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Abstract

In many transmission imaging geometries, the trans-
mitted “beams” of photons overlap on the detector, such
that a detector element may record photons that originated
in different sources or source locations and thus traversed
different paths through the object. Examples include sys-
tems based on scanning line sources or on multiple par-
allel rod sources. The overlap of these beams has been
disregarded by both conventional analytical reconstruction
methods as well as by previous statistical reconstruction
methods. We propose a new algorithm for statistical im-
age reconstruction of attenuation maps that explicitly ac-
counts for overlapping beams in transmission scans. The
algorithm is guaranteed to monotonically increase the ob-
jective function at each iteration. The availability of this
algorithm enables the possibility of deliberately increas-
ing the beam overlap so as to increase count rates. Simu-
lated SPECT transmission scans based on a multiple line
source array demonstrate that the proposed method yields
improved resolution/noise tradeoffs relative to “conven-
tional” reconstruction algorithms, both statistical and non-
statistical.

I. I NTRODUCTION

To reconstruct quantitativelyaccurate images of
radioisotope emission distributions in SPECT, one must
compensate for the effects of photon absorption or
attenuation. Accurate attenuation correction requires
good attenuation maps, and one can reconstruct such
maps from transmission scan measurements obtained
either prior to or simultaneously with the SPECT
emission scan.

Several source/detector configurations for SPECT
transmission scans have been investigated, including a
single fixed line source opposite a symmetric fan-beam
collimator, used in triple-head SPECT cameras, a
scanning line source for orthogonal dual-head cameras,
and offset line sources opposite asymmetric fan-beam
collimators. Cellaret al [1] describe an alternative
geometry based on several fixed-position collimated line
sources opposing a parallel-beam collimator. In that

system design, the source collimation was selected to
minimize overlap on the detector of the transmitted “fan-
beams.” They then applied the filtered back-projection
(FBP) algorithm to reconstruct the attenuation map (an
ART algorithm was also mentioned without details).
This source collimation has the undesirable consequence
of very nonuniform count profiles, as shown in Figure
4 of [1]. It is natural to expect that higher and more
uniform count profiles could lead to better reconstructed
attenuation mapsif the overlap can be properly modeled
by the reconstruction method.

In both the scanning line source geometry and the
geometry of Celleret al [1], there can be overlap of
the beam footprints. Previously published statistical
algorithms for transmission tomography, e.g. [2–7], are
inapplicable to the multiple source problem when the
beams overlap. In this paper we formulate a statistical
model for multiple-source transmission measurements
with arbitrary overlapping beams, and then derive an
iterative algorithm for maximizing the likelihood (or a
regularized variant thereof). The log-likelihood is not
necessarily globally concave, which usually precludes
proofs of convergence to a global maximum. The
algorithm that we present is guaranteed to increase the
likelihood at every iteration, and the set of fixed points of
the algorithm is the same as the set of stationary points
of the objective function. The algorithm also satisfies
the continuity conditions of Meyer [8]. Therefore, by
the convergence results in [8], the proposed algorithm
produces a sequence of estimates that converge from
any nonnegative initial image to a stationary point of the
objective, provided the set of stationary points is not a
continuum. This is nearly as strong of a convergence
result as one might expect for a possibly nonconcave
objective function.

II. STATISTICAL MODEL

Let Yi denote the number of photons counted by the
ith detector element1 during the transmission scan, for

1Each “detector element” corresponds to a unique radial
position and view angle, i.e., for typical 2D reconstruction



i = 1; : : : ; N , whereN is the number of measurement ele-
ments. Each detector element conceivably may count pho-
tons that originated in any of theM � 1 sources. We as-
sume that separate blank scans are available for each of the
sources (or source positions for a scanning line source).
(This information is essential for unscrambling the multi-
plexing of overlapping beams.) Letbim denote the mean
number of photons that would be observed during a trans-
mission scan by theith detector originating in themth
source in the absence of any patient in the scanner. Typi-
cally thebim’s would be determined by a periodic calibrat-
ing “blank scan”, performed separately for each of theM
sources, and then scaled by the relative durations of the
blank scan and transmission scans. However, we ignore
any statistical uncertainty in thebim’s and treat them as
known constants. This assumption is reasonable provided
the blank scans are sufficiently lengthy.

