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Abstract
Traditional space-invariant regularization schemes

in tomographic image reconstruction using penalized-
likelihood estimators produce images with nonuniform
resolution properties. The local point spread functions that
quantify the local smoothing properties of such estimators
are not only space-variant and asymmetric, but are also
object-dependent even for space-invariant systems. We
propose a new regularization scheme for increased spatial
uniformity and demonstrate the resolution properties
of this new method versus conventional regularization
schemes through an investigation of local point spread
functions.

1 Introduction
Statistical image reconstruction methods provide im-

proved noise and resolution properties over conventional
nonstatistical methods such as filtered backprojection
(FBP). However, methods based purely on the maximum-
likelihood estimate produce overly noisy images. This
noise may be reduced by stopping the iterative procedure
used to find the maximum-likelihood estimate before con-
vergence [1], iterating until convergence followed by post-
smoothing [2], or including a penalty term in the likelihood
objective function [3].

Penalized-likelihood methods have the advantage of al-
lowing arbitrary regularizations including edge-preserving
penalties and penalties incorporating anatomical side or
boundary information. Regularization can also improve
the conditioning of the problem leading to faster conver-
gence.

However, there are also disadvantages with conven-
tional regularization schemes. Space-invariant penalties
lead to object-dependent nonuniform resolution proper-
ties [4,5]. Specifically, such estimators tend to smooth the
image more in high count regions than in low count re-
gions. The local point spread functions that quantify this
space-variant smoothing due to the estimator can also be
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highly asymmetric, indicating a preferred smoothing direc-
tion.

Since conventional regularizations produce images with
nonuniform resolution properties, one cannot select the
regularization parameter intuitively. For example, with
FBP the noise-resolution tradeoff is controlled through the
cutoff frequency,

��
, of the filter. There is a direct relation-

ship between
��

and theglobal full-width half-maximum
(FWHM) resolution of the reconstructed image. Such a
direct relation does not exist with penalized-likelihood re-
constructions with conventional regularizations.

One attempt to correct for the resolution nonuniformity
has been presented in [4]. This regularization, based on the
aggregate certainty of measurement rays intersecting each
pixel, provides increased spatial uniformity over conven-
tional space-invariant regularization. However, the local
point spread functions are still highly asymmetric.

We present a new parameterized penalty function,
whose coefficients are found by a least-squares fitting
of the parameterized local impulse response to a shift-
invariant response. This new method provides increased
spatial uniformity compared to the certainty-based method
of [4] and conventional regularization techniques. We
demonstrate this increased uniformity through an investi-
gation of the local point spread functions.

2 Background
Let � � ��� � � � � � �� 	
 represent the nonnegative emis-

sion rates for an object discretized into� pixels. De-
tectors surrounding the object count photons (SPECT)
or photon pairs (PET) that are emitted from the object.
Measurements are denoted by the random vector� ���� � � � � � � 	
. These measurements are Poisson with a
mean given by ��� ��� � ����� ��� �� � �� �
where��� represent nonnegative constants that characterize
the tomographic system, and�� are nonnegative constants
that specify the contribution due to background events
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(background radiation, scatter, etc.). Given measurements� , we would like to reconstruct�.
We will focus on penalized-likelihood estimators of the

form �� �� � � ��� � ��� ! " �� � � � # $% ��� �
where& is the set of feasible images," �� � � � is the log-
likelihood, $ is the regularization parameter which con-
trols the noise-resolution tradeoff, and% ��� is a roughness
penalty.

For the Poisson model, the log-likelihood is

" �� � � � � ���� �� '(� ��� ��� # ��� ��� �
Pairwise roughness penalties have the following form

% ��� � ����� )* �+ , - .� +/ ��� # �+ � �
where0 � is a neighborhood of pixels around pixel1 , / is
a symmetric convex function, and.� + � . +� .

In the case of a quadratic penalty,/ �2 � � 23 4* and the
roughness penalty may be written in matrix form,% ��� ��3 �
5 �, where the matrix5 has elements defined by

5� + � 6 78 , - . 8� � 9 � 1#.� + � 9 :� 1 �
A conventional choice for a space-invariant penalty using a
first-order neighborhood is to choose.� + � )

for the hor-
izontal and vertical neighbors. For a second-order penalty,
one often includes.� + � )4;*

for the diagonal neighbors
in addition to the first-order neighbors.

