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Executive Summary

• In a wide variety of estimation problems, one estimates an unknown pa-
rameter vector xtrue by minimizing a partially separable cost function:

x̂= argmin
x≥0

Φ(x), Φ(x) =∑
i

ψi([Bx−c]i), [Bx−c]i =∑
j

bi j xj−ci.

• Fast methods for estimating xtrue by minimizing Φ(x) are essential for
successful routine use in applications such as medical tomography.

•We have developed fast converging algorithms for minimizing Φ(x).
•One algorithm has the fast convergence of coordinate descent, yet is

parallelizable.

• The new algorithms converge faster than general-purpose minimization
methods.
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Application: X-ray Computed Tomography
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Statistical model: Yi ∼ Poisson{bi exp(− [Ax]i)+ ri}

• Yi: measurement along ith ray (statistically independent), i = 1, . . . ,nd

• xj : unknown attenuation coefficient in the j th voxel
• bi: mean number of transmitted photons along ith ray
• ai j : Radon projection matrix
• ri: random coincidences and scatter
• Beer’s Law for photon survival probability: e−

∫
µ(·)dl

• [Ax]i: discrete approximation to line integral along ith ray



X-ray CT Statistical Image Reconstruction
It is natural to estimate the attenuation image x by finding the “best fit” to
the sinogram data, as measured by the log-likelihood:

x̂ML
4
= argmin

x≥0
Φdata(x) where Φdata(x) =

nd

∑
i=1

ψi([Ax]i)

ψi(l)
4
=
(
bie
−l + ri

)
−Yi log

(
bie
−l + ri

)
.
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• Summation form due to independence of recorded photon counts.
• Inner products [Ax]i due to Beer’s law and line integrals
• ψi’s determined by Poisson negative log-likelihood



Application: PET Image Reconstruction
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PET Image Reconstruction
Most statistical methods for PET image reconstruction are based on the
following Poisson statistical model.

Yi ∼ Poisson

{
εisi ∑

j

gi j xj+ ri

}
, i = 1, . . . ,nd.

• Yi: measured counts in sinogram bins (statistically independent)
• xj : unknown radiotracer concentration in the j th voxel
• εi: ith detector efficiency
• si: photon survival probability along ith ray (attenuation)
• gi j : projection matrix
• ri: random coincidences and scatter
• nd: number of detector pairs



Maximum-Likelihood PET Image Reconstruction
If the Poisson model is valid, it is natural to estimate the emission image
x by finding the “best fit” to the sinogram data, as measured by the log-
likelihood:

x̂ML
4
= argmin

x≥0
Φdata(x) where Φdata(x) =

nd

∑
i=1

ψi([Ax]i)

ψi(l)
4
= (l + ri)−Yi log(l + ri), ai j

4
= εisigi j .
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• Summation form due to independence of recorded photon counts.
• Inner products [Ax]i due to Radon tomographic projection
• ψi’s determined by Poisson negative log-likelihood



Application: Confocal Microscopy 3D Image Restoration
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Cost function is comparable to that of PET / SPECT.



Application: Robust Multiuser Detection
Wang and Poor, Feb. 1999 IEEE Tr. Sig. Proc.
“Robust multi-user detection in non-Gaussian channels”

Model for direct-sequence code-division multiple access (CDMA):

Yi =
K

∑
j=1

ai j xj+Ni, i = 1, . . . ,nd

• Yi: sampled output of chip-matched filter
• xj : j th information bit scaled by received amplitude
• Ni: possibly non-Gaussian noise
• ai j : signature sequence of j th user

Robust bit estimator (using, e.g., the Huber function):

x̂= argmin
x

Φ(x), Φ(x) =
nd

∑
i=1

ψ(Yi− [Ax]i)



Application: Physics-based MR image reconstruction
y= Ax+noise

• y: samples in spatial frequency space
• x: object transverse magnetization
• A: Fourier transform modified by magnetic field inhomogeneity

Yi =
np

∑
j=1

xj exp
(√
−12π

[
ki · r j+∆ jti

])
• ki: frequency space location of ith sample
• r j: coordinates of j th voxel
• ∆ j: field inhomogeneity induced off-resonance frequency for j th voxel
• ti: time of ith sample

Gaussian noise, so ψi(t) = t2/2 (least squares estimation)



Edge-preserving Regularization
Minimizing Φdataalone is inadequate for ill-conditioned inverse problems.

