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Abstract

Previous methods for optimizing the scan times for PET
transmission and emission scans under a total scan time
constraint were based on linear non-statistical methods and
used noise equivalent counts (NEC) criteria. The scan
times determined by NEC analysis may be suboptimal when
nonlinear statistical image reconstruction methods are used.
For statistical image reconstruction, the predicted variance in
selected regions of interest is an appropriate alternativeto NEC
analysis. We propose a new method for optimizing the relative
scan times (fractions) based on analytical approximationsto
the covariance of images reconstructed by both conventional
and penalized-likelihood methods. We perform simulations
to compare predicted standard deviations with empirical
ones. Results show that for statistical transmission image
reconstruction, the optimal fraction of the scan time devoted
to transmission scanning is shorter than for conventional
transmission smoothing.

I. I NTRODUCTION

For PET reconstruction, one has to do two sets of scans,
namely transmission and emission scans. One uses the
attenuation correction information obtained from the former
scan to aid in estimating the radiotracer emission image from
the latter one. Conventional methods of reconstruction are
based on linear processing of the transmission and emission
data, multiplicative correction of attenuation factors inthe
sinogram domain followed by FBP to reconstruct the emission
image. This approach ignores Poisson nature of the data.
Recently, there is growing interest on reconstruct/reproject
methods for attenuation correction in which one reconstructs
the attenuation map and, after possibly some processing in
the image domain, this map is reprojected to be used in the
attenuation correction factors (ACF) computation. The use
of statistical methods for reconstructing attenuation maps as
well as emission images is becoming attractive in the medical
research community, especially due to faster computers and
faster algorithms. In this paper, we reconstruct ACFs usingboth
conventional and penalized-likelihood reconstruct/reproject
(PL) methods for post-injection transmission scans. For brevity,
we reconstruct emission images with FBP only. Resolution
matching is critical in attenuation correction, so we add
a post-filtering step to statistical reconstructions to yield
approximately Gaussian point spread functions which reduces
artifacts from point spread function mismatches. This post-filter
reduces the negative sidelobes from the point spread function of
penalized-likelihood reconstructions [1].

In this work, we study the effects of emission and
transmission scan time duration on the variance of the
reconstructed emission image for different reconstruction

methods. Particularly we are interested in the optimum scan
time fractions under a fixed total scan time constraint, which
would result in the smallest variance in a region of interestin
the final emission image estimate. Previous studies of scan
time optimization [2] were based on NEC criteria with multiple
acquisitions of emission and transmission data and focusedon
conventional reconstructions. The (co)variance approximations
developed here might also be useful for other purposes such
as determining the weights in a weighted least-squares image
reconstruction [3]. We analyze both the conventional and
statistical reconstruction cases. We give approximate analytical
formulas for conventional and quadratic penalty attenuation
map reconstructions and compare empirical results with the
analytical predictions. Our analysis is based on Poisson
statistics and mathematical approximations [4].

Let � � � � � �� � � � � �� � � and � 	 � � � 	� � � � � 	� � � be emission
and post-injection transmission scan count vectors, and let
 � � 
 � � � � 
 � � � and � � � � � � � � � � � � be attenuation map and
emission image pixel value vectors respectively.

We define the survival probabilities as follows: � � 
 � �� � � � � � � � where� � � 
 � represents the line integral along projection�
of the attenuation map
 . We also define the emission

contamination count rate� � � � � 
 � � � � � �  � � 
 � � � � � � . Here� � is
the fraction of emission counts contaminating the transmission
data (the portion in the transmission window for rotating rod
sources),� � � � � represents the geometric projections of the true
emission image� , and � � contains the detector efficiencies and
a scaling factor that accounts for emission scan count rate.
We assume that the emission scan measurements� � and the
transmission scan measurements� 	 are independent Poisson
measurements with corresponding means:�� 	� � 
 � � � �  	 ! " �  � � 
 � # $ 	� # � � � � � 
 � % � (1)�� �� � � � 
 � �  � ! � �  � � 
 � � � � � � # $ �� % � (2)

Here,  	 and  � are transmission and emission scan

times respectively. � � � 
 � � � & 
 � � '� ( �) * � + � ) 
 ) and� � � � � � ( �) * � + � ) � ) are geometric tomographic projections

of parameters
 and � . " � , $ 	� and $ �� are blank scan,
transmission scan randoms and emission scan randoms count
rates respectively. We assume, " � - � , $ 	� - � , � � - � , $ �� - and , + � ) -
are known constants throughout this work.