The mean reconstruction of an estimator is designated
by < ��� � =� ��� �� �	 � > �� �� �� �� ? ��@� �
The local impulse response [4] is defined asA� � 'B�CDE < �� � FG� � # < ���F � HH ��

< ��� �
where G� represents the1 th unit vector. This definition
of the local impulse response is dependent on the estima-
tor, the object, and the pixel position1 . From [4], for
penalized-likelihood with quadratic penalties, the local im-
pulse response may be well approximated byA� I �J 
K �J � $5	L�J 
K �JG� � (1)

whereJ is a matrix of theM��� N elements, andK � is a
diagonal matrix with elements

)4 ���.

Typically, J 
J is a shift-variant operator even with-
out K � . However, for PET systems it is often possible to
factor J such thatJ � O �P� 	Q , whereQ 
Q is approx-
imately shift-invariant and represents the geometric sys-
tem response. The diagonal matrixO �P� 	, contains ray-
dependent effects such as detector efficiency and attenua-
tion. With this factorization, equation (1) becomesA� I �Q 
R Q � $5	L�Q 
R QG� � (2)

where diagonal matrixR has elementsP3� 4 �� �.
These approximations of the local impulse response

form a very important set of tools for the design and eval-
uation of different regularization methods.

3 Methods
Ideally, we would like to be able to find a penalty that

yields an arbitrary desired space-invariant response. For
example, we may desire penalty functions that produce a
global impulse response with a Gaussian shape and some
specified FWHM resolution. If we restrict ourselves to the
quadratic penalty, we can formulate this problem in terms
of the design of the penalty matrix5 .

Specifically, we would like to find5 as

5 � ��� � BS5 TU ����� @ �A� �5 � � AV � � (3)

where@ �A� � AV � is some distance measure between the ac-
tual response,

A�
and a desired space-invariant response,

AV
.

Theoretically, we could solve (3) by plugging in (2), how-
ever this procedure is not computationally tractable.

In practice, conventional penalties use only a small
neighborhood of pixels for the penalty support (i.e.first-
and second-order neighborhoods). Therefore we reformu-
late the problem in terms of these small support neighbor-
hoods.

For the shift-invariant quadratic penalty, the matrix5
can be thought of as a space-invariant filtering operator.
Therefore the operation of5 on the image� can be repre-
sented as the convolution of the image with a kernel,5� � 9W X X� �
For example, the conventional first-order penalty described
beforehand has the kernel,

9WY � Z[ \ #) \#) ] #)
\ #) \ _̂ � (4)

The design of5 can be thought of as a filter design prob-
lem. However, selection of a kernel,9W , cannot be com-
pletely arbitrary. Since5 must be symmetric,9W must
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be symmetric through the origin. Additionally,5 should
yield a zero penalty for uniform regions. This is equiva-
lent to specifying a zero DC gain on the filter represented
by 9W . (The coefficients must sum to zero.) Lastly, we
require that5 be nonnegative definite to guarantee finite
solutions.

The following equation forms basis for valid kernels of
space-invariant5 ,` a+ b8c �2 � � *F �2 � � 23 �#F �2 � #9 � 23 #A�#F �2 ��9 � 23� A� �
whereF �d� represents a Kronecker delta function and,2 �
and 23 represent spatial coordinates. For example, for a
first-order neighborhood,` a� bEc � Z[ \ \ \#) * #)

\ \ \ _̂ ` aE b�c � Z[ \ #) \\ * \\ #) \ _̂
is a valid basis for the kernels of5 . In general, any valid
penalty kernel may be specified by9W �2 � � 23 � � �+b8 , �+8 ` a+ b8c �2 � � 23 � � e � �
where�+8 represent the basis coefficients. Letting� repre-
sent the set of all�+8 for a given neighborhood of support,0 , ande represent a matrix of basis functions, we write
this linear combination more compactly. For nonnegative
definite5 , the elements of� must be nonnegative.

In general the penalty specified by5 does not have to be
space-invariant. In fact, werequire a space-variant regular-
ization for uniform resolution properties. Since this is the
case, we extend idea of a kernel representation and let5 be
represented by the space-variant set of kernels9�W � e �� .

