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Abstract

The statistics of photon counting by systems affected
by deadtime are potentially important for statistical image
reconstruction methods. We present a new way of ana-
lyzing the moments of the counting process for a counter
system affected by various models of deadtime related to
PET and SPECT imaging. We derive simple and exact
expressions for the first and second moments of the num-
ber of recorded events under various models. From our
mean expression for a SPECT deadtime model, we derive
a simple estimator for the actual intensity of the underly-
ing Poisson process; simulations show that our estimator
is unbiased even for extremely high count rates.

I. I NTRODUCTION

Every photon counting system exhibits a characteristic
calleddeadtime. Since the pulses produced by a detector
have finite time duration, if a second pulse occurs before
the first has disappeared, the two pulses will overlap to
form a single distorted pulse [1]. Depending on the sys-
tem, one or both arrivals will be lost. In PET or SPECT
scanners, the length of pulse resolving time, often just
called “deadtime”, denoted� , is around2�s. Counting
systems are usually classified into two categories: nonpar-
alyzable (type I) or paralyzable (type II). In a nonparalyz-
able system, each recorded photon produces a deadtime of
length� ; if an arrival is recorded att, then any arrival from
t to t + � will not be recorded. In a paralyzable system,
each photon arrival, whether recorded or not, produces a
deadtime of length� ; if there is an arrival att, then any ar-
rival from t to t+ � will not be recorded. In some SPECT
systems [2], we encounter a third model that is similar
to the paralyzable model: if two photons arrive within�
of each other, then neither photon will be recorded (e.g.,
due to pulse pile-up); we call this the type III model. The
asymptotic moments of the nonparalyzable model are well
known [3]. For the paralyzable model, the exact expres-
sion for the mean of the number of recorded events from
time 0 tot, denotedY (t), has been derived previously [4].
However, for the type III model, only an approximate ex-
pression for the mean number of recorded events has been
derived [2]. In this paper, we derive the exact mean and

variance expressions ofY (t) for both type II and type III
models.

II. STATISTICAL ANALYSIS OF DEADTIME

We define a “photon arrival” to mean a photon interact-
ing with the scintillator with sufficient deposited energy to
trigger detection. The photon arrival processN(t) counts
the number of arrivals during the time interval(0; t], and
the photon recording processY (t) counts the number of
recorded events. We assume thatN(t) is a homogeneous
Poisson process with rate� (photon arrivals per unit time)
which stays constant with time. We also assume, for the
sake of simplicity, that� is known and deterministic.

A. Asymptotic Analysis via Renewal Theory

The counting processes in all three types of systems
discussed above are examples of “renewal processes” [3],
and renewal theory has been the classical basis for dead-
time analysis [5]. A renewal process involves recurrent
patterns connected with repeated trials. Roughly speak-
ing, if after each occurrence of a patternE , the random
process starts from scratch in the sense that the trials fol-
lowing an occurrence ofE form a replica of the whole
process, then the process qualifies as a renewal process.
If we defineE to be the state1 of “the counter is ready
to record the next photon arrival”, then after each occur-
rence ofE , the counting process is statistically equivalent.
A very useful random variable to define isTE , the wait-
ing time between one renewal and the next (renewal here
means return toE). Note that in the context of photon
counting system, withE defined as above, the number
of renewals from 0 tot is almost exactly the number of
recorded events from 0 tot. If TE has ensemble mean�E
and variance�2

E
, then the number of renewals from 0 tot,

~Y (t), is asymptotically Gaussian distributed [6] [3] with
the following moments:

E[ ~Y (t)] � t=�E ;Var[ ~Y (t)] � t�2E=�
3
E ; (1)

where� indicates that the ratio of the two sides tends to
unity ast=�E ! 1. Hence asymptotically, the mean and

1For type III deadtime, we define renewal as “return toE

after recording an event”.



variance of the waiting time between renewals forms a sort
of “duality” relationship with the mean and variance of the
number of renewals.

For the other two deadtime models, if we try to derive
E[Y (t)] from E[TE], it is much more difficult to obtain a
simple closed form expression because theE[TE] we get
is probably an infinite sum and it is often not easy to ob-
tain every term in this sum; the variance ofTE is even
more complicated. Therefore, in the following section,
we describe a new approach for deriving the moments of
counting processes.

