ̂ (PWLS-CG)

(64×64×4) Matched Mismatched



Horizontal Profiles
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Choice 3. Statistical Models (Transmission)
After modeling the system physics, we have a deterministic “model:”

Yi ≈ E[Yi] = ȳi(f)+ ri =
∫

I0(E)exp

(
−

np

∑
j=1

ai j f j(E)

)
dE + ri.

Statistical modeling is concerned with the “ ≈ ” aspect.

• I0(E) : source spectrum
• ri: scatter background, etc.

Random Phenomena
• Number of photons
• Photon energy
• Photon absorption
• Compton scatter

• Detection probability
• Readout noise
• ...



Statistical Model Considerations

• More accurate models:
◦ can lead to lower variance images,
◦ can reduce bias
◦ may incur additional computation,
◦ may involve additional algorithm complexity

(e.g., transmission Poisson model can have nonconcave log-likelihood)
• Statistical model errors (e.g., deadtime)
• Incorrect models (e.g., log-processed transmission data)



Statistical Model Choices (Transmission)

• “None.” Assume Yi− ri = ȳi(f). “Solve algebraically” to find f .
• White Gaussian noise. Ordinary least squares: minimize ‖(Y −r)− ȳ(f)‖2

• Non-White Gaussian noise. Weighted least squares: minimize

‖(Y −r)− ȳ(f)‖2
W =

nd

∑
i=1

wi (yi− ri− ȳi(f))
2.

• Ordinary Poisson model (ignoring or precorrecting for background)

Yi ∼ Poisson{ȳi(f)} .

• Poisson model
Yi ∼ Poisson{ȳi(f)+ ri} .

• Shifted Poisson model (for randoms precorrected PET)

Yi =Yprompt
i −Ydelay

i ∼ Poisson{ȳi(f)+2ri}−2ri.



PET Transmission Phantom

FBP 7hour FBP 12min

Thorax Phantom
ECAT EXACT



Effect of Statistical Model (PET Transmission Scan)

OSEM

OSTR

Iteration: 1 3 5 7



Choice 4. Objective Functions
Components:
• Data-fit term
• Regularization term (and regularization parameter β)
• Constraints (e.g., nonnegativity)

Φ(f) = DataFit(Y ,Af)−β ·Roughness(f)

f̂
4
= argmax

f≥0
Φ(f)

“Find the image that ‘best fits’ the measurements”

Actually three choices to make for Choice 4 ...

Distinguishes “statistical methods” from “algebraic methods” for “Y =Af .”



Why Objective Functions?
(vs “procedure” e.g., adaptive neural net with wavelet denoising)

Theoretical reasons
ML is based on maximizing an objective function: the log-likelihood
• ML is asymptotically consistent
• ML is asymptotically unbiased
• ML is asymptotically efficient (under true statistical model...)
• Penalized-likelihood achieves uniform CR bound asymptotically

Practical reasons
• Stability of estimates (if Φ and algorithm chosen properly)
• Predictability of properties (despite nonlinearities)
• Empirical evidence (?)



Choice 4.1: Data-Fit Term

• Least squares, weighted least squares (quadratic data-fit terms)
• Reweighted least-squares
• Model-weighted least-squares
• Norms robust to outliers
• Log-likelihood of statistical model. Poisson emission case:

L(λ;Y ) = logP[Y = y;λ] =
nd

∑
i=1

yi log([Aλ]i+ ri)− ([Aλ]i+ ri)− logyi!

Poisson probability mass function (PMF):

P[Y = y;λ] =∏nd
i=1e−ȳi ȳyi

i /yi! where ȳ
4
=Aλ+r

Considerations
• Faithfulness to statistical model vs computation.
• Effect of statistical modeling errors.



Choice 4.2: Regularization
Forcing too much “data fit” gives noisy images.
Ill-conditioned problems: small data noise causes large image noise.

