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Abstract 
An improved List Mode EM method for reconstructing 

Compton scattering camera images has been developed. First, 
an approximate method for computation of the spatial variation 
in the detector sensitivity has been derived and validated 
by Monte Carlo computation. A technique for estimating 
the relative weight of system matrix coefficients for each 
gamma in the list has also been employed, as has a method for 
determining the relative probabilities of emission having some 
from pixels tallied in each list-mode back-projection. Finally, 
a technique has been developed for modeling the effects of 
Doppler broadening and finite detector energy resolution on 
the relative weights for pixels neighbor to those intersected 
by the back-projection, based on values for the FWHM of the 
spread in the cone angle computed by Monte Carlo. Memory 
issues typically associated with list mode reconstruction are 
circumvented by storing only a list of the pixels intersected 
by the back-projections, and computing the weights of the 
neighboring pixels at each iteration step. Simulated projection 
data has been generated for a representative Compton camera 
system (CSPRINT) for several source distributions and 
reconstructions performed. Reconstructions have also been 
performed for experimental data for distributed sources. 

I .  INTRODUCTION 
List mode Expectation Maximization (EM) methods 

[ I ,  2, 31 are appealing in the Compton camera reconstruction 
problem because the total number of detected photons is 
significantly smaller than the number of possible combinations 
of position and energy measurements, leading to a much 
smaller problem than that faced by traditional iterative 
reconstruction approaches. For a realistic device, the number 
of possible detector bins can be as large as 10 billion per pixel 
of the image space, whereas the number of counted photons 
would typically be a fraction of a percent of that. Though 
memory and computation speed are still important issues (10 
million particles in a 128 x 128 images space requires that 
1010 weights be stored and computations made at each step), 
the primary difficulty in applying the list mode technique is in 
modeling system response for performing the successive back 
and forward projection operations. 

The conventional (binned, data) ML problem for the 
Compton camera can be posed as follows: Let Y be the 
measured projection data, accumulated in bins as the number 
of counts for a given combination of scatter detector element, 
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capture detector element, and scattering energy bin (with the 
number of counts in each bin denoted Yi), and the underlying 
pixelated object, each pixel having an intensity given by X j .  
The iteration, (indexed by I ) ,  is given by 

where, s j  is the sensitivity, or the probability that a photon 
emitted from pixel j would be detected anywhere, and t i j  the 
probability that a 7 emitted from pixel j is collected in bin i ,  so 

In the list mode case, we approximate Y by considering that 
each event is measured in a unique bin, so that Y; + 1 for each 
detected particle, and Yi + 0 for the infinite number of possible 
events not detected in the given measurement. The sums over 
the MS system bins in the above equations become instead 
sums over just the N,  detected events. Barrett et a1[2] and 
Parra [3] have proven that this approximation on Y holds (here 
we ignore any time dependence of the measurement), with the 
one exception that as the detected Y, no longer span the space 
of all possible events, sj # Ci t i j ,  but rather, s j  is now the 
integral over all possible events i ,  including those for which 

= 0. 
In an earlier work [ 5 ] ,  a simple method for determining 

the required system matrix coefficients needed in the EM 
algorithm was developed, by assuming uniform sensitivity 
and perfect energy and spatial resolution in the detectors. 
Doppler broadening of the Compton scattered photon energy 
spectrum was also ignored. These approximations limited the 
possible emission positions for a given detected event i (in 
2D) to those points along conic sections traversing the image 
plane. The probabilities t i j  were then approximated as some 
constant times the line integral of the conic through pixel j. 
This technique had two main advantages, in that because of the 
uniform sensitivity approximation, the method is independent 
of the system, and in that the coefficients tij could be generated 
trivially during an initial back-projection operation [7] done 
to obtain a starting image. Further, it was found that for an N 
by N image, typically 2N pixels would lie on a conic section, 
saving a factor of N / 2  matrix element computations. 