B. Exact Mean and Variance of Counting Processes

We first consider a general counting processY where
Y (t1; t2) denotes the number of recorded events during
the time interval(t1; t2] and Y (t) is a shorthand for
Y (0; t). We define the instantaneous rate : R! [0;1)
of the processY (t) as:

(s) , lim
�!0

E[Y (s+ �)� Y (s)]=�; (2)

and the instantaneous second moment� : R! [0;1) as:

�(s) , lim
�!0

E[(Y (s+ �)� Y (s))2]=�: (3)

We also define the correlation function� : R2 ! [0;1)
as:

�(s1; s2) , lim
�1;�2!0

E[(Y (s1 + �1)� Y (s1)) �

(Y (s2 + �2)� Y (s2))]=(�1�2): (4)

We assume2

(i)  and � are well-defined�-almost every-
where, and� is well defined �2-almost
everywhere, and and� are integrable with
respect to� and�2 over any finite interval
and rectangle, respectively;

(ii) E[Y (s; s + �)]=� andE[Y 2(s; s + �)]=� are
uniformly bounded for alls and� 2 (0; 1);

(iii) E[Y (s1; s1+�1)Y (s2; s2+�2)]=(�1�2) is uni-
formly bounded for alls1, s2, and�1; �2 2
(0; 1) such that(s1; s1+ �1)\ (s2; s2+�2) =
;.

These Assumptions hold for a wide variety of counting
processes, including any homogeneous Poisson process
with finite intensity.

2� and�2 denote Lebesgue measures onRandR2, respec-
tively.

For analysis purposes, we artificially divide the time
interval[0; t] inton segments of length� each,i.e., t = n�.
We have

Y (t) =
n�1X
i=0

Y (i�; (i+ 1)�); (5)

E[Y (t)] =
n�1X
i=0

E[Y (i�; (i+ 1)�)]; (6)

=

Z
R

f�(s)ds; (7)

where we define the following piecewise constant func-
tion:

f�(s) ,

8<
:

E[Y (j�; (j + 1)�)]=�; if s 2 (j�; (j + 1)�];
0 � j � n � 1

0; otherwise.
(8)

Since(t) is well-defined almost everywhere in the inter-
val [0; t] andE[Y (s; s + �)]=� is uniformly bounded, by
the Lebesgue Dominated Convergence theorem (LDCT)
[7],

lim
�!0

Z
R

f�(s)d�(s) =

Z
R

lim
�!0

f�(s)d�(s)

=

Z t

0
(s)ds: (9)

Hence, we have the following simple general expression
for the mean of the counting process in terms of its instan-
taneous rate:

E[Y (t)] =

Z t

0
(s)ds: (10)

We consider the second moment by a similar argument:

E[Y 2(t)] = E[(
n�1X
i=0

Y (i�; (i+ 1)�))2]

=
n�1X
i=0

E[Y 2(i�; (i+ 1)�))] + 2
n�2X
i=0

n�1X
j=i+1

E[Y (i�; (i+ 1)�)Y (j�; (j+ 1)�)] (11)

=

Z
R

g�(s)d�(s)

+2

Z
R2

h�(s1; s2)d�2(s1; s2); (12)

where we define the following piecewise constant func-
tions:

g�(s) ,

8<
:

E[Y 2(j�; (j + 1)�)]=�; if s 2 (j�; (j + 1)�]
and0 � j � n � 1

0; otherwise,
(13)



and

h�(s1; s2) ,

8>>>><
>>>>:

E[Y (i�; (i+ 1)�)� if s1 2 (i�; (i+ 1)�],
Y (j�; s2 2 (j�; (j + 1)�],
(j + 1)�)]=�2; 0 � i � n � 2,

andi+ 1 � j � n � 1
0; otherwise.

(14)
Since� is well-defined almost everywhere in[0; t]� [0; t]
and E[Y (s1; s1 + �)Y (s2; s2 + �)]=�2 is uniformly
bounded, by LDCT and Fubini’s Theorem [7],

lim
�!0

Z
R2

h�(s1; s2)d�2(s1; s2)

=

Z
R2

lim
�!0

h�(s1; s2)d�2(s1; s2)

=

Z t

0

Z t

s2

�(s1; s2)ds1ds2: (15)

Similarly, one can show that

lim
�!0

Z
R

g�(s)d�(s) =

Z t

0
�(s)ds: (16)

Thus using (12), (15), and (16), we have the following
general expression for the second moment ofY (t):

E[Y 2(t)] =

Z t

0
�(s)ds+ 2

Z t

0

Z t

s1

�(s1; s2)ds2ds1: (17)

In the context of counting processes with deadtime, which
includes all random processes considered in this paper, the
process satisfies thisadditional assumption:

(iv) there exists a positive�0 such that
8� 2 (0; �0), Y (s; s+ �) � 1.