II. ACF ESTIMATION

Attenuation correction is a must for quantitatively accurate
emission image reconstruction. We define attenuation
correction factors (ACFs). � � 
 � � � � � � � � � / 0  � � 
 � . This
is the multiplicative factor that corrects for the effects of
attenuation in the emission data. We consider two different
ways of estimating the ACFs: 1) Conventional smoothing
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method and 2) Reconstruct/reproject penalized-likelihood (PL)
method.

In the non-statistical conventional method, we estimate the
emission contamination by:1� � � smooth2 � � ! � �� 0  � 3 $ �� % 4 � (3)

and we estimate the ACFs by reciprocating the survival
probabilities, that is

1. � � / 0 1 � , where1 � � smooth2 � � 	� 0  	 3 $ 	� 3 1� � � 0 " � 4 � (4)

The smoothing operation is often used to reduce noise in the
ACFs. We also use smoothing to reduce noise in the emission
contamination estimate in (3).

In a statistical reconstruction, one estimates the ACFs
by

1. � � � � � � 5� � where
1
 is the attenuation map estimate

computed by the reconstruction algorithm. The emission
contamination estimate (3) is included in the model. The
statistical reconstruction is considered in detail in section V.

III. EMISSION IMAGE RECONSTRUCTION

For brevity, we consider here the conventional FBP method
to reconstruct emission images. We define the attenuated
emission projections function as6 � � � � 
 � � � � � � �  � � 
 � �
A linear unbiased estimate of this function is16 � � smooth2 � � �� 0  � 3 $ �� � 0 � � 4 � (5)

Then, an estimate of the projections� � � � � can be obtained by:1� � � 1. � 16 � �
The emission image is reconstructed by standard FBP method.
We use the ramp filter only because the estimate

1� � is already a
smooth estimate of� � � � � . Thus,1� � FBPramp , 1� � - �

IV. EMISSION COVARIANCE ESTIMATES

The covariance of the emission image estimate vector
1�

obtained by the above procedure can be written as follows:7 8 9 : 1� ; � < 7 8 9 , 1� - < � � (6)

where the matrix< represents the linear FBP operation with a
ramp filter. We need to find the covariance of the random vector1� � � 16 � 1. � � �� * � . The computation of the exact covariance of
this expression is computationally intensive and is not desirable.
Instead, we prefer to evaluate this covariance as a separable sum
of the covariances of the vectors

16 and
1. . For this purpose, we

consider the Taylor series expansion of
16 � 1. � in the neighborhood

of
�6 � �. � where

�6 and
�. are mean values of

16 and
1. respectively.

Then:

1� � � 16 � 1. � = �6 � �. � # �. � � 16 � 3 �6 � � # �6 � � 1. � 3 �. � � (7)� �6 � 1. � # �. � � 16 � 3 �6 � � � (8)

and consequently,7 8 9 , 1� - = > , �6 � - 7 8 9 , 1. - > , �6 � - # > , �. � - 7 8 9 , 16 - > , �. � - �
(9)

The ACFs
1. � are not linearly related to variables with

known covariances. In the conventional method,
1. � �/ 0 1 � . In the statistical method

1. � � � � � � 5� � . These are
both nonlinear functions. Since the covariance of

1 can be
found exactly for the conventional method and the covariance
of

1
 can be approximated for the statistical method, we
can linearize these formulas around

� � and
�� � to get an

estimate of the covariance of
1. . This linearization was the

method used in [6] to estimate the variances of the ACFs.
But, this linearization is not very accurate for especiallythe
conventional method, because the function? � @ � � / 0 @ cannot
be closely approximated by a linear function especially when
the denominator (survival probabilities) is close to zero and the
variance of the denominator is high.

To overcome this problem, we propose an approximation
for the probability distribution function of the ACFs. We
assume that

1. � are lognormal distributed. A random variable
is lognormal distributed if its logarithm is normally distributed.
We believe this is a very accurate assumption because

1. � is an
estimate of� � � � � � and the projections of any random variable
(here � � � 1
 � ) can be assumed Gaussian due to the Central Limit
Theorem. This provides us extra information about the ACFs.
With this assumption, one can compute the mean and variance
of

1. � ’s directly in terms of mean and variance of
1 � in the

conventional method and in terms of mean and variance of
1� �

in the statistical method.

