
Accelerated Monotonic Algorithms for Transmission Tomography 

Hakan Erdogan and Jeffrey A. Fessler 
4415 EECS Dept., Univeristy of Michigan, Ann Arbor, MI 48109 

email: erdogan @umich.edu 

Abstract 
We present a framework for designing fast and mono- 

tonic algorithms for transmission tomography penalized- 
likelihood image reconstruction. The new algorithms are 
based on paraboloidal surrogate functions for the log- 
likelihood. Due to the form of the log-likelihood func- 
tion, it is possible to find low curvature surrogate func- 
tions that guarantee monotonicity. Unlike previous meth- 
ods, the proposed surrogate functions lead to monotonic al- 
gorithms even for the nonconvex log- likelihood that arises 
due to background events such as scatter and random coin- 
cidences. The gradient and the curvature of the likelihood 
terms are evaluated only once per iteration. Since the prob- 
lem is simplified, the CPU time per iteration is less than 
that of current algorithms which directly minimize the ob- 
jective, yet the convergence rate is comparable. The sim- 
plicity, monotonicity and speed of the new algorithms are 
quite attractive. The convergence rates of the algorithms 
are demonstrated using real PET transmission scans. 

1 Introduction 
Emission tomography systems require attenuation cor- 

rection for quantitatively accurate image reconstruction. 
Transmission scans are performed to estimate the attenu- 
ation maps for correction. The accuracy of this correction 
is very important in emission tomography [ 11. Statistical 
methods provide a valuable tool to reconstruct attenuation 
maps in photon limited tomography applications. Penal- 
ized likelihood is an appealing reconstruction method since 
it provides an easy means to regularize the problem. Us- 
ing the Poisson log-likelihood eliminates the negative bias 
which occurs in the weighted least squares and conven- 
tional methods [2] .  

However, up to now, no practically realizable mono- 
tonic (or convergent) algorithm has been found which 
would optimize the penalized likelihood problem when the 
objective is not convex. The objective is not convex when 
there are “background” counts in the data. This is un- 
escapable in PET and SPECT, due to the accidental co- 
incidences in PET and emission crosstalk in SPECT. The 
assumption of no background counts can only be valid in 
X-ray CT. In this paper, we present an algorithm which is 
guaranteed to be monotonic even in the non-convex objec- 

tive function case. This algorithm depends on paraboloidal 
surrogate functions to the log-likelihood which transform 
the problem into a simpler optimization problem at each 
iteration. To obtain the paraboloid, we find l-D parabolic 
functions that are tangent to and lie above each of the terms 
in the log-likelihood, similar to Huber’s method for robust 
linear regression [3]. 

2 The Problem 
The measurements in a photon limited application such 

as PET and SPECT are well-modeled as Poisson random 
variables. It is realistic to assume the following model: 

yi - Poisson{bie-[Apla + r i } ,  i = 1,. . . , N 

where N is the number of measurements. pj for j = 
1 . . .p,  is the average linear attenuation coefficient in 
voxel j and p denotes the number of voxels. [Ap], = 
E,”=, a i jp j  represents the line integral of the attenuation 
map p and A = { aij } is the N x p system matrix. ri is the 
mean number of background events, hi is the blank scan 
count and yi represents the number of coincident transmis- 
sion events in the ith detector pair. We assume in this paper 
that { h i } ,  { ri} and { aij } are known nonnegative constants. 

The log-likelihood can be expressed in the following 
form: 

N 

- L ( P )  = hi([APIi), (1) 
i=l 

where: 

h i ( / )  = (hie-' + ri) - yi log(bie- I + ri). (2) 

Penalized likelihood image reconstruction formulation 
is given below: 

fi  = argmin@(p), q p )  = - q P )  +PR(P). (3) 
P L O  

The roughness penalty included in the objective func- 
tion (in a very general form) can be given by [4]: 

K 

R(P) = 1 C l k ( [ C P l k L  
k = l  
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where $ ~ k  are potential functions penalizing the deviations 
from the set of equations C p  M 0 for IC = 1 . . . I< where K 
is number of such equations. The ,8 in equation (3) is a pa- 
rameter which controls the level of smoothness in the final 
reconstructed image. For more explanation of the penalty 
function, see [4]. 

The objective function defined in (3) is not convex when 
there are nonzero background counts ( ~ i  # 0) in the data. 
In this realistic case, there is no guarantee that there is a 
single global minimum. In this paper we introduce an algo- 
rithm that is monotonic even when the objective is not con- 
vex. The new approach is based on successive paraboloidal 
surrogate functions. 