This assumption greatly simplifies the derivations for the
moments of counting processes affected by deadtime,
since for� < �0 < � ,

E[Y 2(s; s+ �)] = E[Y (s; s+ �)] (18)

using02 = 0 and12 = 1, so

�(s) = (s): (19)

Thus we obtain the following corollary of (17) for random
processes satisfying assumptions (i) to (iv):

E[Y 2(t)] = E[Y (t)] + 2

Z t

0

Z t

s1

�(s1; s2)ds2ds1: (20)

Furthermore, ifY (t) has stationary increments, then
(s) is constant and�(s1; s2) = �(0; s2� s1) and we can
further simplify the results (10) and (20) to the following:

E[Y (t)] = t (21)

E[Y 2(t)] = t+ 2

Z t

0
(t� s)�(0; s)ds: (22)

III. SINGLE PHOTON COUNTING

A. Mean and Variance of Recorded Singles Counts,
Model Type II

First we consider the paralyzable model in which if the
waiting time for a photon arrival is less than� , then this
photon is not recorded. We derive the mean and variance
of Y (t), the number of recorded events from time 0 to
time t. We observe thatY (t) inherits the stationary incre-
ment property of the arrival processN(t). We first derive
E[Y (0; �)], where we pick� < � such that the number of
recorded events during(0; �] is either 0 or 1. LetT1 de-
note the time of the first photon arrival after time 0; it is
exponentially distributed. If there is an arrival atT1 = s,
0 < s < �, and there is no arrival betweens � � and
s (in fact, we only need to make sure there is no arrival
betweens � � and 0,i.e., N(0) � N(s � �) = 0, since
the first arrival after 0 occurs ats), then there will be a
recorded event during the interval(0; �]. Thus

E[Y (0; �)] =

Z
1

0
P[Y (0; �) = 1jT1 = s]fT1(s)ds

=

Z �

0
P[N(s� �; 0) = 0jT1 = s]fT1(s)ds

=

Z �

0
e��(��s)�e��sds

= ��e��� : (23)

Hence by the definition given in (2), the instantaneous rate
of Y (t) is

 = �e��� ; (24)

and by (21), we easily obtain the following result (e.g.,
[1]),

E[Y (t)] = �te��� : (25)

The variance ofY (t) for the type II model is (see Ap-
pendix A):

Var[Y (t)] = �te��� (1� (2�� � ��2=t)e��� ): (26)

Figure 1 shows the mean and variance of the singles count
for a detector affected by deadtime of type II. Since the
mean and variance can differ greatly,Y (t) is not Poisson.

B. Mean and Variance of Recorded Singles Counts,
Model Type III

Now we turn to the type of system described in [2],
in which if the waiting time for a photon arrival is less
than� , then neither this photon nor the previous photon
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Fig. 1 Mean and variance for paralyzable (type II) systems,
with t = 1s; � = 2�s.

will be recorded. We again observe thatY (t) inherits the
stationary increment property of the arrival processN(t).
We first deriveE[Y (0; �)], where we pick� < � such that
the number of recorded events during(0; �] is still either 0
or 1. Hence,

E[Y (0; �)]

=

Z �

0
P[Y (0; �) = 1jT1 = s]fT1(s)ds

=

Z �

0
P[N(s� �; 0) = 0]P[(s; s+ �) = 0]fT1(s)ds

=

Z �

0
e��(��s)e����e��sds

= ��e��2� : (27)

Hence for this system, the instantaneous rate as defined
in (2) is

 = �e��2� ; (28)

and by (21), the expected number of recorded events for a
type III system is exactly:

E[Y (t)] = �te��2� : (29)

The variance ofY (t) for the type III model is (we omit the
derivation due to space constraints):

Var[Y (t)] = �te��2� + 2e�3��(�t� �� � 1)

+e�4�� (4�2�2 � 4�2t� + 2� 2�t+ 4��): (30)

Figure 2 shows the (exact) mean and variance of the sin-
gles countY (t) for type III systems. AgainY (t) is not
Poisson.
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Fig. 2 Mean and variance for type III systems, with
t = 1s; � = 2�s.

