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ABSTRACT 

The classical maximum-likelihood (ML) estimator for the 
position of a scintillation event in a gamma camera, as d ... 
rived by Gray and Macovski in 1976, requires exact knowl
edge of the light-spread function (LSF) of each photomulti
plier tube. In practice, one must determine each LSF from 
noisy measurements corrupted by Poisson noise, quantiza
tion error, and electronic noise and bias. Since the ML 
position estimator involves derivatives of each LSF, even 
small measurement errors can result in degraded estimator 
performance. In this paper we derive a robust ML posi
tion estimator that accounts for the statistical uncertainty 
in LSF measurements. The form of the robust estimator 
diminishes contributions from the tails of the LSF, where 
the relative measurement errors are the largest. 

I. INTRODUCTION 

Position-sensitive scintillation cameras playa crucial role 
in nuclear medicine; they are used to form conventional 
planar images, as well as to collect projection mea
surements for reconstruction into cross--sectional images 
of radio-isotope distributions. When a decay-produced 
gamma photon strikes a position sensitive detector, the 
scintillation crystal produces visible photons that are 
sensed by a photomultiplier tube (PMT) array. The PMT 
output currents are combined electronically to form an es
timate of the position of the scintillation event. The accu
racy of the position estimator affects the spatial resolution 
of planar images, and also contributes to the effective res
olution of tomographic images. Furthermore, systematic 
errOrs in position estimation can lead to artifacts in recon
structed images. Such artifacts were the impetus for this 
study. 

There have been several position estimators proposed 
in the literature. The most common and straightforward 
approach is to use a centroid or trimmed-centroid esti
mator. The centroid estimate is suboptimal unless the 
light-spread function (LSF) (the mean PMT response as 

-Thi. work was support.ed in part by NC! Training Grant. 5 T32 
CA09015, and by a DOE Alexander Hollaender Postdoctoral Fellow
ohip. 

a function of position) of each PMT has Gaussian shape. 
The centroid estimate also disregards the statistical prop
erties of scintillation cameras. This led Gray and Macov
ski [1] to propose applying the maximum- likelihood (ML) 
criterion for position estimation. Clinthorne and Rogers 
et al [2] implemented an ML estimator in hardware for 
SPECT, and demonstrated that the ML position estima
tor significantly outperforms the centroid position estima
tor and nearly achieves the Cramer-Rae (CR) lower bound. 
The implementation in [2] is based on separating the two
dimensional position estimate into two one-dimensional es
timation problems, and for simplicity we adopt that ap
proach here as well. 

The derivations in [1] and [2] are based on the assump
tion that each LSF is known exactly. In practice, one must 
determine each LSF from noisy measurements corrupted 
by Poisson noise, quantization error, and electronic noise 
and bias. This paper presents a new position estimator 
that is more robust in that it accounts for the Poisson 
noise in LSF measurements. 

Before presenting the robust position estimator, we first 
review the derivation of the ordinary ML position estima
tor . Let K be the number of PMTs, and let the output 
of the Hh PMT be denoted y.. The PMT outputs have 
independent Poisson distributions: 

Y. - Poi .. on(~ •• ("», (1) 

where s.(,,) denotes the LSF of the kth PMT, ~ denotes the 
(unknown) gamma photon energy, and" denotes the scin
tillation position. The purpose! of a position estimator is 
to estimate z given y!, . . . , YK . The position log-likelihood 
i8 thus: 

K 

L(",~) = ~)-es.(,,) + y.log(~s.(,,))]. 
k=l 

As derived in [2] (see also the next section), if each LSF 
•• (z) is known exactly, then one can analytically solve for 
the ML estimate of ~ , and compute the ML position esti-

1 Note that (or system. with multiple energy window., the param· 
eter e is also important. Here we treat e as a nuisance parameter. 



mate Cor", by ma.ximizing: 

1; Yk [IOg(Sk("'» -log (~S;("'») ] . (2) 

In particular, one can implement the ML estimator [2] by 
searching Cor a zero-crossing of 

(3) 