3 Paraboloidal Surrogates Algorithms 
The penalized-likelihood objective function @ ( p )  has 

a complex form that precludes analytical minimization. 
Therefore, we apply an iterative approach, where at each 
iteration we would like to find a "surrogate" function 
+(p; pLn) which is easier to minimize or to monotonically 
decrease than @ ( p ) .  To ensure monotonicity, a decrease in 
the surrogate should lead to a decrease in the original ob- 
jective function. Consider surrogate functions which sat- 
isfy the following properties: 

A function which satisfies these criteria can be easily 
shown to satisfy the following monotonicity condition: 

The EM algorithm [5] provides a statistical method for 
constructing surrogate functions +(p;  p") satisfying the 
above conditions. However, in the transmission tomogra- 
phy problem, the EM surrogate is difficult to minimize and 
leads to slow convergence. In this paper, we construct a 
simpler surrogate using ordinary calculus rather than sta- 
tistical techniques. 

Let pn denote the estimate of the attenuation map at the 
nth iteration and let l l  = [ApClnli denote the correspond- 
ing estimate of the ith line integral of the attenuation co- 
efficient. We choose the following quadratic form for the 
surrogate functions qi : 

A 1 
2 

q i ( l ;  l r )  = h i ( l r ) + h i ( Z ~ ) ( Z - l ~ ) + - ~ i ( Z ~ ) ( Z - Z 1 ) ~ ,  (6) 

where ci (I;) is the curvature of the parabola qi . This con- 
struction ensures that pi ( l r ;  Z?) = hi([?) and 
i i ( l y ;  Zy) = hi ( l r )  similar to equation (4). To ensure 

monotonicity, we must choose the curvatures to satisfy the 
following inequality at each iteration: 

hi(l) 5 q i ( l ;  I;), for I 2 0. (7) 

After determining the parabolas, the following function 
can be easily verified to be a global surrogate function for 
the objective a(@) which satisfies the properties in (4): 

(8) + ( P ;  P" )  = Q ( P ;  pu") + P%), 
where 

N 

Q(P;  1-1") f qi([A~li  ; la") (9) 
i = l  

E dh( l") 'A(~ - p L n )  + 
1 
2 - ( P  - P")'A'D(Ci)A(P - P n ) , ( w  

N 

a = l  

A where the column vector d h ( l n )  = bi(Zy)]. , x' de- 
notes the transpose of x, and D(ci) is the N x N diagonal 
matrix with diagonal entries ci ( I : )  for i = 1, . . . , N .  

The surrogate function 4 ( p ;  p") in equation (8) con- 
sists of the sum of a paraboloid (or a quadratic form) and 
the convex penalty term. An algorithm that decreases the 
function 4 will also monotonically decrease the objective 
function if the inequality in (7) holds. In the following sec- 
tions, we will elaborate on different choices of curvatures 
and monotonic coordinate descent algorithm applied to the 
surrogate. 
3.1 Curvatures 

The conventional "Newton" choice for the curvatures 
ci(l;) is simply ci( ly)  = hi(l;). However, this choice 
does not ensure monotone convergence. The following two 
choices for curvatures do ensure monotonicity. 

3.1.1 Maximum Curvature 

A simple choice for ci(Z;) that ensures monotonicity (7) 
is the maximum second derivative in the feasible region 
(from mean value theorem, see for example [6 ] ,  page 228). 
The feasible region for the projections is [0, co) due to the 
nonnegativity constraint. Hence, 

is guaranteed to satisfy (7). We show in [7] that the closed 
form expression for ci(Zl) is: 

where [XI, = x for x > 0 and zero otherwise. 
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However, this “maximum curvature” choice for ci (17) 
is very conservative and results in slow convergence. It is 
intuitive that smaller ci(1:) values will lead to faster con- 
vergence, as analyzed in [7]. This is due to the fact that 
smaller curvatures mean wider paraboloids and longer step 
sizes. Next, we determine the smallest curvature that satis- 
fies the monotonicity condition (7). 

3.1.2 Optimum Curvature 

The optimal choice for the curvatures is the solution to 
the following constrained optimization problem for each i: 
ci(Zr) = min{c 2 0 : hi(Z) 5 hi(Zr)+ hi(Zl)(l - 1:) + 
l /2c( l -  l r ) z  V l  2 0} . This curvature yields the fastest 
convergence rate while still guaranteeing monotonicity. 

By exploiting the properties of the marginal negative 
log-likelihood functions for each projection (hi)  in trans- 
mission tomography, we show in [7] that the paraboloid 
with the following curvature satisfies the optimality condi- 
tion: 

la = 0. 

