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Abstract 
A Maximum Likelihood (ML) image reconstruction 

technique using list-mode data has been applied to Compton 
scattering camera imaging. List-mode methods are appealing 
in Compton camera image reconstruction because the total 
number of data elements in the list (the number of detected 
photons) is significantly smaller than the number of possible 
combinations of position and energy measurements, leading to 
a much smaller problem than that faced by traditional iterative 
reconstruction techniques. For a realistic size device, the 
number of possible detector bins can be as large as 10 billion 
per pixel of the image space, while the number of counted 
photons would typically be a very small fraction of that. The 
primary difficulty in applying the list-mode technique is in 
determining the parameters which describe the response of the 
imaging system. In this work, a simple method for determining 
the required system matrix coefficients is employed, in which 
a back-projection is performed in list-mode, and response 
coefficients determined for only tallied pixels. Projection 
data has been generated for a representative Compton camera 
system by Monte Carlo simulation for disk sources with hot 
and cold spots and energies of 141, 364, and 511 keV, and 
reconstructions performed. 

I. INTRODUCTION 
Reconstruction of images from Compton aperture projection 

data is a computationally challenging task. To date, no exact, 
analytical solutions applicable to a practical imaging device 
have been found. Nor have traditional iterative reconstruction 
techniques (such as Maximum Likelihood (ML) Expectation 
Maximization (EM)), proven tractable, primarily because of 
the enormous size of the matrix required to describe a viable 
imaging system. For the C-SPRINT system [l] consisting of a 
81 cm square scatter detector (with 1.2 mm spatial resolution 
and with energy recorded in 100 eV bins), and a cylindrical 
capture detector 25 cm in radius and 10 cm long (spatial 
resolution of 3 mm), the number of elements of the system 
matrix MS is roughly 2.3 x lo1' per voxel of the image. For 
an NxN image, direct reconstruction in 2 0  would involve 
inversion of MsN2 dimensional matrices, and iterative 
methods would require - 1014 recursive multiplications. 

Since, in the general case, the number of detected events 
N, will be much smaller than the number of system elements 
MS in the full projection data set, list-mode reconstruction 
methods present themselves as possible alternatives to other 
solution algorithms [2],[3]. In such methods, each event is 
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treated as a point in a continuous measurement space, rather 
than as contributing a count to a position and energy bin. Since 
N, << MS , the sizes of the matrices are greatly reduced and so 
the number of operations required in solving the problem will 
be reduced by a like amount. In addition, this technique has 
the advantage of preserving accuracy of measurement data that 
might otherwise be lost in discretizing of energy and position 
during the binning procedure. 

The conventional ML problem for the Compton camera 
can be posed as follows: Let Y be the measured projection 
data, accumulated in bins as the number of counts for a given 
combination of scatter detector element, capture detector 
element, and scattering energy bin (each bin is then denoted as 
yi), and A the underlying pixelated object, each pixel having 
an intensity given by Aj . Then (ignoring random coincidences) 

Y - Poisson {TA} , (1) 

and the log-likelihood has the form 

i j i j  

In solving for A using the iterative EM algorithm, the the 
maximization step can be written as 

and the expectation step as 

leading to the iteration 

(3) 

(4) 

In the above, sj is the probability that a photon emitted from 
pixel j would be detected anywhere, and the t i ,  the probability 
that a 7 emitted from pixel j is collected in bin i ,  so 

sj = > t i j  

I 

Barrett et al. and Parra and Barrett [3,4] have proven that the 
above expressions hold in the list-mode case, in which each 
detected event can be considered to be a unique bin (or the bins 
can be considered to be infinitesimally small - in either case 
Y;. 4 1) and the sums over the MS system bins become sums 
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over just the N7 detected events. The one exception is that as 
the k;. no longer span the space of all possible detected events, 
Sj # xi t;j, but rather is now the integral over all possible 
events i ,  including those not measured in Y. It is noted that 
the t;j above are equivalent to p( A; lj)Sj in Parra’s derivation, 
where A; are the measurements describing event k;.. 