So, for the conventional method, we get:�. � � � A� # B A5C �� D� (10)

and B A5E � � � � A� # B A5C � � A B A5C �� F� � (11)

Even with the lognormality assumption, the covariance
matrix of

1. is not easy to compute directly. But, the diagonal of
the matrix is known. So, we propose this approximation for the
covariances:7 8 9 , 1. � � 1. ) - = B 5E � B 5E GB 5C � B 5C G 7 8 9 , 1 � � 1 ) - (12)� B 5E � B 5E G H � 1 � � 1 ) � � (13)

where H � 1 � � 1 ) � represents the correlation coefficient of the
vector

1 . In matrix form:7 8 9 , 1. - = I � 7 8 9 , 1 - I � �
where I � � > J B 5E �B 5C � K � > L � A� # B A5C �� M� N �
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We make sure that the diagonal of the covariance matrix of
1.

matches the variances we get from the lognormal assumption.
This formula assumes that the correlation coefficient of

1. is
largely determined by the smoothing operatorO and is the same
as the correlation coefficient for

1 .

Plugging in the approximation (9) for
1. and writing

�6 � =� � smooth, � � � � P Q R S � - , we get the following7 8 9 , 1� - = I T 7 8 9 , 16 - I T # I U 7 8 9 , 1 - I U � (14)

where I T '� > L � A� # B A5C �� D� N
and I U '� I T > 2 smooth, � � � � P Q R S � - 4 �

The mean and covariance of
16 can be found easily from

the expression (5) since it is linearly related to� � . A simple

analysis yields:
�6 � � smooth

: � � � � P Q R S � � � � � � � V W X Y � ; and from

(5) and (2): 7 8 9 , 16 - � / � O > , Z � - O � � (15)

where Z � '� � � �  � � 
 P Q R S � � � � � P Q R S � # $ �� � 0 � A� , and O is a
smoothing convolution matrix along the radial direction ofthe
projection space. It was suggested in [5] that angular smoothing
is not desirable in attenuation correction, so we smooth only in
radial direction.

For conventional ACF computation, ignoring the noise in
the emission contamination estimate, the covariance of

1 can
be found from (4) and (1).7 8 9 , 1 - � / 	 O > , [ � - O U � (16)

where [ � '� � " �  � � 
 P Q R S � # $ 	� # �� � � 0 " A� . Here, O is the
same smoothing matrix as in (15). The same operatorO is
used to obtain both

16 and
1 to avoid artifacts from resolution

mismatch [7, 8]. We used Gaussian smoothing as suggested in
[7] which avoids any artifacts in the reconstructed image. The
mean of emission contamination can be determined from (3) as�� � O � � � � �  � � 
 P Q R S � � � � � P Q R S � � �� * � . The variance of

1 � can be
found from (16) as B A5C � � [ � 0  	 \] ^ A� ] �

Using (4), one can find the mean values of
1 as� � O �  � � 
 P Q R S � � �� * � � (17)

The variance of the sum over a region of interest in the
emission image can be found from (6), (14), (15) and (16) as7 8 9 : _ � 1� ; � _ � 7 8 9 : 1� ; _ � / � ` � # / 	 ` 	 � (18)

with ` � � ( �� * � Z � � a �� � A and ` 	 � ( �� * � [ � � a 	� � A � and
where

_
is a vector of ones in the region of interest and zeros

elsewhere. We define the vectorsa � '� O � I � < � _ � a 	 '� O � I 	 < � _ �

V. PENALIZED-L IKELIHOOD ATTENUATION

RECONSTRUCTION

While conventional method of ACF computation has been
used for some time, reconstruct/reproject methods have gained
some interest recently. In a statistical reconstruct/reproject
method for ACF computation, an attenuation map estimate1
 is found from noisy transmission data by maximizing the
penalized-likelihood objective functionb � 
 c � 	 � � d � 
 c � 	 � 3e f � 
 � , whered � 
 � � 	 � is the log-likelihood function and

f � 
 �
is a regularizing roughness penalty function. After estimating
the attenuation map

1
 , we estimate the ACFs by:
1. � �� � � � 5� � � where � � � 1
 � � � & 1
 � � is the geometric projection of

the attenuation map estimate
1
 . If one uses FBP for emission

reconstruction, then
16 should be smoothed to yield similar

resolution with the
1. [9] in order to reduce resolution mismatch

artifacts.