Generic prior “knowledge” of piece-wise smoothness:
• xj−xj−1≈ 0 (piece-wise constant)
• xj−1−2xj+xj+1≈ 0 (piece-wise linear)
• xj ≈ 0, j ∈ J ⊂ {1, . . . ,np} (support constraints)
• . . .

Combining: Cx≈ z (where typically z= 0).

Expressed as penalty function:

Φpenalty(x) =∑
k

ψpenalty
k ?([Cx−z]k).

To “preserve” edges, ψpenalty
k should be nonquadratic.



Example of edge-preserving potential function
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Penalty Function: General Form
Φpenalty(x) =∑

k

ψk([Cx]k), where [Cx]k=∑
j

ck jxj

Example:

x1 x2 x3

x4 x5

Cx=



−1 1 0 0 0

0 −1 1 0 0
0 0 0 −1 1
−1 0 0 1 0

0 −1 0 0 1
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Unified Cost Function

Φ(x) =
N

∑
i=1

ψi([Bx−c]i) “partially separable”

Regularized edge-preserving cost function is a special case:

Φ(x) =Φdata(x)+Φpenalty(x), B=
[

A
C

]
, c=

[
y
z

]

Optimization problem:

x̂= argmin
x

Φ(x) or x̂= argmin
x≥0

Φ(x).

This formulation encompasses a wide variety of inverse problems.

Challenges: nonnegativity constraint, nonquadratic ψi’s, size of B.



Ideal Algorithm
x̂
4
= argmin

x≥0
Φ(x) (global minimizer)

stable and convergent {x(n)} converges to x̂ if run indefinitely
converges quickly {x(n)} gets “close” to x̂ in just a few iterations
globally convergent limnx(n) independent of starting image
fast requires minimal computation per iteration
robust insensitive to finite numerical precision
user friendly nothing to adjust (e.g. acceleration factors)
monotonic Φ(x(n)) increases every iteration
parallelizable (when necessary)
simple easy to program and debug
flexible accommodates any type of system model

(matrix stored by row or column or projector/backprojector)
Choices: forgo one or more of the above



Optimization Transfer (1D illustration)
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Optimization Transfer
(cf EM Algorithm)

• E-step: choose surrogate function φ(x;x(n))
• M-step: minimize surrogate function

x(n+1) = argmin
x≥0

φ(x;x(n))

Surrogate design goals:
• Easy to “compute”
• Easy to minimize
• Fast convergence rate
• Monotone convergence

Φ(x(n))−Φ(x)≥ φ(x(n);x(n))−φ(x;x(n))

Often mutually incompatible goals ... compromises



Optimization Transfer in 2D
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Exploiting Partial Separability (E-step)

Cost Function Paraboloidal Surrogate Function

Φ(x) =
N

∑
i=1

ψi([Bx−c]i) ≤ φ(x;x(n))
4
=

N

∑
i=1

qi([Bx−c]i; t
(n)
i ),

where t(n)i
4
= [Bx(n)−c]i).

1-D tangent parabola surrogate:

ψi(t)≤ qi(t; t
(n)
i ), qi(t;s)

4
= ψi(s)+ ψ̇i(s)(t−s)+κi(s)

(t−s)2

2
.

Optimal parabola curvature (for fastest convergence rate):

κi(s)
4
=min{κ≥ 0 : qi(t;s)≥ ψi(t) ∀t}.

For Huber-like functions: κi(s) = ψ̇i(s)/s
4
= ωi(s).