In the current work, we introduce a simple method for 
approximating the sensitivities for any Compton device with a 
planar first detector, and approximations for modeling more 
than N / 2  pixels per gamma at no increase in storage cost. 
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11. METHODS 
Straight-forward computation of the sensitivities s, and 

matrix elements tij  would require for each gamma in the list 
a integrations over the areas of each pixel, the entire first 
detector ands the entire second detector, probabilities and 
density functions describing the interaction and measurement 
of the two interaction positions and the scattering energy. As 
this is computationally intensive and requires detailed a priori 
knowledge of all system components, we seek alternative 
approaches, as described below. 

First, the relative spatial variation in the sensitivities sj 
is assumed to be dominated by just two effects, the solid 
angle subtended by the scatter detector and the probability 
of interaction inside the detector. This is justified by noting 
that after the first Compton scatter, the main efficiency effects 
(absorption of the scattered photons in the scatter detector and 
the solid angle subtended by the capture detectors) depend 
only on the exit angle and hence only on the scattering angles. 
For systems with large first and second detector areas, most 
gammas will scattering into angles subtended by the second 
detector, angle, and so the sensitivity effects after the first 
scatter will be fairly uniform across the image space. We thus 
approximate the relative sensitivity for pixel j as the sum of the 
probabilities of the two first detector geometrical effects taken 
over all the D1 first detector elements, leading to 

(3) 

where the ut is the total cross section in the scatter detector, zjl 
is the pathlength inside the first detector element along the ray 
from the center of pixel j to the center of each detector element 
rn and djl the distance between the centers. 

An image map of the relative sensitivities determined for a 
typical detector configuration using this approach is shown in 
figure 1, for a 64 by 64 image space covering 30 cm. The method 

. . .  

1c 

Fig. 1 Approximated relative sensitivities 

was validated by comparing results to those generate by a Monte 
Carlo computation. The detector modeled was the prototype C- 
SPRINT device, consisting of a 32 by 8 array of 1.4 mm silicon 
detector elements 1 mm thick for the first detector [4] and the 
SPRINT second detector. 

Center 
Half-Edge 
Edge 0.33 

0.52 
Comer 0.17 

Table 1 
Comparison of Monte Carlo and approximate computation of 

sensitivities 

Agreement is very good, especially considering that the C- 
SPRINT geometry, with the short second detector (11 cm) and 
the first detector recessed inside the SPRINT ring is very likely 
to accentuate any spatially varying effects caused by incomplete 
solid angle coverage of the second detector and re-absorptions in 
the first detector because of non-uniform average escape track 
lengths inside the first detector. 

As noted above, straight-forward computation of the 
weights would require the computation of integrals over 3 
position and 1 energy variables for each gamma, a total of 
N 2  N-, results. We use here an approach requiring computation 
of just N-, back-projections and just 2NN7 stored results. The 
approximation of tij  is done in a three part fashion. We begin 
with the original model in which the weights are computed for 
only those pixels which are intersected by the back-projected 
cone of each measurement i. As we seek to compute the 
relative values of the weights (from 1 we note that the iteration 
is independent of any normalization on the t i j ) ,  we note that we 
require 2 factors. The first describes the relative probabilities 
between the measurements i; the second describes the the 
probabilities within the measurements, i. e. ,  the probability that 
the gamma giving rise to the measurement i was emitted from 
pixel j. 

We assume that the first factor is determined primarily from 
the relative differential cross section and the escape probability 
of the scattered photon in the first detector: 

(4) 

where ut is the total cross section at the scattered photon 
energy in the first detector, 212 the distance traveled through 
the first detector along the ray between the first and second 
collisions, and % the differential Compton cross section. 
Since we need only to determine functional dependence and 
not absolute values, we approximate as the Klein-Nishina 
cross section at the given energy divided by the square of the 
distance between the 2 collisions. 