Solutions:
• Noise-reduction methods
◦ Modify the data (prefilter or extrapolate sinogram data)
◦ Modify an algorithm derived for an ill-conditioned problem

(stop before converging, post-filter)
• True regularization methods

Redefine the problem to eliminate ill-conditioning
◦ Use bigger pixels (fewer basis functions)
◦ Method of sieves (constrain image roughness)
◦ Change objective function by adding a roughness penalty / prior

R(f) =
np

∑
j=1

∑
k∈N j

ψ( f j− fk)



Noise-Reduction vs True Regularization
Advantages of “noise-reduction” methods
• Simplicity (?)
• Familiarity
• Appear less subjective than using penalty functions or priors
• Only fiddle factors are # of iterations, amount of smoothing
• Resolution/noise tradeoff usually varies with iteration

(stop when image looks good - in principle)

Advantages of true regularization methods
• Stability
• Predictability
• Resolution can be made object independent
• Controlled resolution (e.g. spatially uniform, edge preserving)
• Start with (e.g.) FBP image⇒ reach solution faster.



Unregularized vs Regularized Reconstruction

ML (unregularized)

Penalized likelihood

Iteration:

(OSTR)

1 3 5 7



Roughness Penalty Function Considerations

R(f) =
np

∑
j=1

∑
k∈N j

ψ( f j− fk)

• Computation
• Algorithm complexity
• Uniqueness of maximum of Φ
• Resolution properties (edge preserving?)
• # of adjustable parameters
• Predictability of properties (resolution and noise)

Choices
• separable vs nonseparable
• quadratic vs nonquadratic
• convex vs nonconvex

This topic is actively debated!



Nonseparable Penalty Function Example

f1 f2 f3

f4 f5

Example

R(f) = ( f2− f1)
2+( f3− f2)

2+( f5− f4)
2

+( f4− f1)
2+( f5− f2)

2

2 2 2

2 1

3 3 1

2 2

1 3 1

2 2

R(f) = 2 R(f) = 6 R(f) = 10

Rougher images⇒ greater R(f)



Penalty Functions: Quadratic vs Nonquadratic

Phantom Quadratic Penalty Huber Penalty



Summary of Modeling Choices

1. Object parameterization: λ(~x) or µ(~x) vs f
2. Model of system physics
3. Measurement statistical model Yi ∼ ?
4. Objective function: data-fit / regularization / constraints

Reconstruction Method = Objective Function + Algorithm

5. Iterative algorithm
ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, . . .



Choice 5. Algorithms

Model
System

Iteration

Parameters

Measurements
Projection

Calibration ...

Φx(n) x(n+1)

Deterministic iterative mapping: x(n+1) =M (x(n))
All algorithms are imperfect. No single best solution.



Ideal Algorithm

x?
4
= argmax

x≥0
Φ(x) (global maximum)

stable and convergent {x(n)} converges to x? if run indefinitely
converges quickly {x(n)} gets “close” to x? in just a few iterations
globally convergent limnx

(n) independent of starting image
fast requires minimal computation per iteration
robust insensitive to finite numerical precision
user friendly nothing to adjust (e.g., acceleration factors)
monotonic Φ(x(n)) increases every iteration
parallelizable (when necessary)
simple easy to program and debug
flexible accommodates any type of system model

(matrix stored by row or column or projector/backprojector)
Choices: forgo one or more of the above



Optimization Transfer Illustrated
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Convergence Rate: Slow

High Curvature

Old

Small Steps
Slow Convergence

x
New

φ

Φ



Convergence Rate: Fast

Fast Convergence

Old

Large Steps
Low Curvature

x
New

φ

Φ



Summary

• General principles of statistical image reconstruction
• Optimization transfer
• Principles apply to both emission and transmission reconstruction.
• Predictability of resolution / noise and controlling spatial resolution

argues for regularized objective-function
• Still work to be done...