As in all iterative methods, the primary difficulty method 
lies in generating the tij (and for the list-mode case, the sj as 
well). In this paper we present a simple approximation for these 
probabilities and present images reconstructed from Monte 
Carlo simulations for a disks sources at a variety of energies. 

11. METHODS 
In a Compton scatter camera, the sequence of physical 

events which leads to a count being registered beings with 
the emission of a photon at zo in direction Ro, followed by 
Compton scattering at position z1 through an angle Rc (with 
energy loss E,) and final absorption at z2. The tij’s, the 
absolute probability that a photon emitted from j will give 
rise to event i described by the measured quantities 21 ,  E,, 
and z2) (henceforth denoted Ai, after Parra), will be given 
by the integral over the area of pixel j of the product of the 
probabilities described below: (assuming a mono-energetic 
source): 

p(zo)dzo, that the photon was emitted in dzo at zo 

P ( $ ~ o ( z o ) ,  that it had initial direction RO in dRo toward z1 

P ~ ~ $ ( z o ,  Ro), that it escaped the object 

p(z1 Izo, Ro)dzl, that it Compton scattered in dzl at zl 

P(RClz1), that it emerged from the collision in direction dQ, 

p(E,IR,)dE,, that it lost energy E, in dE, in the scattering 

P$“(R,, 21, E,(Q~)), that it escaped the detector 

P ~ $ : ~ ( z z ~ $ ~ , ,  21, E,)dzz, that it was absorbed in the second 

at $2, subtended by zz 

collision 

detector in dz2 at z2 

The Si’s are then integrals of the t;j taken over both the scatter 
and capture detector areas and over the possible energies for the 
possible scattering angles. 

Straightforward computation of either s, or tij, which must 
take into account the finite position and energy resolution of the 
system, as well as Doppler broadening of the scattered photon 
energy distribution, is daunting. We instead begin by restricting 
ourselves to the 2 0  case, and argue that the sj’s can be taken 
to be constant and have little impact on the estimates of A. This 
assumption is reasonable because switching to 2 0  eliminates 
the major effect of attenuation in the object, and so variations in 
sj will be limited primarily to solid angle issues. For For small 
objects at moderate distances from the detectors, the sj should 
vary slowly, and since errors in estimates of A depend on the 

roughness of the variations, the impact of this approximation 
should be fairly small. We next note that we can take 

(6) t tij = pijsj 

where the pij are the probabilities (normalized to cj?Ij = 1) 
that a given event i emanated from an emission in pixel j .  If 
we define p(zo IA;) to be the probability of an emission having 
taken place in pixel element area dj  (20) for a given A;, we have 

(7) 

For the case of real measurements, we need to convolve 
the distribution p(z0JA:) (we denote the exact parameters 
corresponding to the measurement A;(ZI, ZZ, aC) as 
A:(zi, zi ,  a‘,)) with a functionp(A;IA’), where 

H(Ai IA’) = Pb: I~l)P(~~l~z)P(E~I~c)P(~cI~c). 

The final factor here accounts for Doppler broadening, and the 
other conditional probabilities define the point spread function 
due to the errors in the measurement of the various components 
of A:). We now claim that p(zo(A:) can be determined by 
back-projecting the cone B, determined by A:, which traces 
out a conic section in the image plane. Only those points on 
the conic can be potential source points, ZO. This series of 
approximations is equivalent to Parra’s application of Bayes’ 
rule in deriving expressions for t;j for 2 0  PEX imaging [4], 
with the only difference being that p(z0JA:) is described by 
the conic section rather than a 6 function. Thus our general 
expression for t;j is: 

J 

We can now either approxiimate H(A1A’) (which is 
not typically Gaussian for Compton imaging) so that the 
convolution can be determined analyitically, or approximate 
the integral numerically. For the current work, we assume a 
perfect detector, H(A1A’) = 6(A-A’) and weperformaline 
integral over B,, setting p:j. to be sj times the fraction of the 
total path of the located in pixel j: 

.._ 
(9) 

We obtain the the line integrals by performing the back- 
projection described in [5] ,  approximating the the path of the 
back-projected cone i lying inside pixel j by straight line 
between the edge intercepts. The sj are set arbitrarily, and the 
iteration in equation 5 can be performed. 