Let �true = [�true1 ; : : : ; �truep ]0 denote the vector of un-
known attenuation coefficients for each of thep pixels or
voxels in the attenuation map. The line integral between
themth source and theith detector location through the
attenuating object is approximated by the following sum:

[Am�]i =

pX
j=1

amij�j ;

whereAm = famij g is aN � p matrix with nonnegative
elements and theamij ’s represent line-lengths or normal-
ized strip-intersection areas2. Thus by Beer’s law the “sur-
vival probability” for a photon transmitted from themth
source in the direction of thei detector is (approximately)
exp(�[Am�]i):

We assume theYi’s have independent Poisson distribu-
tions:

Yi � Poisson
�
�yi(�

true)
	
;

where the means are given by

�yi(�) =

"
MX
m=1

bim exp(�[Am�]i)

#
+ ri: (1)

Theri’s are nonnegative constants that one can include to
account for the mean contributions of scatter, room back-
ground, and emission crosstalk [9]. We treat theseri’s as
known constants, though in practice they must be deter-
mined experimentally. However, since scatter is a spatially
smooth function, one can safely smooth scatter estimates

N = NrN� whereNr is the number of radial samples along
the detector andN� is the number of view angles or “steps.”

2Normalized by strip width

fairly heavily, so generally the uncertainty in theri’s can
be made much smaller than that of theYi’s.

The summation overm in (1) allows for arbitrary
overlap of the beams transmitted fromeach source.
Non-overlapping beams would correspond to the
assumption that ifbim 6= 0, thenbik = 0 for all k 6= m,
i.e. bimbik = 0 for all k 6= m.

Under the above statistical model, given a particular
measurement realizationY = [y1; : : : ; yN ]0, we can write
the log-likelihood for� in the following convenient form:

L(�; Y ) =
NX
i=1

hi

 
MX
m=1

uim(�)

!
; hi(t) = yi log t� t; (2)

uim(�) = bim exp(�[Am�]i) + ri=M;

ignoring constants independent of�. Since the form
of this log-likelihood is sufficiently different from the
usual models for emission tomography and transmission
tomography [3], previously derived algorithms for
maximum likelihood estimation are not directly
applicable to this problem.

One could easily derive an expectation-maximization
(EM) algorithm [10] that would monotonically increase
the likelihoodL(�; Y ) for this problem, generalizing [3].
However, the convergence would be as painfully slow and
the M-step as difficult as the usual transmission EM al-
gorithm. Instead, we propose an algorithm based on an
extension of our recent work on paraboloidal surrogates
methods [2].

Because of theill-posedness of the reconstruction
problem, a penalty term is usually added to the likelihood
to encourage piecewise smoothness in the reconstructed
image, resulting in the following objective function:

�(�; Y ) = L(�; Y )� �R(�): (3)

Our goal is to produce a penalized-likelihood estimate:

�̂ = argmax
�� 0

�(�; Y ): (4)

Most roughness penaltiesR(�) can be expressed in the
following general form:

R(�) =
KX
k=1

 k([C�]k); (5)

where the k’s are potential functions acting as a norm on
the “soft constraints”C� � 0 andK is the number of
such constraints. The functions k we consider here are
convex, symmetric, nonnegative and differentiable [2].



III. A LGORITHM

We focus on the unregularized maximum-likelihood
problem; the regularized approach easily follows
from [2]. Since maximizing the log-likelihood directly
is difficult to do, we apply the principle of optimization
transfer [5,11] and define a “surrogate function”Q(�;�n)
that is easier to maximize. Since this surrogate function
depends on the previous estimate�n at thenth iteration,
the algorithm consists of repeatedly maximizing the
surrogate function,i.e.

�n+1 = argmax
�� 0

Q(�;�n): (6)

Note that the maximization is constrained to enforce the
nonnegativity constraint. The key algorithm design re-
quirement is to chooseQ functions that satisfy the fol-
lowing conditions:

Q(�n;�n) = L(�n; Y ); 8�n � 0

@Q

@�j
(�;�n)

����
�=�n

=
@L

@�j
(�)

����
�=�n

; 8j = 1; : : : ; p

Q(�;�n) � L(�; Y ); 8� � 0: (7)

These conditions ensure that the proposed iteration mono-
tonically increases the likelihood.

A difficulty in maximizingL is the sum overm within
the logarithm in (2). To move the summation outside of
the logarithm, we first adapt De Pierro’s multiplicative
convexity trick [12]. Becausehi is concave:

hi

 
MX
m=1

uim(�)

!
= hi

 
MX
m=1

unim
�yni

uim(�)

unim
�yni

!
(8)

�

MX
m=1

unim
�yni

hi

�
uim(�)

unim
�yni

�
; (9)

whereunim
4
= uim(�

n), and�yni
4
= �yi(�

n). This inequality
leads to our first surrogate function:

Q1(�;�
n)

4
=

NX
i=1

MX
m=1

unim
�yni

hi

�
uim(�)

unim
�yni

�
(10)