A. Resolution
Penalized likelihood (PL) or penalized weighted

least squares (PWLS) methods are very attractive image
reconstruction methods due to their superb noise reduction
properties. The variance weighting in PWLS method reduces
the variance of the estimates as compared to penalized
unweighted least squares (PULS) or FBP reconstructions,
because it makes use of the statistical information in the
measurements. However, attenuation maps reconstructed
with PL or PWLS methods have non-uniform resolution [1]
even with a quadratic penalty. This non-uniform resolutionis
caused by the variance weighting in PWLS (or PL) method
and hence does not exist in a PULS reconstruction. Due to this
non-uniform resolution, ACF computation by PL method from
a real transmission scan causes resolution mismatch between
the emission data and reconstructed ACFs. This mismatch
reveals itself as artifacts in the final reconstructed emission
image.

Fessler’s certainty based penalty [9] yields more uniform
resolution in terms of the average FWHM of the point spread
function over the image. But, it still has non-uniform resolution
in that the psf is not circularly symmetric but the level contours
look like ellipses whose orientation are image dependent and
space-variant. Stayman and Fessler have recently proposeda
new modification to the quadratic penalty [10] which yields
more circularly symmetric uniform resolution properties.We
used this modification in our reconstructions. This modification
makes the resolution properties of the PL method close to PULS
method. Quadratic PULS method was shown to be essentially
equivalent to FBP method with the following constrained least-
squares (CLS) filter defined in spatial frequency domain by
(equation (50) in [9])g � � _ c e � � h i j k � � _ � 0 h i j k � _ �h i j k � � _ � A # l e _ D � _ m � n � n � o � (19)

where
_

denotes spatial frequency, k is the ratio of the detector
strip width to the pixel size of the system model, andl is a
constant dependent on system geometry. This CLS filter has
high negative sidelobes in the space domain. The filters that
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smooth the ACFs and emission data have to be matched. So, the
emission data should be blurred with the same filter (19). But,
due to high negative sidelobes of filter in (19), after dividing
the appropriately blurred emission data to computed survival
probabilities from reconstructions, we get artifacts especially
for higher blurring amounts (higher

e
s) around the boundaries

of the image. So, we conclude that the results in [7] does only
hold for Gaussian smoothing.

To overcome this problem, we first reconstruct a higher
resolution image using a smaller

e
value than desired and then

we filter the projections with the following filter:g A � _ � � g � � _ c e � g p � _ c a �q g � � _ c e � q A # n � / � / 3 l r [ � s t _ � � � _ m � n � n � o � �
where

g p � _ c a � is the desired Gaussian filter with desired
FWHM a . Now, the emission data is also filtered with
the Gaussian shaped filter

g p � _ c a � . This approach reduces
artifacts and yields acceptable images. The ACF computation
in this case is done as follows:1
 � argu v w� b � 
 c � 	 � �1� � O A & 1
 � (20)1. � � � 5� � �
where O A is the convolution matrix corresponding to

g A � _ �
above.

B. Covariance Approximations
The covariance formula in (9) is still valid in PL

transmission reconstruction. We use the following first order
Taylor series expansion for the ACFs:1. � � 5� � = � x� � # � x� � � 1� � 3 �� � � � (21)

where
�� � O A & y
 is the mean projection vector wherey
 �

argu v w� z { b � 
 c �� 	 � is the image reconstructed with noiseless

data. y
 is a very good approximation for the mean of
1
 [4]. Note

that, we do not use the lognormality assumption here, because
we believe that the above approximation is accurate enough and
lognormal assumption leads to much more computation. From
(21) and (20),7 8 9 , 1. - � > : � x� � ; O A & 7 8 9 , 1
 - & � O �A > : � x� � ; �
To find the covariance of the implicitly defined estimator

1
 , we
use the formulas introduced in [4].

The general form of penalized-likelihood estimates is1
 � argu v w� b � 
 c � 	 � � where 
 is the parameter vector

and � 	 is the measurement vector. This defines an implicit
function

1
 � | � � 	 � . A first order Taylor expansion of the
equation} b � 
 c � 	 � � n around � y
 � �� 	 � yields the following
approximation [4]:7 8 9 , 1
 - = ~ 7 8 9 2 � 	 4 ~ � � (22)

where ~ � � 3 } A { b � y
 � �� 	 � � � � } � � b � y
 � �� 	 � � We use this
formula to evaluate the covariance of the penalized-likelihood

estimate of the attenuation map
 . We again ignore the noise in
the emission contamination estimate and use the mean value for
it in our approximations. The formula yields:7 8 9 , 1
 - = / 	 � � � & � > L � " � � � �� � � A � " � � � � � � � �� # �$ 	� �� " � � � �� � # �$ 	� � A N & � � � �
where

� � & � > L " � � � �� � � / 3 � �$ 	� � � " � � � � � � �� # �$ 	� �� " � � � �� � # �$ 	� � A � N & # e � �
Here

�
is the Hessian of the penalty function and includes the

modified penalty weights [10] and�$ 	� � $ 	� # �� � .
In this case, the variance of the sum over a region can be

predicted with a formula similar to (18). The emission part of

the formula is nowa � � O � > : � x� � ; < � _
andZ � remains same.

