Statistical methods for X-ray CT image reconstruction

Jeffrey A. Fessler

EECS Department BME Department Department of Radiology The University of Michigan

GEMS CT

June 13, 2001

Outline

- Group/Lab
- Statistical image reconstruction Choices / tradeoffs / considerations:
 - 1. Object parameterization
 - System physical modeling
 - Statistical modeling of measurements
 - 4. Objective functions and regularization
 - 5. Iterative algorithms

Short course lecture notes:

http://www.eecs.umich.edu/~fessler/talk

- Statistical reconstruction for X-ray CT with beam hardening
- Incomplete data tomography
- Future goals

Students

- El Bakri, Idris X-ray CT image reconstruction Ferrise, Gianni Signal processing for direct brain interface Jacobson, Matt PET image reconstruction Image registration/reconstruction for radiotherapy Kim, Jeongtae Naik, Vipul **Bioluminescence imaging** Regularization methods for tomographic reconstruction Stayman, Web Sotthivirat, Saowapak Optical image restoration MRI image reconstruction Sutton, Brad Regularization methods for image reconstruction
- Yendiki, Anastasia

Image computing laboratory, Department of Electrical Engineering and Computer Science

Collaborations with colleagues in Biomedical Engineering, EECS, Nuclear Engineering, Nuclear Medicine, Radiology, Radiation Oncology, Physical Medicine, Anatomy and Cell Biology, Biostatistics

Research Goals

- Develop methods for making "better" images (modeling of imaging system physics and measurement statistics)
- Faster algorithms for computing/processing images
- Analysis of the properties of image formation methods
- Design of imaging systems based on performance bounds

Impact

- ASPIRE (A sparse iterative reconstruction environment) software (about 40 registered sites worldwide)
- PWLS reconstruction used routinely for cardiac SPECT at UM, following 1996 ROC study. (several thousand patients scanned)
- Pittsburgh PET/CT "side information" scans reconstructed using ASPIRE
- Consulted for GEMS/PET for 2D and 3D OSEM implementation.

X-ray CT Data Collection

Transmission scanning geometry.

X-ray CT Reconstruction Problem - Illustration

 $\underset{\mu(\vec{x}, E_{\mathrm{eff}})}{\mathrm{Image}}$

Sinogram $\{Y_i\}$

Why Statistical/Iterative Methods?

Physics of imaging

- Reduced *artifacts*, increased quantitative *accuracy* source spectrum, beam hardening, scatter, ...
- System detector response models (possibly improved spatial resolution)

Statistics

- Appropriate statistical models (reduced image noise and/or dose)
- FBP treats all rays equally

Geometry

- Non-Radon geometries (helical, cone-beam)
- "Missing" data, e.g., truncation (long object)
- Gated cardiac helical CT

Prior knowledge

- Object constraints (*e.g.*, nonnegativity)
- Material properties

Tradeoffs...

• Computation time

(solution: ordered-subset algorithms and multiprocessor computing)

- Model complexity
- Software / algorithm complexity
- Complexity of analysis of nonlinear methods

Reconstruction Methods

(Simplified View)

Analytical (FBP) **Iterative** (OSEM?)

Reconstruction Methods

Five Categories of Choices

- 1. Object parameterization: $\lambda(\vec{x})$ or $\mu(\vec{x}, E)$ vs $\boldsymbol{f} = (f_1, \dots, f_{n_p}) \in \mathbb{R}^{n_p}$
- 2. Model for system physics
- 3. Measurement statistical model $Y_i \sim ?$
- 4. Objective function: data-fit / regularization
- 5. Algorithm / initialization
 - No perfect choices one can critique all approaches!

Choices impact:

- Image spatial resolution
- Image noise
- Quantitative accuracy
- Computation time
- Memory
- Algorithm complexity

Choice 1. Object Parameterization (Transmission)

n "

attenuation map
$$\rightarrow \mu(\vec{x}) \approx f(\vec{x}) = \sum_{i=1}^{n_p} f_j b_j(\vec{x}) \leftarrow$$
 "basis functions"

Basis Functions

Choices

- Fourier series
- Circular harmonics
- Wavelets
- Kaiser-Bessel windows
- Overlapping disks
- B-splines (pyramids)

Considerations

- Represent object "well" with moderate n_p
- system matrix elements $\{a_{ij}\}$ "easy" to compute
- The $n_d \times n_p$ system matrix: $A = \{a_{ij}\}$, should be sparse (mostly zeros).
- Easy to represent nonnegative functions *e.g.*, if $f_i \ge 0$, then $f(\vec{x}) \ge 0$, *i.e.*, $b_i(\vec{x}) \ge 0$.