Given a scintillation event with PMT measurements 
{Yk}f=I' our goal is to estimate its position", while ac
counting for the uncertainty in {Sk("')}' The natural sta
tistical approach is to consider both '" and {Sk ("')} to 
be unknown, and to maximize their joint log-likelihood 
with respect to both the LSF measurements and the PMT 
outputs. Under our assumptions for the distributions of 
{ll("'m)}, the log-likelihood of the LSF measurements is: 

M K 

LI ( {S("'m)}~=d = L L l(a1k("'m) ; a8k("'m» , 
m::l.l:=1 

as a Cunction of "' . If each LSF is known, then one can where 
show [2] that the variance of this ML estimator is approx-
imately s("'m) = [SI("'m), .'" SK("'m)]. m = t • . . . • M. 

Var(z) '" L %Sl("') _ L:j-I 8,;S;(:I:) 
[ 

K ~. K 8 ]-1 
k=1 8k("') Lf=1 8;(:I:) 

(4) 

which nearly achieves the CR bound [2]: 

(5) 

In practice. one must determine each LSF from noise cor
rupted calibration measurements. Since the ML position 
estimator (3) involves derivatives oC each LSF. even small 
measurement errors can result in degraded performance. 
10 this paper we propose a novel estimator that accounts 
Cor the statistical uncertainty in the LSF measurements. 

II. ROBUST POSITION ESTIMATOR 

In practice, one measures each LSF during a calibration 
procedure by translating a point source oC gamma rays to 
a finite number of positions along the detector. Let the 
source positions be denoted {:l:m}~=I' While the source 
is at position :l:m • the output of each PMT is observed 
Cor a finite time interval, producing lk("'m). a noisy esti
mateofsk(:l:m), m= t, . .. ,M, k= t •... ,K. We assume 
these LSF measurements have independent Poisson distri
butions: 

(6) 

The parameter a reflects the accuracy of the measurements 
and i. easily determined empirically using, Cor example, 
the jackknife estimate oC variance [3]. Ideally. a would 
equal the number of scintillations that occur during each 
time interval. The assumption of independence is easily 
justified by fact that the LSF measurements are collected 
independently. The Poisson assumption reflects the fact 
that only a finite number of gamma events occur during 
the calibration time interval. However. the Poisson as

sumption ignores the electronic noise and bias as well as 
contributions from background events. We return to these 
considerations in the discussion section. 

and where 1(·;·) is the Poisson log-likelihood: 

I(Y;.\) = -.\ + y log(.\) + log(y!). 

As derived in the previous section, the position likelihood 
is: 

K 

L2(:I:,. {S("'m)}~=I' e) = L I(Yk; eSk(:I:,)). 
k=1 

Combining these two likelihood functions yields the follow
ing ML criterion: 

where 

K 

= LI ({s(:l:m)}~=I) + L [-esk(:I:,) + Yk log(£8k(:I:,))]. 
1=1 

(7) 
Analytically ma.ximizing over £ yields 

so (7) simplifies to: 

z = argma.x ma.x 4>2(:1:" {S("'m)}). 
~, 8(~I). ··· .8(%M) 

where 

M K 

4>2("'" {s(Zm)}) = L L l(a1k("'m); aSk("'m)) 
m=l.1:=1 

+ 1; Yl [log(Sk("',)) -IOg(~ s;(z,))] , (8) 

excluding terms involving only {yd. Note that the last 
line of (8) is equivalent to (2). For Zm # "',. there is 



no coupling between the LSF likelihood and the position 
likelihood, yielding: 

s(x..,) = [I,(x..,), ... , 'K(x..,)], m = 1, ... ,p-1,p+1, ... M. 

Combining these terms with (8) yields 

where 

Z = arg max max <113 (X,,8(X,», 
z, 8(%,) 

M K 

<113 (z".(x,» = L LI(alk(x..,);alk(Z..,» 
m=l k=l 

Using the fact that log(x) .,. Z - 1 for x.,. 1, one can show 
that the first line above is negligible. Also, if the PMT 
array has fairly uniform total sensitivity (E:=tl.(x) is 
nearly constant), then we can also ignore the second line. 
Thus, we have reduced this joint estimation problem to the 
following proposed estimator: 

i = arg max <II(x,) 
" 

(11) 

where 

- I(aldz,); alk(Z,» + I(al.(z.); aSk(X,» 