(12) 
There are some numerical issues with the computation of 
these curvatures which are addressed in [7]. Next, we con- 
sider a set of fixed curvatures which have some computa- 
tional advantages. 

3.1.3 Nonmonotonic Precomputed Curvature 

By relaxing the monotonicity requirement, we can develop 
faster yet “almost always” monotonic algorithms. We can 
do this by choosing curvatures c i ( l 7 )  in equation (6) such 
that 

hi(0 = %(t C), 
rather than requiring the inequality (7). In this case, the 
paraboloids are quadratic “approximations” to the log- 
likelihood function at each iteration. A reasonable choice 
for the curvatures in that case is: 

These curvatures ci in (13) are close approximations to 
the second derivative of hi functions at the projection val- 
ues Afi where fi  is the solution to the penalized-likelihood 
problem [8]. Since these curvatures do not depend on the 
iterations (like “maximum curvature”), some computation 
can be saved by precomputing the denominator terms in 
the coordinate descent update. 

3.2 Monotonic Coordinate Descent 
Once the curvatures are determined, the penalized like- 

lihood problem is transformed into a problem with a 
quadratic likelihood plus the convex penalty function. We 
use one iteration of coordinate descent algorithm to de- 
crease the surrogate function, and this results in a simple 
monotonic algorithm. For the penalty part, we use Huber’s 
iterative method [3,4] (see also [7]). Since the likelihood 
part is quadratic, this coordinate descent method is guaran- 
teed to decrease the surrogate function. The update equa- 
tion is as follows: 

where: 
N 

i=l  i = l  

K K 

k = l  k = l  

A ’  
where WG ( t )  = $(t)/ t .  To prove monotonicity, $k (.) have 
to be symmetric, differentiable, convex and q, (0) should 
be finite and nonzero and w+ ( t )  should be non-increasing 
fort 2 0 [3]. 

This is an update that monotonically decreases the value 
of $(.; pn) and consequently the value of @(.). One iter- 
ation is finished when all pixels are updated via (14) in 
a sequential order. We call this method the Paraboloidal 
Surrogates Coordinate Descent (PSCD) method. A coarse 
outline of the algorithm is given in Table 1. For computa- 
tional considerations and the detailed algorithm flow table, 
see [7]. 

4 Results 
To assess the effectiveness and speed of the new PS al- 

gorithms, we present results using real PET data. We ac- 
quired a 15-hour blank scan (bi’s) and a 12-min transmis- 
sion scan data (yi’s) using a Siemens/CTI ECAT EXACT 
921 PET scanner with rotating rod sources for transmis- 
sion. The phantom used was an anthropomorphic thorax 
phantom (Data Spectrum, Chapel Hill, NC). The projec- 
tion space was 160 radial bins and 192 angles, and the 
reconstructed images were 128 x 128 with 4.5 nun. pix- 
els. The system matrix {aij} was computed by using 
6 mm. wide strip integrals with 3 nun. spacing, which 
roughly approximates the system geometry [2]. 

In PL reconstructions, we used the following penalty 
function: 

4 P  
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Initialize p, i; . 
for each iteration . 

Compute qi = hi and ci ’s at current iterate 
for each pixel j 

Compute Qy (PI, dj”, set bold = b. 
for a couple subiterations 

Compute Rj ( p ) ,  f i j  , 

Update f i j  using (14) 
&?( J p  ^ )  = c j , “ ( p ) + d ; ( p j  -jp). 

end 
Update pi := 

end 

Update Zi := li + - 

+ a . . c .  2 1  2 ( P j  - q l d )  

A q ,  - h .  $ 2  

Ci 
end 

methods 
iterations for 
convergence 
CPU s for 
convergence 
CPU s per 
iteration 

Table 1: Coarse outline of PSCD algorithm. 

CI CI n m  u 
a n  

18 12 11 11 11 14 

23 17 56 44 15 18 

1.2 1.3 4.9 3.8 1.2 1.1 

with the edge-preserving nonquadratic potential function 
that was introduced in [9] 