- Polar grids
- Logarithmic polar grids
- "Natural pixels"
- Point masses (Dirac δ 's)
- pixels / voxels
- ...

Point-Lattice Projector/Backprojector

Implicit in conventional pixel-driven backprojection used for FBP. System matrix elements $(a_{ij}$'s) determined by linear interpolation.

Point-Lattice Artifacts

Forward projections (sinograms) of a uniform disk object:

Choice 2. System Model (Transmission)

System matrix $A = \{a_{ij}\}$

- scanner geometry
- detector width
- source size
- detector response
- collimation

. . .

Considerations

- Accuracy vs computation
- Store *a_{ij}*'s or on-the-fly computing of forward and backprojection?
- Model uncertainties

(e.g., drifts in source spectrum with tube heating)

• Artifacts due to over-simplifications

Other physical effects

- source spectrum
- detector efficiency
- Beer's law
- scatter
- detector after-glow?
- ...

"Line Length" System Model

"Strip Area" System Model

Sensitivity Patterns (Emission)

$$\sum_{j=1}^{n_d} a_{ij} \approx s(\vec{x}_j) = \sum_{i=1}^{n_d} s_i(\vec{x}_j)$$

Line Length

Forward- / Back-projector "Pairs"

Forward projection (image domain to projection domain):

$$oldsymbol{A}oldsymbol{f} = \left\{\sum_{j=1}^{n_p} a_{ij}f_j
ight\}_{i=1}^{n_d}$$

Backprojection (projection domain to image domain):

$$oldsymbol{A}'oldsymbol{y} = \left\{\sum_{i=1}^{n_d} a_{ij} y_i
ight\}_{j=1}^{n_p}.$$

Too often A'y is implemented as By for some "backprojector" $B \neq A'$.

Least-squares solutions (for example):

$$\hat{f} = [A'A]^{-1}A'y \neq [BA]^{-1}By.$$

Mismatches accumulate with iterations!

Horizontal Profiles

Choice 3. Statistical Models (Transmission)

After modeling the system physics, we have a deterministic "model:"

$$Y_i \approx E[Y_i] = \bar{y}_i(f) + r_i = \int I_0(E) \exp\left(-\sum_{j=1}^{n_p} a_{ij}f_j(E)\right) dE + r_i.$$

Statistical modeling is concerned with the " \approx " aspect.

- $I_0(E)$: source spectrum
- *r_i*: scatter background, etc.

Random Phenomena

- Number of photons
- Photon energy
- Photon absorption
- Compton scatter

- Detection probability
- Readout noise

• ...

Statistical Model Considerations

- More accurate models:
 - can lead to lower variance images,
 - \circ can reduce bias
 - may incur additional computation,
 - may involve additional algorithm complexity
 - (*e.g.*, transmission Poisson model can have nonconcave log-likelihood)
- Statistical model errors (e.g., deadtime)
- Incorrect models (*e.g.*, log-processed transmission data)

Statistical Model Choices (Transmission)

- "None." Assume $Y_i r_i = \overline{y}_i(f)$. "Solve algebraically" to find f.
- White Gaussian noise. Ordinary least squares: minimize $\|(\boldsymbol{Y}-\boldsymbol{r})-ar{\boldsymbol{y}}(\boldsymbol{f})\|^2$
- Non-White Gaussian noise. Weighted least squares: minimize

$$\|(\boldsymbol{Y}-\boldsymbol{r})-\bar{\boldsymbol{y}}(\boldsymbol{f})\|_{\boldsymbol{W}}^2 = \sum_{i=1}^{n_d} w_i (y_i - r_i - \bar{y}_i(\boldsymbol{f}))^2.$$

Ordinary Poisson model (ignoring or precorrecting for background)