The transmission part changes a lot due to statistical method as
term a 	 should be changed to:a 	 � & � � � & � O �A > : �6 � � x� � ; < � _ �
and the [ � term should be[ � � � " � � � �� � � A � " � � � � � � � �� # �$ 	� �� " � � � �� � # �$ 	� � A .

The most computationally intensive part in this computation
is the part where� � � ` � should be computed for̀ � �& � O �A > : �6 � � x� � ; < � _

. This operation can be performed by

solving the equation� @ � ` � using iterative methods such
as conjugate gradient. Also, we assume the mean for

1. is now,�. � � x� � .
These variance predictions are useful, because they do

not require hundreds of empirical reconstructions of data
[4]. However, they require knowing the true parameters and
noiseless sinograms. For real data, these are not known, butone
can still get a good approximation of variances by replacingthe
true parameters by their noisy counterparts [4].

Finally, the optimal time fraction for the emission scan can
be found by minimizing the variance in (18) with respect to the
emission scan time when total scan time is fixed. For the QPL
method, the simple analysis yields T� � � �  � � � � � ` � 3 � ` � ` 	` � 3 ` 	 �
Note that for the conventional method, the above formula is
invalid because thè	 term is not independent from the scan
time duration 	 .

VI. RESULTS

We have done a series of simulations to test the proposed
variance predictions and to find the optimal scan times under
a total scan time constraint. We used two 2-D images
corresponding to attenuation map and emission image to
generate noisy transmission and emission data with 150000 and
50000 counts per minute respectively. The true images are
shown in Figure 1. The transmission scan had 5% randoms
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and an emission contamination of 5%. Emission scan had 10%
randoms. Randoms rates were assumed to be constant. The
total scan time was 20 minutes. To obtain empirical standard
deviations, 300 realizations were generated for each scan time
distribution. The emission images were reconstructed with
FBP with a smoothing filter that yields about 9 mm FWHM
resolution in the image domain. ACFs were computed using
the conventional and quadratic penalized-likelihood statistical
methods. The resolutions for the ACFs were matched for
these two methods. The standard deviations of the sums over
the heart region in the reconstructed emission images were
found empirically and predicted analytically using the derived
formulas. The results are shown in Figure 2 as a plot of
standard deviation estimates versus emission scan time fraction.
The statistical method not only reduces the overall variance,
but also yields a larger optimum emission scan time fraction
(about 40%) as compared to the conventional method (about
30%). The standard deviation is reduced by about 15-20% in the
statistical method as compared to the conventional method.The
predictions seem to match the empirical data for the statistical
reconstruction, but the predictions for the conventional method
seem to underestimate the standard deviations. We conjecture
that, the approximations used in deriving the variance formulas
causes the mismatch. We are currently working on improving
our approximations. Due to highly nonlinear processing of data
however, it is likely that there will be some discrepancy between
predicted and empirical standard deviation estimates.

VII. CONCLUSION

We presented new approximate formulas for covariances of
reconstructed emission images with conventional and statistical
ACF computation for post-injection scans. These formulas can
be used to predict the variance of the sum over a region of
interest in the final reconstructed emission image instead of
expensive empirical reconstructions. These formulas can also
be used to determine optimal scan times devoted to emission
and transmission scans under a total scan time constraint.
Results show that, statistical ACF computation not only reduces
the overall standard deviation but also yields higher optimum
emission scan time fraction than the conventional method. The
covariance approximations for statistical method work well for
quadratic penalties, but not for non-quadratic penalties.We
plan to extend our work to cover non-quadratic penalties in the
future.

attenuation map emission image

Figure 1: The attenuation map and emission image used to generate
simulation data.
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Figure 2: Standard deviation of the sum over the heart regionestimates
versus emission scan time fraction for conventional and statistical
ACF computations.
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