=
NX
i=1

MX
m=1

unim
�yin

gnim([A
m�]i); (11)

where

bnim
4
=

�yi
n

unim
bim;

rnim
4
=

�yin

unim

ri
M

gnim(l)
4
= yi log

�
bnime

�l + rnim

�
�
�
bnime

�l + rnim

�
:

The surrogate functionQ1 remains too difficult to max-
imize directly because the argument of eachhi still de-
pends onuim, which has a complicated exponential form.
However, it follows easily from the results in [2, 13] that
the following paraboloidal function is a valid surrogate for
Q1:

Q2(�;�
n)

4
=

NX
i=1

MX
m=1

unim
�yni

qnim([Am�]i)
4
= Q(�;�n) (12)

where

qnim(l)
4
= gnim(l

n
im) + _gnim(l

n
im)(l� lnim)�

1

2
cnim(l � l

n
im)

2

and

_gnim(l)
4
=

d

dl
gnim(l)

�gnim(l)
4
=

d2

dl2
gnim(l)

lnim = [Am�n]i =

pX
j=1

A
m
ij�

n
j :

To ensure (7), we must choose the curvaturesfcnimg ap-
propriately [2,13]. As discussed in [2], for the fastest con-
vergence rate, we would like to choose the curvatures as
small as possible, subject to the constraint that the sur-
rogate functionqnim lies below the functionsgnim (see [2,
Eqn. 16] for the formula for the optimum curvature).

Since our second surrogateQ2 is a quadratic func-
tional, it is easily maximized by a variety of algorithms,
including the coordinate ascent algorithm [4,14]. Adding
a penalty function is straightforward.

To obtain a monotonic algorithm that converges rela-
tively quickly, we can apply coordinate ascent to the sur-
rogateQ defined in (12),i.e., sequentially update one pixel
at a time while holding all other pixels fixed. The maxi-
mization step of the coordinate ascent for pixelj is3:

�̂newj = argmax
�j�0

Q̂n
j (�j)� �R̂j(�j) (13)

=

"
�̂j +

_Qn
j (�̂)� �

_Rj(�̂)

dnj + �p̂j

#
+

; (14)

where

_Qn
j (�̂)

4
=

NX
i=1

MX
m=1

unim
�yni

amij [ _g
n
im(l

n
im)� cnim(l̂im � lnim)]

l̂im
4
= [Am�̂]i

pX
j=1

A
m
ij �̂j

3For a detailed derivation, refer to [2].



_gnim(l) =

�
yi

bnime
�l + rnim

� 1

�
bnime

�l

dnj
4
=

NX
i=1

MX
m=1

unim
�yni

(amij )
2cnim;

andR̂j(�j) denotes the penalty surrogate parabola for�j ,
andp̂j denotes its curvature. Because of our construction
based on surrogate functions that satisfy (7), this update is
guaranteed to monotonically increase the value of�. One
iteration is finished when all pixels are updated via (14) in
a sequential order. We update the paraboloidal surrogate
function after one iteration of coordinate ascent (CA), al-
though one could also perform more than one CA iteration
per surrogate.

IV. SIMULATION RESULTS

We compared the proposed reconstruction algorithm to
the “conventional” reconstruction algorithms (statistical
and FBP) that treat the transmission measurements
simply as ideal normalized parallel “strip-integrals”.
The system geometry corresponded fairly closely to the
SiemensPro�leTM system (Hoffman Estates, IL) [15].
The sources for the simulated system consisted of a
multiple line source array with 14 sources, unequally
spaced, located on a line parallel to the detector and 110
cm away from the detector plane. The detector plane
was located 22 cm away from the center of rotation. The
source collimation in our simulations is2:6�. The image
consisted128 � 128 pixels of size3:56 � 3:56mm2.
The sinogram size was128 � 60 with detector bins
of width 4:8mm (i.e., the simulated detector response
was rectangular with width4:8mm). We performed
the simulation with 523,000 transmitted counts, and
263; 000 background counts. For simplicity, we used
a space-invariant quadratic penalty over first-order
neighbors throughout our simulations. Figure 1 shows the
phantom used in our simulations.

Figures 2 shows reconstructions of noisy data using
FBP, the parallel algorithm4, and the proposed algorithm.
The spatial resolution of the images in these figures is 4.7
pixels on the left column and 6.8 pixels on the right col-
umn.

We observe from Figure 2 that the proposed algorithm
produces less noisy reconstructions than both the parallel
algorithm and FBP. Since the parallel algorithm is based
on an incorrect system and statistical model, one expects

4We refer to the penalized-likelihood reconstruction assum-
ing ideal normalized parallel “strip-integrals” (and ignoring
beam overlap) as the parallel algorithm.