 $Y_i \sim \text{Poisson}\{\bar{y}_i(f)\}.$

Poisson model

 $Y_i \sim \text{Poisson}\{\bar{y}_i(f)+r_i\}.$

Shifted Poisson model (for randoms precorrected PET)

 $Y_i = Y_i^{\text{prompt}} - Y_i^{\text{delay}} \sim \text{Poisson}\{\bar{y}_i(f) + 2r_i\} - 2r_i.$

PET Transmission Phantom

Effect of Statistical Model (PET Transmission Scan)

Choice 4. Objective Functions

Components:

- Data-fit term
- *Regularization* term (and regularization parameter β)
- Constraints (*e.g.*, nonnegativity)

$$\Phi(f) = \mathsf{DataFit}(Y, Af) - \beta \cdot \mathsf{Roughness}(f)$$

 $egin{arg} \hat{oldsymbol{f}} \stackrel{ riangle}{=} rg\max_{oldsymbol{f}\geq oldsymbol{0}} \Phi(oldsymbol{f}) \ \end{array}$

"Find the image that 'best fits' the measurements"

Actually *three* choices to make for Choice 4 ...

Distinguishes "statistical methods" from "algebraic methods" for "Y = Af."

Why Objective Functions?

(vs "procedure" e.g., adaptive neural net with wavelet denoising)

Theoretical reasons

ML is based on maximizing an objective function: the log-likelihood

- ML is asymptotically consistent
- ML is asymptotically unbiased
- ML is asymptotically efficient

(under true statistical model...)

Penalized-likelihood achieves uniform CR bound asymptotically

Practical reasons

- Stability of estimates (if Φ and algorithm chosen properly)
- Predictability of properties (despite nonlinearities)
- Empirical evidence (?)

Choice 4.1: Data-Fit Term

- Least squares, weighted least squares (quadratic data-fit terms)
- Reweighted least-squares
- Model-weighted least-squares
- Norms robust to outliers
- Log-likelihood of statistical model. Poisson emission case:

$$L(\boldsymbol{\lambda};\boldsymbol{Y}) = \log P[\boldsymbol{Y} = \boldsymbol{y};\boldsymbol{\lambda}] = \sum_{i=1}^{n_d} y_i \log ([\boldsymbol{A}\boldsymbol{\lambda}]_i + r_i) - ([\boldsymbol{A}\boldsymbol{\lambda}]_i + r_i) - \log y_i!$$

Poisson probability mass function (PMF):

$$P[m{Y}=m{y};m{\lambda}]=\prod_{i=1}^{n_d}e^{-ar{y}_i}ar{y}_i^{y_i}/y_i!$$
 where $m{ar{y}}\stackrel{ riangle}{=}m{A}m{\lambda}+m{r}$

Considerations

- Faithfulness to statistical model vs computation.
- Effect of statistical modeling errors.

Choice 4.2: Regularization

Forcing too much "data fit" gives noisy images.

Ill-conditioned problems: small data noise causes large image noise.

Solutions:

Noise-reduction methods

- Modify the *data* (prefilter or extrapolate sinogram data)
- Modify an *algorithm* derived for an ill-conditioned problem (stop before converging, post-filter)

• True regularization methods

Redefine the problem to eliminate ill-conditioning

- Use bigger pixels (fewer basis functions)
- Method of sieves (constrain image roughness)
- Change objective function by adding a roughness penalty / prior

$$R(\boldsymbol{f}) = \sum_{j=1}^{n_p} \sum_{k \in N_j} \Psi(f_j - f_k)$$

Noise-Reduction vs True Regularization

Advantages of "noise-reduction" methods

- Simplicity (?)
- Familiarity
- Appear less subjective than using penalty functions or priors
- Only fiddle factors are # of iterations, amount of smoothing
- Resolution/noise tradeoff usually varies with iteration (stop when image looks good - in principle)

Advantages of true regularization methods

- Stability
- Predictability
- Resolution can be made object independent
- Controlled resolution (*e.g.* spatially uniform, edge preserving)
- Start with (*e.g.*) FBP image \Rightarrow reach solution faster.