For emission and transmission tomography, optimal κi derived by Erdoğan
(Tr. Med. Im., 1999)



Tangent Parabolas
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Nonmonotonicity of Newton-Raphson
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Minimizing the Paraboloidal Surrogate (M-step)

φ(x;x(n)) = c0+∇Φ(x(n))(x−x(n))−
1
2
(x−x(n))′B′diag

{
κ(n)i

}
B(x−x(n)),

where the tangent parabola curvatures are:

κ(n)i = κi(t
(n)
i ) = κi([Bx(n)−c]i).

M-step: Minimize φ(x;x(n)) using any iterative “least squares” algorithm that
accommodates nonnegativity constraints.

Reasonable choices of algorithms
• PSCD Paraboloidal surrogates coordinate descent:

fast converging, but non-parallelizable
• SPS (separable paraboloidal surrogates):

slow converging, but fully parallelizable
• PPCD (partitioned-separable paraboloidal surrogate coordinate descent)

best of both worlds?



Paraboloidal surrogates coordinate descent (PSCD)
• Update one pixel at a time, w.r.t. the surrogate, holding other pixels fixed:

x(n+1)
j = argmin

xj≥0
φ(x(n+1)

1 , . . . ,x(n+1)
j−1 ,xj,x

(n)
j+1, . . . ,x

(n)
np

;x(n)).

• Cycle through all pixels, then update the paraboloidal surrogate (κ(n)i ’s).

Advantages:
• Intrinsically monotonic, global convergence (for a broad family of ψi’s)
• Fast converging (from good initial image)
• Nonnegativity constraint trivial

Disadvantages:
• Requires column access of system matrix
• Poorly parallelizable



Separable paraboloid surrogate
One can use the convexity of the paraboloidal surrogate φ to define a sec-
ond surrogate function that is separable :

φ(x;x(n))≤ φSP(x;x(n))
4
=

np

∑
j=1

φ j(xj−x(n)j ;x(n))

where

φ j(t;x(n))
4
=

N

∑
i=1

πi j κ
(n)
i

1
2

(
bi j

πi j
t+[Bx(n)−c]i

)2

,

πi j =
|bi j |

∑np

j=1 |bik|
.

Minimizing the separable paraboloid φSP is trivial, especially compared to
minimizing a paraboloid.

x(n+1) = argmin
x≥0

φ(x;x(n)) ⇒ x(n+1)
j = argmin

xj≥0
φ j(xj−x(n)j ;x(n)), j = 1, . . . ,np.



Separable paraboloid surrogate (SPS) algorithm

x(n+1)
j =

[
x(n)j −

q̇j(0;x(n))
q̈j(0;x(n))

]
+

⇒ x(n+1) =

[
x(n)− diag

{
1

q̈j(0;x(n))

}
∇Φ(x(n))

]
+

Advantages:
• Monotonically decreases Φ
• Converges globally to unique minimizer (for broad family of convex ψi’s)
• No matrix inversion required
• Easily enforces nonnegativity constraint
• Completely parallelizable (all pixels updated simultaneously)

Disadvantages:
• Very slow convergence (ala EM algorithm)



Convergence Rate / Surrogate Curvature
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Separable vs Nonseparable Surrogates

Φ

Separable Nonseparable

φ

Φ

φ

Separable surrogates (e.g. EM) have high curvature ... slow convergence.
Nonseparable surrogates can have lower curvature ... faster convergence.
Harder to minimize? Use paraboloids (quadratic surrogates).



PSCD vs SPS Algorithm
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Naive Parallelizable Coordinate Descent
• Goal: fast convergence of coordinate descent, yet parallelizable
• Suitable for coarse-grain parallelization

21Subset Subset

Subset 3 Subset 4

• Each processor applies coordinate descent independently to its block
• Not guaranteed to be monotonic!



Partitioned-separable paraboloidal surrogate
Partion pixels into K subsets indexed by Jk, where

⋃K
k=1Jk= {1,2, . . . ,np}.

E-step: Form a surrogate function that is separable between blocks:

Φ(x)≤ φ(x;x(n))≤Q(x;x(n)) =
K

∑
k=1

Qk(xJk;x
(n)).