+ ~Yk [IOg( •• (Z,» -IOg(~S;(Z'»]' 
Assuming each estimated LSF is smooth, one can imple

(9) ment this robust estimator by searching for a zero-crossing 
of: 

The first double sum is independent of x.' so we drop it, 
leaving: 

where 

K 

i = arg max max <II,(Z,,8(Z.», =, 8(=,) 

<II.(x., .(z.» = 

- L [-aldz.) + alk(Z.) 10g(alk(Z.» -log(alk(Z,»!] 
k=1 
K 

+ L [-aSk(Z.) + alk(Z.) 10g(aSk(X.» - log(alk(x.»!] 
k=l 

+ ~ Yk [log(s.(z,» -log(~ Si(X.»] . (10) 

Maximizing over .( x.) yields: 

_ ( ) _ h(z,) + ;Uk 
8/1: Zp - 1 K K . 

1 + ,,<2:::;=, Y; )10:::;=, I; (x.» 

Thus, the LSF parameter estimate is a weighted combina
tion of the calibration data and the PMT outputs. Note 
that as a increases, 8k(X.) approaches I.(x,), as one ex
pects. Sub.tituting this expression into (9) yields: 

i = arg max <II.(x.), 
<, 

where 

t [1.(Z..,+1) -lk(X..,) _ Ei=,(I;(x"'+l) -I;(X..,»] 
.=1 Uk Ik(X..,) + y./a Ei=I I;(X..,) . 

(12) 
Note that as a increases, this form approaches a discretized 
version of the original ML estimator (3). 

Problems arise in the original ML method when an un
usually large PMT output Y. is magnified by a small LSF 
measurement I.(x). The additional term y./a in the de
nominator of this robust estimator diminishes the contri
bution of large measurements from the tail. of the LSF, 
where the relative measurement errors are the largest. 

The CR bound given by (5) is for the case when each 
LSF is known exactly. It would be desirable to have a 
bound that accounts for the uncertainty in the LSF mea
surements. This appears difficult because once one con
siders the fact that the calibration procedure produces a 
finite number of LSF measurements, the problem is then 
inherently discrete. Nevertheless, the expression (5) can 
still serve as a lower bound, albeit a possibly optimistic 
one. 

Although (11) and (12) are incompatible with the hybrid 
position estimator circuit described in [2], one could eas
ily implement either estimator using a digital signal pro
cessing chip. A two-dimensional implementation is also 
possible, such as the iterative approach described in [4]. 

III. SIMULATION 

To evaluate the new estimator I we simulated one dimen
sion of a position sensitive detector similar to those in the 
SPRINT II system [5]. The detector modules in this sys
tem are approximately 140mm wide, and the position in 
a typical row is estimated from five PMT outputs. The 
five LSFs shown in Fig. 1 are similar to those for SPRINT 
II. The sensitivity of the detector module is such that the 
PMTs detect a total of approximately 700 photo-electrons 
per ··"'Tc gamma photon scintillation. Therefore, in our 
simulation: E:=1 •• (z) .,. 700. 



The CR lower bound for known LSF is shown in Fig. 2. 
The FWHM resolution is approximately 3mm, agreeing 
with that reported in [2]. Fig. 2 also shows the analytical 
ideal ML standard deviation (4) for the known LSF case. 

We have actually presented four position estimators that 
should be compared: the ordinary likelihood search given 
by (2), the ordinary zero-crossing search given by (3), the 
"robust" likelihood search given by (11), and the "robust" 
zero-crossing search given by (12). We denote these four 
approaches SI, ZI, S2, and Z2 respectively. 

To compare the four estimators, we chose 28 " positions 
spaced at 5mm intervals, and generated 1000 realizations 
of the PMT outputs (I) and the LSF measurements (6) 
at each" position. The LSF measurements were taken at 
0.5mm intervals. For each realization, the SI and S2 esti
mates were performed by searching over the entire 140mm 
field of view (FOV); the ZI and Z2 estimates were found by 
searching choosing the left-most zero crossing in a 15mm 
interval centered about the true position. For several real
izations, no zero-crossing was found in the intervals for the 
three" positions at the edges of the FOV. Therefore, in the 
remaining analysis we focus on the 22 central" positions, 
at locations 17mm, 22m, ... , 122mm. 