Unregularized vs Regularized Reconstruction

3

ML (unregularized)

(OSTR)

Penalized likelihood

Iteration:

5

Roughness Penalty Function Considerations

$$R(\boldsymbol{f}) = \sum_{j=1}^{n_p} \sum_{k \in N_j} \Psi(f_j - f_k)$$

- Computation
- Algorithm complexity
- Uniqueness of maximum of Φ
- Resolution properties (edge preserving?)
- # of adjustable parameters
- Predictability of properties (resolution and noise)

Choices

- separable vs nonseparable
- quadratic vs nonquadratic
- convex vs nonconvex

This topic is actively debated!

Nonseparable Penalty Function Example

Example $R(f) = (f_2 - f_1)^2 + (f_3 - f_2)^2 + (f_5 - f_4)^2$ $+ (f_4 - f_1)^2 + (f_5 - f_2)^2$

Rougher images \Rightarrow greater R(f)

Penalty Functions: Quadratic vs Nonquadratic

Phantom

Quadratic Penalty

Huber Penalty

Summary of Modeling Choices

- 1. Object parameterization: $\lambda(\vec{x})$ or $\mu(\vec{x})$ vs f
- 2. Model of system physics
- 3. Measurement statistical model $Y_i \sim$?
- 4. Objective function: data-fit / regularization / constraints

Reconstruction Method = Objective Function + Algorithm

5. Iterative algorithm ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, ...
Choice 5. Algorithms

Deterministic iterative mapping: $x^{(n+1)} = M(x^{(n)})$

All algorithms are imperfect. No single best solution.

Ideal Algorithm

 $x^{\star} \stackrel{\triangle}{=} rg\max_{x \ge 0} \Phi(x)$ (global maximum)

stable and convergent converges quickly globally convergent fast robust user friendly monotonic parallelizable simple flexible $\{x^{(n)}\}\$ converges to x^* if run indefinitely $\{x^{(n)}\}\$ gets "close" to x^* in just a few iterations $\lim_n x^{(n)}$ independent of starting image requires minimal computation per iteration insensitive to finite numerical precision nothing to adjust (*e.g.*, acceleration factors) $\Phi(x^{(n)})$ increases every iteration (when necessary)

easy to program and debug accommodates any type of system model

(matrix stored by row or column or projector/backprojector)

Choices: forgo one or more of the above

Optimization Transfer Illustrated

Convergence Rate: Slow

Convergence Rate: Fast

Summary

- General principles of statistical image reconstruction
- Optimization transfer
- Principles apply to both emission and transmission reconstruction.
- Predictability of resolution / noise and controlling spatial resolution argues for regularized objective-function
- Still work to be done...

An Open Problem

Still no algorithm with all of the following properties:

- Nonnegativity easy
- Fast converging
- Intrinsically monotone global convergence
- Accepts any type of system matrix
- Parallelizable

Statistical image reconstruction for polyenergetic X-ray CT

Idris A. Elbakri and Jeffrey A. Fessler

EECS Department The University of Michigan

(Based on SPIE '01)

GEMS CT

June 13, 2001

Outline

- Introduction
- Statistical model
- Algorithm
- Ordered-subsets
- Results

Introduction

- Beam-hardening can cause severe artifacts if ignored
- Previous correction methods are only approximation (*e.g.*, Joseph and Spital, JCAT, 1978)
- Previous correction methods are not statistical
- Previous statistical reconstruction methods have ignored beam hardening

Object Model

$$\mu(\vec{x}, E) = \sum_{k=1}^{K} m_k(E) \rho_k(\vec{x}) \alpha_k(\vec{x})$$

Arguments:

- \vec{x} spatial position
- E photon energy

Unknown functions:

- μ linear attenuation coefficient
- ρ_k density of *k*th material

Known quantities:

- *K* number of materials (*e.g.*, K = 2 for bone / soft tissue)
- *m_k* mass attenuation coefficient of *k*th material
- α_k fraction of kth material at location x
 (Currently: 0 or 1 from segmenting JS FBP image)

Statistical model

$$Y_i \sim \text{Poisson}\left\{\int I_0(E) \exp\left(-\sum_{k=1}^K m_k(E) \sum_{j=1}^{n_p} a_{ij}^k \rho_j\right) dE + r_i\right\}$$

"Known" quantities:

- Y_i *i*th element of measured sinogram
- a_{ij}^k system matrix $a_{ij}^k = a_{ij} \alpha_k(\vec{x}_j)$
- I_0 source spectrum and detector sensitivity
- r_i scatter and/or detector readout bias

Unknown quantities:

 ρ_j density of jth voxel

Goal: Reconstruct density vector $\boldsymbol{\rho} = (\rho_1, \dots, \rho_{n_p})$ from measurement vector $\boldsymbol{Y} = (Y_1, \dots, Y_{n_d})$.