An Open Problem
Still no algorithm with all of the following properties:
• Nonnegativity easy
• Fast converging
• Intrinsically monotone global convergence
• Accepts any type of system matrix
• Parallelizable



Statistical image reconstruction for polyenergetic X-ray
CT

Idris A. Elbakri and Jeffrey A. Fessler

EECS Department
The University of Michigan

(Based on SPIE ’01)

GEMS CT

June 13, 2001



Outline

• Introduction

• Statistical model

• Algorithm

•Ordered-subsets

• Results



Introduction

• Beam-hardening can cause severe artifacts if ignored

• Previous correction methods are only approximation
(e.g., Joseph and Spital, JCAT, 1978)

• Previous correction methods are not statistical

• Previous statistical reconstruction methods have ignored beam harden-
ing



Object Model

µ(~x,E) =
K

∑
k=1

mk(E)ρk(~x)αk(~x)

Arguments:
• ~x spatial position
• E photon energy

Unknown functions:
• µ linear attenuation coefficient
• ρk density of kth material

Known quantities:
• K number of materials (e.g., K = 2 for bone / soft tissue)
• mk mass attenuation coefficient of kth material
• αk fraction of kth material at location~x

(Currently: 0 or 1 from segmenting JS FBP image)



Statistical model

Yi ∼ Poisson

{∫
I0(E)exp

(
−

K

∑
k=1

mk(E)
np

∑
j=1

ak
i j ρ j

)
dE + ri

}

“Known” quantities:
• Yi ith element of measured sinogram
• ak

i j system matrix ak
i j = ai j αk(~xj)

• I0 source spectrum and detector sensitivity
• ri scatter and/or detector readout bias

Unknown quantities:
• ρ j density of j th voxel

Goal: Reconstruct density vector ρ = (ρ1, . . . ,ρnp)
from measurement vector Y = (Y1, . . . ,Ynd).



Approach

• Penalized-likelihood objective function

• Edge-preserving regularization function

•Optimization transfer to derive “scaled gradient ascent” algorithm

ρ(n+1)
j =

[
ρ(n)j −

1
dj

d
dρ j

Φ(ρ)
∣∣∣∣
ρ=ρ(n)

]
+

.

• The [·]+ enforces nonnegativity constraint.

• For suitable step sizes {dj}, algorithm monotonically increases Φ.

• Table lookup to compute

Fk(twater,tbone) =
∫

I0(E)mk(E)e−[mwater(E)twater+mbone(E)tbone]dE .



Ordered-Subsets Acceleration

The gradient involves forward and backprojections:

d
dρ j

Φ(ρ) =
nd

∑
i=1

ai j

(
1−Yi/ȳ

(n)
i

) K

∑
k=1

αk
jFk([A1ρ

(n)]i, [A2ρ
(n)]i)+ · · ·

Ordered-subsets concept (Hudson and Larkin, TMI, 1994):
• Replace full backprojection with “downsampled” backprojection

(cf FBP with angular downsampling)
• Only forward project ([Aρ]i) for the needed projection views of each subset
• Cycle through all subsets of projection angles
• Accelerates “convergence” ≈ by number of subsets in early iterations
• Original formulation does not converge

(GE, Siemens, etc., all sell it for PET and SPECT nevertheless...)
• Ahn and Fessler have developed truly convergent formulation



Disk Phantom CT Simulation
Phantom
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256×256 image, 1.6mm pixels,, water = 1.0g/cm3, bone = 2.0g/cm3.
600 rays by 500 angles, 1.3mm spacing, 2.2·107 incident photons/ray.
Images windowed from 0.8 to 1.2 g/cm3.



Disk Phantom Results: Conventional

Phantom FBP Iterative
Uncorrected Monoenergetic Model



Disk Phantom Results: Corrected

FBP FBP Statistical
Soft Tissue Correction Joseph and Spital Polyenergetic Model

20 iterations, 20 subsets



Chest Phantom CT Simulation
Phantom
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512×256 image, 0.8mm pixels.
700 rays by 600 angles, 1.3mm spacing, 1.77·105 incident photons/ray.
Images windowed from 0.8 to 1.2 g/cm3.