Fig. 1 Digital Phantom used in our simulations

artifacts due to model mismatch. The absence of apparent
artifacts in Figure 2 is due to regularization and noise. Fig-
ure 3 shows the reconstructed images from noiseless data
(4:6� collimation angle) using the parallel and proposed
algorithms with almost no regularization (� = 2�10). The
reconstructed image from noiseless data using the paral-
lel algorithm shows severe artifacts resulting from model
mismatch, which are absent in the reconstructed image
from noiseless data using the proposed algorithm (Fig-
ure 3b).

We also performed studies of optimal collimation an-
gles for a given system. (Due to space constraints, we
only outline our conclusions.) We found that the proposed
algorithm outperforms the parallel algorithm at all colli-
mation angles, but the optimal collimation angle for the
proposed algorithm is larger than the parallel algorithm.
At large collimation angles, the proposed algorithm pro-
duced reconstructions with significantly smaller variances
than the parallel algorithm, given a fixed spatial resolu-
tion. Thus it is desirable to open up the source collimators
and allow beam overlap – provided the overlap is modeled
appropriately in the reconstruction algorithm.

V. CONCLUSION

We have presented a new algorithm for statistical im-
age reconstruction of attenuation maps that explicitly ac-
counts for overlapping beams in transmission scans. The
algorithm is guaranteed to monotonically increase the ob-
jective function at each iteration, and achieves better vari-
ance/resolution tradeoffs than “conventional” image re-
construction algorithms, both statistical (the parallel algo-
rithm) and non-statistical (FBP). However, the proposed
algorithm is more time-consuming and uses more mem-
ory than conventional statistical algorithms. For simula-
tions we performed, the time that the proposed algorithm
took was about 3.3 times that of the parallel algorithm.



Fig. 2 New sources; collimation angle:2:6�; 785,000 counts;
left column: resolution 4.7 pixels; right column: resolution 6.8
pixels; top row: FBP; middle row: parallel algorithm; bottom
row: proposed algorithm.

Parallel algorithm

(a)

Proposed algorithm

(b)

Fig. 3 Reconstruction using the parallel and proposed algo-
rithms with almost no regularization; collimation angle4:6� (a)
Parallel algorithm (b) Proposed algorithm.
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[2] H. Erdoğan and J. A. Fessler, “Fast monotonic algorithms
for transmission tomography,”IEEE Tr. Med. Im., 1998.
To appear.

[3] K. Lange and R. Carson, “EM reconstruction algorithms
for emission and transmission tomography,”J. Comp. As-
sisted Tomo., vol. 8, no. 2, pp. 306–316, April 1984.

[4] K. Sauer and C. Bouman, “A local update strategy for
iterative reconstruction from projections,”IEEE Tr. Sig.
Proc., vol. 41, no. 2, pp. 534–548, February 1993.

[5] K. Lange and J. A. Fessler, “Globally convergent algo-
rithms for maximum a posteriori transmission tomogra-
phy,” IEEE Tr. Im. Proc., vol. 4, no. 10, pp. 1430–8, Octo-
ber 1995.

[6] E. U. Mumcuoglu, R. Leahy, S. R. Cherry, and Z. Zhou,
“Fast gradient-based methods for Bayesian reconstruction
of transmission and emission PET images,”IEEE Tr. Med.
Im., vol. 13, no. 3, pp. 687–701, December1994.

[7] J. A. Fessler, “Grouped coordinate descent algorithms for
robust edge-preserving image restoration,” inProc. SPIE
3071, Im. Recon. and Restor. II, pp. 184–94, 1997.

[8] R. R. Meyer, “Sufficient conditions for the convergence
of monotonic mathematical programming algorithms,”J.
Comput. System. Sci., vol. 12, pp. 108–21, 1976.

[9] E. P. Ficaro, J. A. Fessler, P. D. Shreve, J. N. Kritz-
man, P. A. Rose, and J. R. Corbett, “Simultaneous
transmission/emission myocardial perfusion tomography:
Diagnostic accuracy of attenuation-corrected 99m-Tc-
Sestamibi SPECT,”Circulation, vol. 93, no. 3, pp. 463–
73, February 1996.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,”J.
Royal Stat. Soc. Ser. B, vol. 39, no. 1, pp. 1–38, 1977.

[11] M. P. Becker, I. Yang, and K. Lange, “EM algorithms
without missing data,”Stat. Meth. Med. Res., vol. 6, no.
1, pp. 38–54, 1997.

[12] A. R. De Pierro, “A modified expectation maximization
algorithm for penalized likelihood estimation in emission
tomography,”IEEE Tr. Med. Im., vol. 14, no. 1, pp. 132–
137, March 1995.
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