Approach

- Penalized-likelihood objective function
- Edge-preserving regularization function
- Optimization transfer to derive "scaled gradient ascent" algorithm

$$\boldsymbol{\rho}_{j}^{(n+1)} = \left[\boldsymbol{\rho}_{j}^{(n)} - \frac{1}{d_{j}} \frac{d}{d\boldsymbol{\rho}_{j}} \boldsymbol{\Phi}(\boldsymbol{\rho}) \Big|_{\boldsymbol{\rho} = \boldsymbol{\rho}^{(n)}} \right]_{+}$$

- The $[\cdot]_+$ enforces nonnegativity constraint.
- For suitable step sizes $\{d_j\}$, algorithm monotonically increases Φ .
- Table lookup to compute

$$F_k(t_{\text{water}}, t_{\text{bone}}) = \int I_0(E) m_k(E) e^{-[m_{\text{water}}(E)t_{\text{water}} + m_{\text{bone}}(E)t_{\text{bone}}]} dE.$$

Ordered-Subsets Acceleration

The gradient involves forward and backprojections:

$$\frac{d}{d\boldsymbol{\rho}_j} \Phi(\boldsymbol{\rho}) = \sum_{i=1}^{n_d} a_{ij} \left(1 - Y_i / \bar{y}_i^{(n)} \right) \sum_{k=1}^K \alpha_j^k F_k([\boldsymbol{A}_1 \boldsymbol{\rho}^{(n)}]_i, [\boldsymbol{A}_2 \boldsymbol{\rho}^{(n)}]_i) + \cdots$$

Ordered-subsets concept (Hudson and Larkin, TMI, 1994):

- Replace full backprojection with "downsampled" backprojection (cf FBP with angular downsampling)
- Only forward project ($[A\rho]_i$) for the needed projection views of each subset
- Cycle through all subsets of projection angles
- Accelerates "convergence" pprox by number of subsets in early iterations
- Original formulation does not converge (GE, Siemens, etc., all sell it for PET and SPECT nevertheless...)
- Ahn and Fessler have developed truly convergent formulation

Disk Phantom CT Simulation

Phantom

 256×256 image, 1.6mm pixels,, water = 1.0g/cm³, bone = 2.0g/cm³. 600 rays by 500 angles, 1.3mm spacing, $2.2 \cdot 10^7$ incident photons/ray. Images windowed from 0.8 to 1.2 g/cm³.

Disk Phantom Results: Conventional

Phantom

FBP Uncorrected Iterative Monoenergetic Model

Disk Phantom Results: Corrected

FBP Soft Tissue Correction FBP Joseph and Spital Statistical Polyenergetic Model 20 iterations, 20 subsets

Chest Phantom CT Simulation

 512×256 image, 0.8mm pixels. 700 rays by 600 angles, 1.3mm spacing, $1.77 \cdot 10^5$ incident photons/ray. Images windowed from 0.8 to 1.2 g/cm³.

Chest Phantom Results 1

Phantom

FBP Soft tissue correction

Chest Phantom Results 2

Joseph and Spital

Statistical Polyenergetic model 10 iterations, 40 subsets

Summary (Beam Hardening)

- First statistical reconstruction method with full polyenergetic model.
- Beam-hardening artifacts nearly eliminated.
- Ordered-subsets approach helps contain computation time.

Future Work

- Segmentation of FBP/JS image is adequate starting place. Explore re-segmenting statistical reconstruction.
- Ideal approach: simultaneous (iterative) segmentation / reconstruction.
- Extension to contrast agent case (K = 3) conceptually straightforward.
- Extension to metal implants conceptually straightforward.

GEMS Data: Preliminary Results

GE FBP, 190mAs

GE FBP, 10mAs

888 channels by 984 views over 360° . bin spacing is 1.0239mm. source-to-iso = 541mm, iso-to-detector = 408.075mm. Sinograms precorrected for *everything*.