The second factor, the relative probability of a given even 
having come from a gamma emitted from a given pixel, must 
take into account the pixel sensitivities sj as well as the 
resolution loss brought on by Doppler broadening and the finite 
resolution in the energy measurement. We use our relative sj 's 
for the first factor here, and then assume that the other effects 
are described by the angular resolution of back-projected cones 
determined for a given system [7,4]. We assume that the value 
of the full width at half maximum of the cone-spread function 

dUC f(i) 0; e x P ( - c T , z l z ) ~  
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is constant for all energies (this is valid for the majority of the 
energy spectrum in which Compton cameras are designed to 
function [4]), and that the distribution, which is not Gaussian 
because of the long Doppler tails, can be modeled by adding to 
.9 times a Gaussian about the computed standard deviation to 
10% of a Gaussian distribution with 3 times the cone spread 
standard deviation, 

where T is the normal distance from the back-projected cone. 
The relative value assigned to each pixel would be the integral 
of this function over the area of the pixel. As we plan to store 
for each gamma only a list of intersected pixels and to generate 
the pixel weights of all neighboring pixels at each iteration 
step, we need to approximate the integrals. If we approximate 
the conics in the integrals to be linear and have r << U ,  which 
corresponds to pixel sizes L less than the cone spread in the 
image plane, it can be shown that integrals over pixels which 
are intersected by conics vary in the range from 2 - L2/8u2 
to 2 - 3L2/4u2 depending upon the orientation of the conics. 
This can be taken to be constant in most applications, and 
we therefore have that the relative weight of each pixel j in 
the computation of t i j  for a given i is dependent solely on 
the distance between the pixel of intersection to the neighbor 
pixel j. Neighbors are determined by taking them along either 
rows or columns of the image space (depending if the conic 
intersected the image space in a more vertical or horizontal 
fashion respectively), so the distance to the rnth neighbor is 
mL, and the relative weight of that pixel is taken as 

f(m) 0: .9 exp(-(m~)’/2u’) + .I e x p ( - ( r n ~ ) ~ / 2 ( 3 u ) ~ ) .  
(6) 

Since the selection of which neighboring pixels to include 
is made normal to the conic, even though the integral over the 
spread function in the pixels is independent of the orientation 
of the conic, for conics which intersect the image space with 
slopes not near to 0 or infinity, the distances to the center of the 
neighbor pixels are smaller than L,  and the relative weight for 
the mth neighbor taken from 6 needs to be adjusted. We do this 
by multiplying f(m) by a relative correction which is equal 
to 1 for slopes of 1 (which correspond to minimum distances 
between intersected pixel centers and neighbor centers, and 
increases to 

where s is the approximate average slope of the conic through 
the image space (or inverse slope if the intersection is more 
horizontal than vertical The obvious weakness of the method 
will be for particles with very small scattering angles, leading 
to back-projections with large second derivatives, and hence 
large variations in the first derivatives of the conics in the 
image space. 

To summarize then, the t i j  are computed by first 
determining a list of pixels intersected by the back-projected 
conic for each gamma, as described in [7]. Next, the relative 
probability between the measurements f ( i )  is computed 

according to 4. At each step of the iteration, the weights are 
approximated by branching out either vertically or horizontally 
from the intersected pixels and multiplying f ( i )  first by the 
sensitivity sj, then by the pre-computed spread function f(rn), 
and finally by the slope dependent correction f(s) for each of 
the rn neighbors in both the plus and minus direction. Thus 
we save EL factor of N/2 in storage at the expense of 3 extra 
multiplications per iteration step. 

Figures 2 and 3 show the back-projection for a single particle 
(i. e., the weights) computed by a lengthy and fairly rigorous 
method [ 121 and the current approximation. Agreement is seen 
to be quite. 

Fig. 2 Computed back-projections of representative particles 

Fig. 3 Approximate back-projections of representative particles 

Figure 4 shows cross sectional cuts through the image plane 
of the weights for each method for two sets of back projections, 
the first with slope very nearly normal to the image space, and 
the second at close to 45 degrees. The rigorous and approximate 
models agree well for both cases. 