Chest Phantom Results 1

Phantom

FBP
Soft tissue correction



Chest Phantom Results 2

Joseph and Spital

Statistical
Polyenergetic model
10 iterations, 40 subsets



Summary (Beam Hardening)

• First statistical reconstruction method with full polyenergetic model.

• Beam-hardening artifacts nearly eliminated.

•Ordered-subsets approach helps contain computation time.

Future Work

• Segmentation of FBP/JS image is adequate starting place.
Explore re-segmenting statistical reconstruction.

• Ideal approach: simultaneous (iterative) segmentation / reconstruction.

• Extension to contrast agent case (K = 3) conceptually straightforward.

• Extension to metal implants conceptually straightforward.



GEMS Data: Preliminary Results

GE FBP, 190mAs GE FBP, 10mAs

888 channels by 984 views over 360◦. bin spacing is 1.0239mm.
source-to-iso = 541mm, iso-to-detector = 408.075mm.
Sinograms precorrected for everything.



GE 10mAs Preliminary Results

GE FBP “Iterative”

log2β= 10, δ = 10. 5 iterations, 41 subsets.
Unweighted regularized least squares.



GE CRD Simulation: Spine

GE FBP Iterative

10002 flat panel fan-beam monoenergetic (?) projections



GE CRD Simulation: Cardiac

GE FBP Iterative



Truncated Fan-Beam SPECT Transmission

Truncated Truncated Untruncated
FBP PWLS FBP



Overall Summary

Physics
• Modeling source spectrum reduces beam hardening effects

Statistics
• Reduced noise using statistical methods

Geometry
• Truncated fan-beam data

Prior knowledge
• Nonnegativity
• Mass attenuation of water and bone



Future Work

• Real X-ray CT data with appropriate physics and statistics!

• Refinements of beam hardening algorithm

• Helical and cone-beam geometries

•Gated cardiac scans?

• Compton scatter (for larger cone angles)?



Fast Maximum Likelihood Transmission Reconstruction
using Ordered Subsets

Jeffrey A. Fessler, Hakan Erdoğan

EECS Department, BME Department, and
Nuclear Medicine Division of Dept. of Internal Medicine

The University of Michigan



Transmission Scans
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Each measurement Yi is related to a single “line integral” through the object.

Yi ∼ Poisson

{
bi exp

(
−

p

∑
j=1

ai j µj

)
+ ri

}



Transmission Scan Statistical Model

Yi ∼ Poisson

{
bi exp

(
−

p

∑
j=1

ai j µj

)
+ ri

}
, i = 1, . . . ,N

• N number of detector elements
• Yi recorded counts by ith detector element
• bi blank scan value for ith detector element
• ai j length of intersection of ith ray with j th pixel
• µj linear attenuation coefficient of j th pixel
• ri contribution of room background, scatter, and emission crosstalk

(Monoenergetic case, can be generalized for dual-energy CT)
(Can be generalized for additive Gaussian detector noise)



Maximum-Likelihood Reconstruction

µ̂= argmax
µ≥0

L(µ) (Log-likelihood)

L(µ) =
N

∑
i=1

Yi log

[
bi exp

(
−

p

∑
j=1

ai j µj

)
+ ri

]
−

[
bi exp

(
−

p

∑
j=1

ai j µj

)
+ ri

]

Transmission ML Reconstruction Algorithms
• Conjugate gradient

Mumcuoǧlu et al., T-MI, Dec. 1994

• Paraboloidal surrogates coordinate ascent (PSCA)
Erdoǧan and Fessler, T-MI, 1999

• Ordered subsets separable paraboloidal surrogates
Erdoǧan et al., PMB, Nov. 1999

• Transmission expectation maximization (EM) algorithm
Lange and Carson, JCAT, Apr. 1984



Optimization Transfer Illustrated
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Parabola Surrogate Function