Tables I and II compare the performance of the four esti
mators to the CR bound (5). The tables report the number 
of " positions (out of 22) for which the estimator's vari
ance was significantly higher or lower than the CR bound 
(at p=0.05 using the X2 statistic). It appears that all four 
estimators are nearly efficient even in the presence of noisy 
LSF measurements, except when a is very small. 

Table III compares the performance of the two zero
crossing methods with the two corresponding likelihood 
search methods. The table reports the number of " posi
tions (out of 22) for which the zero-crossing methods have 
a significantly higher or lower variance than the likelihood 
search methods. (These were tested at p=0.05 using the 
F -test.) Despite the fact that the local search used for the 
zero-crossing method should have biased the results in fa
vor of the zero-crossing method, we see from Table III that 
in fact the likelihood search methods outperform the zero
crossing methods when the LSF measurements are par
ticularly poor. This is probably due to the fact that the 
zero-crossing approach cannot distinguish between global 
and local maxima. If the LSF measurements are very noisy 
(small a), then local minima are more likely. However, for 
practical values of a, there appears to be little difference 
between the performance of the zero-crossing methods and 
the likelihood search methods. 

Finally, Table IV compares the performance of SI with 
S2 and that of ZI with Z2, again using the F-test. Appar
ently the original estimators given by (2) and (3) are fairly 
robust to Poisson errors in the measured LSFs, since there 
appears to be no significant difference between SI and S2 
or ZI and Z2. 

IV. DISCUSSION 

As mentioned in the introduction, this project was an at
tempt to reduce image artifacts that we attributed to sys
tematic errors in position estimation. We hypothesized 
that these errors were due in part to the Poisson uncer
tainty in the LSF measurements. The simulation results 
described above do not support this hypothesis. The ar
tifacts remain though, and with the benefit of hindsight 
it appears that the other sources of LSF measurement er
ror are more important than the Poisson uncertainty. In 
particular, the quantization errors in the AID converter 
and the effects of background events are likely candidates 
since they have the largest relative effect near the tails of 
the LSF. Note that once one accounts for these sources of 
error, '" is no longer proportional to the length of the time 
interval used for the calibration. 

The joint estimation method described in Section II has 
applications beyond the position estimation problem. In 
particular, Clinthorne has proposed in [6] applying a simi
lar idea to improve emission image reconstruction in PET 
by accounting for the noise in the transmission scan. 

Future work needs to focus on the other sources of LSF 
measurement errors. A LSF measurement model that ac
counts for those errors may be less amenable to the type 
of analytical maximization derived in Section II. Neverthe
less, by exploiting the fact that LSFs are typically smooth 
functions of position, a more robust position estimation 
method should be achievable. 



Figure 1: Simulated light spread functions (LSF) for five 
PMTs versus position. The top curve is the total light 
collection. 
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Figure 2: CR bound for position estimation (solid) and 
standard deviation of ML estimator for known LSF. 

ell u~, > u~R u~, < U"t-.R u~, > U"t-.R ui, < U"t-.R 
10' 3 1 4 0 
103 3 0 8 0 
10' 16 0 22 0 

Table I: Comparing the "ordinary" ML methods with CR 
bound (number significant at p=0.05 out of 22 possible). 

ell U~2 > Ut:R U~2 < Ut:R U~2 > ut:R ,,~, < "t:R 
10' 1 1 4 0 
103 1 0 8 0 
102 15 0 22 0 

Table II: Comparing the "robust" ML methods with CR 
bound. 

ell "~' > "~' "~' < "~' U~2 > U~2 "~2 < u~2 
lO' 3 2 4 1 
103 2 1 2 1 
102 22 0 22 0 

Table III: Comparing the variance of the likelihood-search 
methods with the zero-crossing methods. 

ell U~2 > ,,~, U~2 < ,,~, U~2 > ui, "h < ,,~, 
10' 0 0 0 0 
103 0 0 0 0 
102 0 2 0 0 

Table IV: Comparing the variance of the "robust" methods 
with the "ordinary" methods. 