We may now rewrite (3) asM�+ N�+� � � ��� � BSfgh ijhkl TE ���� � @ �A� �M� + N�+� � � � AV � � (5)

Although this requires less computations than (3), this op-
timization is still impractical since all�� must be found
simultaneously.
3.1 Proposed Penalty Design

Since Q 
Q is approximately shift-invariant, we may
approximateQ
Q by m
nm , wherem is a 2D discrete
Fourier matrix operator andn is a diagonal matrix rep-
resenting a frequency domain filtering operator. (This is
the well-known

)4o response of the backprojected projec-
tion operator.) AlthoughQ
R Q is not shift-invariant, it
is approximately locally shift-invariant and we make the
following approximation to (2)A� �5 � I �m 
n� m � $m 
p� m	L�m 
n� mG�� m 
 q n�n� � $p� r mG� �

where the division is an element-by-element division,n� � s MQ 
R QG� N, andp� � s M5G� N. (s MdN rep-
resents the discrete 2D Fourier operator.) Therefore, since5G� � 9�W ,A� ��� � � s L� 6 s MQ
R QG� Ns MQ 
R QG� N � $s Me �� N t � (6)

Combining (5) and (6) yields a separable minimization
and we may find�� individually by�� � ��� � BSg- TE @ �A� ��� � � AV � � (7)

If @ �2 � � � � u2 # � u3, then this is a constrained nonlinear
least-squares (CNLLS) problem which must be solved for
each pixel1 . Since this is fairly time consuming to calcu-
late, we would like to simplify this optimization.

Consider the unweighted response given byA�E � �Q 
Q � $5E 	L�Q 
QG� � (8)

If 5E is chosen to be space-invariant, the response,
A�E , is

approximately space-invariant sinceQ 
Q is nearly shift-
invariant. We choose (8) as the desired response,

AV
. Defin-

ing "� � s MA ��� �N, we have

"� ��� � I s MQ 
R QG� Ns MQ 
R QG� N � $s Me �� N"�E I s MQ 
QG� Ns MQ 
QG� N � $s M9WY N �
We want to choose�� so that"� ��� � I "�E . Cross-
multiplying and simplifying yieldss MQ 
R QG� N v s M9WY N I s MQ 
Q N v s Me �� N �
wherev represents an element-by-element multiplication.
Note that this step has eliminated the dependence on$ . We
now choose�� such that�� � ��� � BSg- TE wwx�� # @� ww3 (9)

with

x � s MQ
QG� N v s Me N@� � s MQ
R QG� N v s M9WY N�
This optimization may be performed by applying a non-
negative least-squares for each pixel position,1 , for exam-
ple, the NNLS algorithm in [6].
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3.2 Practical Implementation
While the penalty design given by equation (9) gives a

simple form for the calculation of�� , it still requires too
much computation for practical use. SinceQ 
Q is nearly
shift-invariant, we only need to calculate the 2D-FFT (fast
Fourier transform) ofQ 
QG� for a single1 . Similarly,s Me N requires the one-time calculation of the 2D-FFT of
each of the 2D basis functions. Thereforex may be pre-
calculated. For@� , s M9WY N may be precalculated but we
must compute the 2D-FFT ofQ 
R QG� for every pixel1 .
This step makes direct computation of (9) a slow process.

One can show that in an idealized continuous system, if
the continuous equivalent ofR is aradially-constant sino-
gram scaling operator, then the continuous equivalent ofQ 
R Q can be expressed as a position-independent blur-
ring operation [5]. Therefore, this should be approximately
true in the discrete case. IfR were radially-constant, we
would only need one computation ofs MQ 
R QG� N.

In practice we cannot expect the radially-constant as-
sumption to hold. However, since the projection of a sin-
gle pixel forms a relatively narrow trace in sinogram space
(only a few radial bins in width),R can be well approx-
imated by a position-dependent radially-constant operatorR �

. Therefore,Q
R QG� approximately equals a shiftedQ 
R � QG�Y for an arbitrary fixed pixelyE (i.e.: the center
pixel in the image).

Note that for the unconstrained case, equation (9) has
the closed form linear solution�� � �x 
x	L�x 
@� . Also
note that the unconstrained solution is a linear function of
the elements of the weighting matrixR . Since, the uncon-
strained solution is linear with respect toR , we can form a
linear operator (matrix) mappingM. �� N to M�� N. However,
this requires a different mapping for every pixel1 .

For the radially-constantR �
, we require only a single

linear mapping fromM. ��� N to M�� N. Call this matrix opera-
tor z . We may findz by superposition. DefineR C{

to be
weighting matrix with radially-constant values having unit
values at angle|, and zero otherwise. For each angle let}~ � s MQ 
R C{ Q N v s M9WY N� | � )� � � � � | �
and� � �} � � � � � � } ~� 	, where|� is the number of an-
gular samples. Therefore,z � �x
x	L�x�
is a linear operator that solves the unconstrained optimiza-
tion on (9). It is straightforward to modify the NNLS al-
gorithm of [6] using these ideas to provide the constrained
solution.