• h(l) = ylog(be−l + r)− (be−l + r) has a parabola surrogate: q(n)im
• Optimum curvature of parabola derived by Erdoǧan (T-MI, 1999)
• Replace likelihood with paraboloidal surrogate

L(µ(n)) =
N

∑
i=1

hi

(
p

∑
j=1

ai j µj

)
≥Q1(µ;µ(n)) =

N

∑
i=1

q(n)im

(
p

∑
j=1

ai j µj

)

• q(n)im is a simple quadratic function
• Iterative algorithm:

µ(n+1) = argmax
µ≥0

Q1(µ;µ(n))

• Maximizing Q1(µ;µ(n)) over µ is equivalent to (reweighted) least-squares.
• Natural algorithms
◦ Conjugate gradient
◦ Coordinate ascent



Separable Paraboloid Surrogate Function

• Parabolas are convex functions
• Apply De Pierro’s “additive” convexity trick (T-MI, Mar. 1995)

p

∑
j=1

ai j µj =
p

∑
j=1

ai j

ai

[
ai(µj−µ(n)j )

]
+
[
Aµ(n)

]
i

where ai
4
=

p

∑
j=1

ai j

• Move summation over pixels outside quadratic

Q1(µ;µ(n)) =
N

∑
i=1

q(n)im

(
p

∑
j=1

ai j µj

)

≥ Q2(µ;µ(n)) =
N

∑
i=1

p

∑
j=1

ai j

ai
q(n)im

(
ai(µj−µ(n)j )+

[
Aµ(n)

]
i

)

=
p

∑
j=1

Q(n)2 j (µj), where Q(n)2 j (x)
4
=

N

∑
i=1

ai j

ai
q(n)im

(
ai(x−µ(n)j )+

[
Aµ(n)

]
i

)
• Separable paraboloidal surrogate function⇒ trivial to maximize (cf EM)



Iterative algorithm:

µ(n+1)
j = argmax

µj≥0
Q(n)2 j (µj) =


µ(n)j +

∂
∂µj

Q(n)2 j (µ
(n))

− ∂2

∂µ2
j
Q(n)2 j (µ

(n))



+

=


µ(n)j +

1

− ∂2

∂µ2
j
Q(n)2 j (µ

(n))

∂
∂µj

L(µ(n))



+

=

[
µ(n)j +

∑N
i=1(yi/ȳ

(n)
i −1)bi exp

(
−
[
Aµ(n)

]
i

)
∑N

i=1a2
i j aic

(n)
i

]
+

, j = 1, . . . , p

• c(n)i ’s related to parabola curvatures
• Parallelizable (ideal for multiprocessor workstations)
• Monotonically increases the likelihood each iteration
• Intrinsically enforces the nonnegativity constraint
• Guaranteed to converge if unique maximizer
• Natural starting point for forming ordered-subsets variation



Ordered Subsets Algorithm

• Each ∑N
i=1 is a backprojection

• Replace “full” backprojections with partial backprojections
• Partial backprojection based on angular subsampling
• Cycle through subsets of projection angles

Pros
• Accelerates “convergence”
• Very simple to implement
• Reasonable images in just 1 or 2 iterations
• Regularization easily incorporated

Cons:
• Does not converge to true maximizer
• Makes analysis of properties difficult



Phantom Study

• 12-minute PET transmission scan
• Anthropomorphic thorax phantom (Data Spectrum, Chapel Hill, NC)
• Sinogram: 160 3.375mm bins by 192 angles over 180◦

• Image: 128 by 128 4.2mm pixels
• Ground truth determined from 15-hour scan, FBP reconstruction / seg-

mentation



Algorithm Convergence
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Reconstructed Images
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Reconstructed Images
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Segmented Images
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Segmented Images
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Quantitative Results
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FDG PET Patient Data, PL-OSTR vs FBP

(15-minute transmission scan | 2-minute transmission scan)