= s2 [I./Sl- l o d l  + I~/sl>l.  
Fig. 1 shows that the proposed PSCD algorithms in- 

creased the penalized-likelihood almost as fast as the 
coordinate descent algorithm (CD) [lo] applied to the 
original objective per iteration. It shows that the sur- 
rogate paraboloids closely approximate the original log- 
likelihood. More importantly, in Fig. 2 the PSCD algo- 
rithms are seen to be much faster than coordinate descent 
in terms of the actual CPU time. This reduction is due to 
the lack of exponentiations in updating the gradient terms 
in PSCD algorithms. The “maximum curvature” method 
introduced in Section 3.1 precomputes the denominator 
terms (dy) for the likelihood part since ~ ( 1 ; ) ’ s  do not de- 
pend on the iterations. However, these c;(l;)’s are much 
larger than the optimal curvatures, so more iterations are 
required for PS,M,CD than PS,O,CD to converge. We also 
compared the PSCD algorithms to the general purpose con- 
strained Quasi-Newton algorithm (LBFGS) [ 1 11, and the 
functional substitution coordinate descent (FSCD) [ 12,131 
algorithm in Figures 1 and 2. Although the LBFGS algo- 
rithm takes about 25% less CPU time (0.88 seconds) per it- 
eration than PSCD algorithms, it did not converge as fast as 
the proposed algorithms. FSCD algorithm (which is guar- 
anteed to be monotonic when ri = 0) had the largest CPU 
time per iteration due to extra exponentiations needed. Ta- 
ble 2 compares the number of iterations and CPU seconds 
required (in a DEC 600 5-333 MHz workstation) to min- 
imize the objective function for different methods. The 
CPU times per iteration are also tabulated. For compari- 
son purposes, a single forward and backprojection requires 
about 0.78 CPU seconds. If a monotonic algorithm is re- 

I Yidgata’ 11 monotonic 1 1  nonmonotonic I 

Table 2: Comparison of CPU times and iterations for 
the PS algorithm versus FS, CD and GCD methods. 
Convergence in this table means @ ( P O )  - @ ( p ” )  > 
0.999 [ @ ( P O )  - @ ( p * ) ]  where @ ( p * )  is the smallest ob- 
jective value obtained. 

quired, the PSCD algorithm with the optimal curvature 
(PS,O,CD) is the fastest algorithm. Among the nonmono- 
tonic algorithms, another RS method, PSCD with precom- 
puted curvatures (PS,P,CD) is the fastest. It converged in 
about 15 seconds with the real data used. The CPU time 
per iteration is the same as PSCD with maximum curvature 
(PS,M,CD) since they both precompute the denominator 
(dy ) terms, but this method decreases the objective faster 
since the curvatures are smaller. Nevertheless PS,P,CD is 
not guaranteed to be monotonic. 

Tranamlsnlon Algorithms 
two 

1500 

1400. 

i 
- $1300. 

G 
t 
O 1200. 

M PS,O,CD (Monotonic) 
PS,M,CD (Monotonic) 

H CD,P (Nonmonotonic) 

f Real data, r, nonzero 1 I I , / , lnitializedwith FBP Image I 
5 10 15 20 25 30 

1 wo 
llerallon 

Figure 1: Comparison of objective function decrease 
@ ( P O )  - @(p”)  versus iteration number n of PSCD meth- 
ods with coordinate descent, FSCD and LBFGS methods 
for real phantom data. 

5 Conclusion 
We have introduced a new class of algorithms for min- 

imizing penalized-likelihood objective functions for trans- 
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Transmlselon Algorithms 

E+-€I PS,O,CD (Monotonic) 
+e-% PS,M,CD (Monotonic) 
W CD,P (Nonmonotonic) +--+ FSCD (Nonmonotonic) 
bd LBFGS (Nonmonotonic) 

$ 
1100‘ 

Real data, r, nonzero 
Initialized with FBP Image 

CPU s%conds 

loWo 
5 Yo 1; ;o ;5 j, 3; 40 

Figure 2: Same as Figure 1, but x-axis is  CPU seconds on 
a DEC Alphastation 600 5-333 MHz. 

mission tomography. The  algorithms are monotonic even 
with the nonconvex objective function. In the strictly con- 
vex case, the proposed algorithms are guaranteed to  con- 
verge to  the global minimum by a proof similar to  that 
i n  [ 141. 

The algorithms w e  introduced are simple, easy to  under- 
stand, fast and monotonic. The simplicity in part is  due to  
the additive form of (l), which is a direct consequence of 
independent measurements. Since this algorithm is simple, 
i t  might replace the use of FBP in the clinic. 

In our opinion, the PS,O,CD algorithm supersedes all 
of our previous methods [2,8], and is our recommended 
algorithm for penalized-likelihood transmission tomogra- 
phy. The PS,P,CD algorithm is a faster but nonmonotonic 
alternative which can be  used for noncritical applications. 
A s  a possible compromise, one can run PS,P,CD algorithm 
and check the objective function @ ( p )  after each iteration 
to verify that it has decreased. If the objective does not de- 
crease (happens very rarely), then PS,O,CD algorithm can 
b e  applied to  the previous iterate to ensure monotonicity. 
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