IV. COUNT RATE CORRECTION FORSYSTEM

TYPE III

For a quantitativelyaccurate reconstruction, we must
correct for the effect of deadtime to avoid underestimation
of source activity. For type III systems, Engelandet al [2]
proposed the following correction formula,

�̂ =
Y

t
(1 +

2Y

t
� +

6Y

t2
�2); (31)

which they obtained by solving an approximate mean
waiting time expression up to second order in� by means
of the expansion� = a + b� + c�2. We propose to
estimate the true count rate by solving numerically our
exact expression (29),i.e., solve

Y

t
= �̂e�2�̂� (32)

for �̂ givenY andt. One could solve analytically the ex-
act mean waiting time expression up to second order in� ,
which yields exactly the same estimator as (31), but this
estimator does not the mean waiting time expression ex-
actly. Figure 3 compares our new estimator (32) and the
estimator proposed in [2]. It shows that our new estimator
is unbiased even at very high count rates. The error bars
are not shown in the figure as they are smaller than the
plotting symbols. Whent is large, the standard deviation
is very small when compared to the mean ofY (t), thus
these estimates have extremely small standard deviations.
By solving (32) numerically, we obtain essentially perfect
deadtime correction for a type III system.

V. DISCUSSION

We have analyzed the mean and variance of the
recorded singles counts for two distinct models of
deadtime. In both cases, the variance can be significantly
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less than the mean, indicating that the counting statistics
are not Poisson in the presence of deadtime. Deadtime
losses can be significant in practical SPECT and PET
systems, particularly in fully 3D PET imaging and in
SPECT transmission measurements with a scanning line
source. The count rates for a detector block (PET) or
detector zone (SPECT) can be significant enough to yield
non-Poisson statistics for the total counts recorded by
the block or zone. However3, in the practical situations
that we are aware of, the count rates for individual
detector elements within the block or zone are usually
not high enough to correspond to significant deadtime
losses. Even though the variance of the counts recorded
by a block can be significantly lower than the mean, the
variance of the counts recorded by anindividual detector
element is nevertheless quite close to the mean and
likely to be well approximated by a Poisson distribution.
Furthermore, the correlation between individual detectors
will be fairly small. Thus it appears that statistical image
reconstruction based on Poisson models, while certainly
not optimal, should be adequate in practice even under
fairly large deadtime losses, provided the deadtime
loss factor is included in the system matrix. We must
add one caveat to this conclusion however. Although
pairs of individual detectors have small correlation, the
correlation coefficient between thesumof one group of
detectors and thesumof all other detectors in a block may
not be small in the presence of deadtime. The effect of
such correlations on image reconstruction algorithms is
unknown and may deserve further investigation. Another
natural extension of this work would be to consider
systems with random resolving times� . As long as the
minimum resolving time is greater than zero, assumption
(iv) would still hold and the derivations would be similar.

3Due to space constraints, we omit detailed analysis and
only present our conclusions.

VI. A PPENDIX A

We derive the variance ofY (t) for deadtime model II,
the paralyzable model. We first derive�(0; s). We con-
sider two cases.
CASE 1: 0 < s < �

We pick � such that0 < � < s < s + � < � .
Two recorded events cannot correspond to photons that
arrived within� of each other. Hence for0 < s < � ,
E[Y (0; �)Y (s; s + �)] = 0, and by the definition given
in (2): �(0; s) = 0.
CASE 2: � < s < t

We pick� such that� < � ands+� < t and� < s�� .
For s > � , Y (0; �) andY (s; s + �) are statistically inde-
pendent, since the event “there is an arrival during(0; �]”
is statistically independent from the event “there is an ar-
rival during(s; s+ �]”, because they are at least� apart in
time. Hence by (23),

E[Y (0; �)Y (s; s+ �)] = E2[Y (0; �)] = (��e���)2; (33)

and

�(0; s) = (�e���)2: (34)

Combining the above two cases and using (22) yields

E[Y 2(t)] = t+ 2

Z t

�

(t� s)(�e���)2ds

= �te��� + [(t� �)(�e���)]2: (35)

Using Var[Y (t)] = E[Y 2(t)] � E2[Y (t)], with (25)
and (35), and simplifying yields (26).
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