111. RESULTS AND DISCUSSION 

Results are given below for reconstructions using the current 
method for both simulated and experimental data. Simulated 
data was generated using a typical detector configuration and 
for experimental data using a prototype detector. The system 
modeled is the C-SPRINT silicon and NaI system proposed by 
Clinthome and LeBlanc [4]. It consists of a 9x9 cm array of Si 

0-7803-5696-9/00/$10.00 (c) 2000 IEEE 1054 

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2010 at 20:36:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4 Computed cross sectional back-projections of representative 
particles 

elements, divided into 1.2 mm cells. Each cell is 5 mm thick 
and assumed to have an energy resolution of roughly 250 eV, 
(an achievable level, as suggested by Weilhammer [ll]). The 
capture detector is taken to be a hollow cylinder of NaI, 25 cm 
in radius and 25 cm long, with a spatial resolution of 3 mm. 
Projection data was generated by Monte Carlo simulation using 
the program SKEPTIC [6].  SKEPTIC has been employed and 
tested extensively in simulation of Compton scatter cameras 
[4, 7, 51. Lists of the exact interaction positions and energy 
losses are created, and the uncertainties in the measurements of 
these quantities are simulated by sampling from appropriate 
Gaussian distributions describing the energy and spatial 
resolution of the component detectors, as described in [SI. 
Doppler broadening of the scattered gamma spectrum, which 
has recently been found to be a limiting factor in the resolution 
performance of Compton cameras [8], is modeled using the 
tabulated data of Biggs [9] for amorphous silicon and of Reed 
[ 101 for crystalline silicon. Simulated spatial configurations 
of the sources included small Gaussian sources in a warm 
background, and hot and cold uniform disks of various radii in 
uniform warm background. 

The first image below was generated for a disk source 
of radius 5 cm with uniform background and 2 cold spots 
(intensity 0) and 2 hot spots (intensity 2) with 1.0 and .5 cm 
radii, at a distance of 10 cm from the face of the scatter detector. 
The reconstruction was done using the current method on a 64 
by 64 grid of 3 mm pixels, and modeled the ccne spread by 
treating 6 pixels on either side of each conic. Both of the hot 
spots and the cold spots are visible. 

Results are shown next for a Gaussian source reconstruction 
for g g m T ~ .  A 64x64 image space of 15 cm FOV was used, 
and 202,000 detected events modeled. The source consisted 
of a uniform background disk of radius 7.5 cm, overlayed 
with a Gaussian of full width at half maximum of 1 cm and 
maximum intensity 1.4, 10 cm from the front of the silicon 
detector. Six pixels on either side of the back-projected conics 
were treated, and a FWHM of 8 mm ([4] was assumed. The 
initial back-projection and computation of the weights took 
approximately 3 minutes on a Sparc Ultra workstation and each 
iteration roughly 40 seconds. Images are shown after iterations 
20 and 40. 

The final set of images were generated from experimental 
data taken with the prototype C-SPRINT detector. The phantom 
in this case was formed by placing a Tcggm line source 7.5 cm 
long in the shape of a Z. The separation distance between the 

Fig. 5 Phantom image including Doppler broadening and detector 
resolution, 50th iteration 

Fig. 6 Lesion image after 20th iteration 

parallel sections was 7 cm, and the intensity of the angled line 
1/2 that of the parallel lines. The FWHM of the cone spread at 
the 11 cm source to detector distance was computed to be 1.5 
cm, and results are shown here for reconstructions after 100 
iterations using 0, 8, and 16 pixels on either side of the initial 
back-projected cones. For the first case, as the 100th iteration 
image is extremely noisy, only the 20th iteration is shown. 
Note that there is no discernable improvement in the images 
quality from treated the tails of the cone spread. 

IV. CONCLUSIONS 
A computationally efficient method has been devised 

for determining the relative sensitivities and system matrix 
coefficients for Compton scatter cameras with planar first 
detectors. The method has been shown to give results with 
excellent agreement in comparison to both Monte Carlo and 
rigorous analytical results. Images reconstructed from both 
simulated and experimental data have been presented. 
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Fig. 7 Lesion image after 40th iteration Fig. 9 Reconstructed line phantom using 8 nearest pixels, 100th 
iteration 

Fig. 8 Reconstructed line phantom using only central pixel, 20th Fig. 10 Reconstructed line phantom using 16 nearest pixels, 100th 
iteration iteration 
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