111. RESULTS 
Projection data was generated by Monte Carlo simulation 

using the program SKEPTIC [6]. SKEPTIC has been 
employed and tested extensively in numerous medical imaging 
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applications [7], [8], including simulation of Compton scat- 
cameras [ll, [9]. Tbe program writes to disk lists of the exact 
intaxtion positions and energy losses, and the uncertainties 
in the measurements of these quantities are simulated by 
sampling from appropriate Gaussian distributions describing 
the energy and spatial resolution of the component detectors, as 
described in 151. Doppler broadening of the scattered gamma 
specrrum, which has recentIy been found to be a limiting 
factor in the resolution performance of Compton cameras 
[lo], is modeled using the tabulated data of Biggs [ll] for 
amorphous silicon and of Reed [12] for crystalline silicon. 
The list-mode reconstruction program reads this data and 
applies the back-projection algorithm of [91 to determine the 
coefficients t i j ,  which are stored. The iterative procedure 
is then simple matrix multiplication. Tbe detector system 
modeled is the C-SPRINT silicon and NaI system proposed by 
Clinthome and LeBlanc [l]. It consists of a 9x9 cm array of Si 
elements, divided into 1.2 mm cells. Each cell is 5 mm thick 
and assumed to have an energy resolution of roughly 250 eV, 
(an achievable level, as suggested by Weilhammer 1131). The 
capture detector is taken to be a hollow cylinder of NaI, 25 un 
in radius and 10 un long, with a spatial resolution of 3 mm. 
99mT~, and 1311 and annihilation photon sources were modeled. 
The test configuration was a 5 crn radius disk with uniform 
intensity 1, containing 2 hot spots (intensity 2) and 2 cold spots 
(intensity 0), of 1 and .5 crn radii, and a distance of 10 cm. 
Emission were sampled from continuous positions on the disk 
until 200,000 Compton events were collected. Reconstructions 
performed on a 32 by 32 grid of 5 mm pixels. 

Results are shown below for all three test energies in figures 
1 - 6. While the initial back-projection consumed roughly 10 
minutes of CPU on a Ultra Sparc 1 workstation, subsequent 
iterations took just 30 seconds. At each energy, the first figure 
shows the image after the initial back-projection, and the 
second after 50-100 iterations. The quality of the images is 
degraded primarily by the limited number of counts and the 
impact of Doppler broadening on the approximations for t i  j . It 
should be noted that the geometry of the C-SPRINT detector 
tends to maximize the penalty due to the Doppler effect, which 
is most severe at the technetium energy. Nevertheless, in all 3 
cases, both hot and both cold spots are in evidence. 

Because of the relatively few number of counts, a smoothing 
penalty was introduced. Equation 3 is recast as 

Here the coefficients r j  k are 0 except for the 4 nearest and next 
nearest pixels k relative to i, and Set SO that cj Er r j k  = 0. 
The expectation step of equation 4 remains the same, but now 
the maximization step requires solving for a quadratic equation 
in A j  (which roughly doubled the CPU usage per iteration). 
For the current work, a is set to some fraction a0 times sj/X 
the average value of A. Some reconstructions are presented in 
figures 7 through 10 for a0 ranging from 0.005 to 0.01. Image 
quality is greatly enhand. are given in figures 7 through 9. 

Figure 1: 141 keV Initial back-projected image 

Figure 2: 141 keV Image after 75th iteration 

IV. CONCLUSIONS 
A list-mode maximum likelihood reconstruction algorithm 

has been applied to the Compton camera imaging problem in 
2 0  with very good results over a wide range of energies, using 
a crude estimation of the system response matrix and a relative 
small number of counts. Improvements could be expected by 
approximating the conditional probabilities in 8, in the manner 
of [4], and by applying solid angle computations to weight the 
s j  's. Future work should include parallelization of the algorithm 
to permit larger number of particles, and extension into 30. 
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Figure 

Figure 

3: 364 keV Initial back-projected image Figure 5: 511 keV Initial back-projected image 

4 364 keV Image after 75th iteration 
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