In this way, the majority of calculations may be pre-
computed for a given system geometry and the proposed
regularization specified�� may be calculated very quickly
for specific measurement realizations. (Recall the elements
of R are given byP3� 4 ���, or estimated byP3� 4��.)
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Figure 1: Digital phantom used for investigation of resolu-
tion properties of different regularizations.

4 Results
This section provides simulation results comparing the

relative resolution uniformity of different regularization
schemes. Figure 1 shows the

)*� � �]
emission image

(�) used for the investigation. The image has a warm back-
ground ellipse, a cold left disc, and hot right disc with rel-
ative emission intensities of 2, 1, and 3, and attenuation
coefficients of 0.003, 0.0096, and 0.013/mm, respectively.
The PET system model included projection data with 128
radial bins over 110 angles uniformly spread over

)�\�with 3 mm pixels, 6 mm wide strip integrals (3 mm center-
to-center spacing), and detector efficiencies with a standard
deviation of 0.3.

We investigate the resolution properties of four dif-
ferent quadratic regularizations: (I) The conventional
space-invariant first-order penalty given by the kernel in
(4), (II) the certainty-based penalty developed in [4],
(III) the constrained nonlinear least-squares (CNLLS)
penalty given by equation (7), and (IV) the reduced
computationally-efficient penalty we have proposed in this
paper. For the CNLLS and proposed penalty design, we
choose a second-order basis and select5E in equation (8)
to be the conventional space-invariant first-order penalty,
as above. We specify the regularization parameter ($ ) to
correspond to a target resolution 4.0 pixels FWHM resolu-
tion for each of these penalties.

To demonstrate the relative spatial uniformity of these
regularization methods we use equation (1) to calculate lo-
cal point spread functions (PSFs). Since we expect these
responses to be space-variant, we choose four different lo-
cations in the object for our investigation. These points are
represented by the white� marks in Figure 1.

Results of this impulse response survey are presented in
Figures 2-5. For each penalty PSF contours at 25, 50, 75,
and 99% of peak value are shown. Above each set of con-
tours are estimates of the mean and standard deviation of
the FWHM resolution in pixels, which quantify the mean
resolution and radial variation at that location.
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Figure 2: Local PSFs for space-invariant penalty.

42 44 46 48

30

32

34

36

m = 4.222, s=0.667

62 64 66 68

30

32

34

36

m = 4.160, s=0.465

82 84 86 88

30

32

34

36

m = 4.077, s=0.429

62 64 66 68

46

48

50

52

m = 4.078, s=0.564

Figure 3: Local PSFs for certainty-based penalty.
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Figure 4: Local PSFs for CNLLS penalty.
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Figure 5: Local PSFs for proposed penalty.

For the space-invariant penalty in Figure 2, the local
PSFs are highly asymmetric and space-variant, blurring
more in high count regions (85,33) than in low count re-
gions. The certainty-based penalty shown in Figure 3 pro-
vides some improvement making the mean FWHM close
to 4.0 pixels. However, the responses are still fairly asym-
metric. PSFs for the CNLLS penalty are shown in Figure 4.
Note these contours are nearly radially-symmetric and near
the 4.0 pixel FWHM target resolution. The PSFs of the
proposed regularization method are presented in Figure 5.
These contours are also highly symmetric and the average
FWHM resolution is very close to the target resolution of
4.0 pixels. In this case, there is little to be gained from the
computationally expensive CNLLS penalty.

5 Discussion
Conventional space-invariant regularization methods

for penalized-likelihood image reconstruction produce im-
ages with space-variant resolution properties. At present,
the only method available that attempts to provide more
uniform resolution is the certainty-based method of [4].
However, as we have seen in our investigations, this

method does not provide truly uniform resolution proper-
ties.

We have presented a new computationally-efficient reg-
ularization scheme for increased spatial uniformity. The
proposed method is based on fitting an unweighted re-
sponse with an arbitrary space-invariant penalty (equation
(8)). This method offers nearly space-invariant and nearly
symmetric local point spread functions at FWHM resolu-
tions very close to specified target resolutions.

Providing a regularization scheme that yields uniform
resolution properties makes the selection of the regulariza-
tion parameter ($ ) more intuitive. One may simply spec-
ify the desired global resolution of the reconstructed im-
age. While one may arguably desire space-variant reso-
lution properties, one would most likely want to be able
to control regional resolution properties, while maintain-
ing radially-symmetric responses. These methods can be
modified to provide such control, allowing for predictable
and intuitive specification of resolution properties in image
reconstruction.

A more complete presentation of the proposed regular-
ization technique including an investigation of the noise
properties can be found in [7].
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