By construction, decreasing this new surrogate Q(x;x(n)) will monotonically
decrease the cost function Φ:

Φ(x(n))−Φ(x)≥Q(x(n);x(n))−Q(x;x(n)).

M-step: Partitioned-separable form allows processor parallelization:

x(n+1) = argmin
x≥0

Q(x;x(n)) ⇒ x(n+1)
Jk

= arg min
xJk
≥0

Qk(xJk;x
(n)), k= 1, . . . ,K.



PPCD Derivation
Adaptation of De Pierro’s convexity trick for modified EM algorithm:

[Bx−c]i =
np

∑
j=1

bi j xj−ci =
K

∑
k=1

πik

(
s(n)ik (xJk)

πik
+ t(n)i

)

where πik =
∑ j∈Jk

|bi j |

∑np

j=1 |bi j |
≥ 0 and

K

∑
k=1

πik = 1,

s(n)ik = [BJk(xJk−x(n)Jk
)−c]i = ∑

j∈Jk

bi j (xj−x(n)j )−ci.

When q is a quadratic (and hence convex function):

q([Bx−c]i) = q

(
K

∑
k=1

πik

(
s(n)ik (xJk)

πik
+ t(n)i

))
≤

K

∑
k=1

πik q

(
s(n)ik (xJk)

πik
+ t(n)i

)
.

The latter term is the foundation for Qk, being partitioned separable.



Partitioned separable Paraboloidal-surrogate
Coordinate Descent (PPCD) Algorithm

E-step
• Form paraboloidal surrogate φ(x;x(n)) from cost function Φ(x)
• Form partitioned separable surrogate Q(x;x(n)) = ∑K

k=1Qk(xJk;x
(n))

M-step
• K processors independently “minimize” (or decrease) {Qk(xJk;x

(n))},
using any nonnegative least-squares method such as coordinate descent

x(n+1)
Jk

= arg min
xJk≥0

Qk(xJk;x
(n)), k= 1, . . . ,K.

• Broadcast x(n+1)
Jk

to other processors

For a broad class of convex ψi’s, global convergence follows from SAGE
convergence proof, Fessler and Hero, 1995 (IEEE T-SP).



Representative 2D Simulation Results
Object Measurement Restoration

Poisson measurement noise with PSNR = 25 dB

Restored by maximum penalized likelihood
using nonquadratic edge-preserving penalty function:

ψ(t) = δ2
[∣∣∣ tδ
∣∣∣− log

(
1+
∣∣∣ tδ
∣∣∣)] , with δ= 1.5.



Convergence rate vs number of processors (2D)
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Confocal microscopy simulation (3D)
Object Measurement Restored

xy:

xz:



Cost function decrease vs Elapsed time
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Elapsed time per iteration vs # of Processors
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Summary
Optimization transfer
• Natural framework for algorithm development
• Exploits structure of “partially separable” cost functions

Partitioned separable paraboloidal surrogate coordinate descent algorithm
• Accommodates non-quadratic cost functions
• Monotonically decreases Φ
• Converges globally to unique minimizer (for broad class of ψi’s)
• Easily accommodates nonnegativity constraint
• Parallelizable
• Converges faster than a general-purpose optimization method



Future Work
Convergence proof for multiple minima:

x

Φ

Slides and paper available from:
http://www.eecs.umich.edu/ ∼fessler



Monotone Convergence
From R. Meyer “Sufficient conditions for the convergence of monotonic
mathematical programming algorithms,” J. Comput. System. Sci., 1976.

Let M be a point to set mapping such that, on G,
• M is uniformly compact,
• M is upper semi-continuous,
• M is strictly monotonic with respect to the function Φ.

If {x(n)} is any sequence generated by the algorithm x(n+1) ∈M (x(n)):
• all accumulation points of {x(n)} will be fixed points,
• Φ(x(n))→Φ(x?) where x? is a fixed point,
• ‖x(n+1)−x(n)‖→ 0, and
• either {x(n)} converges or the accumulation points of {x(n)} form a contin-

uum.