GE 10mAs Preliminary Results

GE FBP

"Iterative"

 $\log_2\beta = 10, \delta = 10.5$ iterations, 41 subsets. Unweighted regularized least squares.

GE CRD Simulation: Spine

Iterative

1000² flat panel fan-beam monoenergetic (?) projections

GE CRD Simulation: Cardiac

Iterative

Truncated Fan-Beam SPECT Transmission

Overall Summary

Physics

• Modeling source spectrum reduces beam hardening effects

Statistics

• Reduced noise using statistical methods

Geometry

Truncated fan-beam data

Prior knowledge

- Nonnegativity
- Mass attenuation of water and bone

Future Work

- Real X-ray CT data with appropriate physics and statistics!
- Refinements of beam hardening algorithm
- Helical and cone-beam geometries
- Gated cardiac scans?
- Compton scatter (for larger cone angles)?

Fast Maximum Likelihood Transmission Reconstruction using Ordered Subsets

Jeffrey A. Fessler, Hakan Erdoğan

EECS Department, BME Department, and Nuclear Medicine Division of Dept. of Internal Medicine The University of Michigan

Transmission Scans

Each measurement Y_i is related to a single "line integral" through the object.

Transmission Scan Statistical Model

$$Y_i \sim \text{Poisson}\left\{b_i \exp\left(-\sum_{j=1}^p a_{ij}\mu_j\right) + r_i\right\}, \ i = 1, \dots, N$$

- *N* number of detector elements
- Y_i recorded counts by *i*th detector element
- b_i blank scan value for *i*th detector element
- a_{ij} length of intersection of *i*th ray with *j*th pixel
- μ_j linear attenuation coefficient of *j*th pixel
- r_i contribution of room background, scatter, and emission crosstalk

(Monoenergetic case, can be generalized for dual-energy CT) (Can be generalized for additive Gaussian detector noise)

Maximum-Likelihood Reconstruction

$$\hat{\mu} = \arg\max_{\mu \ge 0} L(\mu) \quad (\text{Log-likelihood})$$
$$L(\mu) = \sum_{i=1}^{N} Y_i \log \left[b_i \exp\left(-\sum_{j=1}^{p} a_{ij} \mu_j\right) + r_i \right] - \left[b_i \exp\left(-\sum_{j=1}^{p} a_{ij} \mu_j\right) + r_i \right]$$

Transmission ML Reconstruction Algorithms

Conjugate gradient

Mumcuoğlu et al., T-MI, Dec. 1994

- Paraboloidal surrogates coordinate ascent (PSCA)
 - Erdoğan and Fessler, T-MI, 1999
- Ordered subsets separable paraboloidal surrogates

Erdoğan *et al.*, PMB, Nov. 1999

Transmission expectation maximization (EM) algorithm

Lange and Carson, JCAT, Apr. 1984

Optimization Transfer Illustrated

Parabola Surrogate Function

- $h(l) = y \log(be^{-l} + r) (be^{-l} + r)$ has a parabola surrogate: $q_{im}^{(n)}$
- Optimum curvature of parabola derived by Erdoğan (T-MI, 1999)
 Replace likelihood with paraboloidal surrogate

$$L(\mu^{(n)}) = \sum_{i=1}^{N} h_i \left(\sum_{j=1}^{p} a_{ij} \mu_j \right) \ge Q_1(\mu; \mu^{(n)}) = \sum_{i=1}^{N} q_{im}^{(n)} \left(\sum_{j=1}^{p} a_{ij} \mu_j \right)$$

- $q_{im}^{(n)}$ is a simple quadratic function
- Iterative algorithm:

$$\mu^{(n+1)} = \arg \max_{\mu \ge 0} Q_1(\mu; \mu^{(n)})$$

- Maximizing $Q_1(\mu;\mu^{(n)})$ over μ is equivalent to (reweighted) least-squares.
- Natural algorithms
 - Conjugate gradient
 - Coordinate ascent

Separable Paraboloid Surrogate Function

- Parabolas are convex functions
- Apply De Pierro's "additive" convexity trick (T-MI, Mar. 1995)

$$\sum_{j=1}^{p} a_{ij} \mu_j = \sum_{j=1}^{p} \frac{a_{ij}}{a_i} \left[a_i (\mu_j - \mu_j^{(n)}) \right] + \left[\mathbf{A} \mu^{(n)} \right]_i \text{ where } a_i \stackrel{\triangle}{=} \sum_{j=1}^{p} a_{ij}$$

• Move summation over pixels outside quadratic

$$Q_{1}(\mu;\mu^{(n)}) = \sum_{i=1}^{N} q_{im}^{(n)} \left(\sum_{j=1}^{p} a_{ij}\mu_{j}\right)$$

$$\geq Q_{2}(\mu;\mu^{(n)}) = \sum_{i=1}^{N} \sum_{j=1}^{p} \frac{a_{ij}}{a_{i}} q_{im}^{(n)} \left(a_{i}(\mu_{j}-\mu_{j}^{(n)}) + \left[A\mu^{(n)}\right]_{i}\right)$$

$$= \sum_{j=1}^{p} Q_{2j}^{(n)}(\mu_{j}), \text{ where } Q_{2j}^{(n)}(x) \stackrel{\triangle}{=} \sum_{i=1}^{N} \frac{a_{ij}}{a_{i}} q_{im}^{(n)} \left(a_{i}(x-\mu_{j}^{(n)}) + \left[A\mu^{(n)}\right]_{i}\right)$$

• Separable paraboloidal surrogate function \Rightarrow trivial to maximize (cf EM)

Iterative algorithm:

$$\begin{aligned} u_{j}^{(n+1)} &= \arg \max_{\mu_{j} \ge 0} Q_{2j}^{(n)}(\mu_{j}) = \left[\mu_{j}^{(n)} + \frac{\frac{\partial}{\partial \mu_{j}} Q_{2j}^{(n)}(\mu^{(n)})}{-\frac{\partial^{2}}{\partial \mu_{j}^{2}} Q_{2j}^{(n)}(\mu^{(n)})} \right]_{+} \\ &= \left[\mu_{j}^{(n)} + \frac{1}{-\frac{\partial^{2}}{\partial \mu_{j}^{2}} Q_{2j}^{(n)}(\mu^{(n)})} \frac{\partial}{\partial \mu_{j}} L(\mu^{(n)})} \right]_{+} \\ &= \left[\mu_{j}^{(n)} + \frac{\sum_{i=1}^{N} (y_{i}/\bar{y}_{i}^{(n)} - 1) b_{i} \exp\left(-\left[A\mu^{(n)}\right]_{i}\right)}{\sum_{i=1}^{N} a_{ij}^{2} a_{i} c_{i}^{(n)}} \right]_{+}, \ j = 1, \dots, p \end{aligned}$$

- $c_i^{(n)}$'s related to parabola curvatures
- Parallelizable (ideal for multiprocessor workstations)
- Monotonically increases the likelihood each iteration
- Intrinsically enforces the nonnegativity constraint
- Guaranteed to converge if unique maximizer
- Natural starting point for forming ordered-subsets variation

Ordered Subsets Algorithm

• Each $\sum_{i=1}^{N}$ is a backprojection

- Replace "full" backprojections with partial backprojections
- Partial backprojection based on angular subsampling
- Cycle through subsets of projection angles

Pros

- Accelerates "convergence"
- Very simple to implement
- Reasonable images in just 1 or 2 iterations
- Regularization easily incorporated

Cons:

- Does not converge to true maximizer
- Makes analysis of properties difficult
Phantom Study

- 12-minute PET transmission scan
- Anthropomorphic thorax phantom (Data Spectrum, Chapel Hill, NC)
- Sinogram: 160 3.375mm bins by 192 angles over 180°
- Image: 128 by 128 4.2mm pixels
- Ground truth determined from 15-hour scan, FBP reconstruction / segmentation

Algorithm Convergence

Reconstructed Images

Reconstructed Images

Segmented Images

- .- -

Segmented Images

Quantitative Results

NMSE		Segmentation Errors	
FBP		FBP	
ML-OSEM		ML-OSEM	
ML-OSTR		ML-OSTR	
PL-OSTR		PL-OSTR	
PL-PSCD		PL-PSCD	
0%	6.5%	0%	5.5%

FDG PET Patient Data, PL-OSTR vs FBP

(15-minute transmission scan | 2-minute transmission scan)