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ABSTRACT

This paper presents a method for incorporating anatom-

ical NMR boundary side information into penalized

maximumlikelihood (PML) emission image reconstruc-

tions. The NMR boundary is parameterized as a pe-

riodic spline curve of �xed order and number of knots

that is known a priori. Maximum Likelihood (ML) es-

timation of the spline coe�cients yields an \extracted"

boundary, which is used to de�ne a set of Gibbs weights

on the emission image space. These weights, when cou-

pled with a quadratic penalty function, create an edge-

preserving penalty that incorporates our prior knowl-

edge e�ectively. Qualitative analysis demonstrates that

our method results in smooth images that do not suf-

fer loss of edge contrast, while quantitative estimates

of bias and variance for various values of the smoothing

parameter show an improvement over standard quadrat-

ically penalized maximum likelihood.

1. INTRODUCTION

Emission computed tomography (ECT) image recon-

structions, which are generated from data that con-

sists of counts of detected radionuclide decay events,

have been traditionally poor in terms of the sensitiv-

ity/resolution (bias/variance) tradeo� inherent in any

image reconstruction problem. Many factors including

dose limitations, scatter, attenutation, and detector ef-

�ciency contribute to the low quality of these images.

Recently, however, various researchers have suggested

that when functional and anatomical boundaries are

likely to be spatially correlated, anatomical boundary

curves from NMR images, when used as side informa-

tion, might improve the quality of emission image re-

constructions [1],[2], [3]. We focus on the case where a

single boundary of interest is present in both the emis-

sion and NMR images. In this paper, we describe a new
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spline-based method of incorporating NMR-derived anatom-

ical boundary information into the penalized maximum

likelihood reconstruction (PML) algorithm for estimat-

ing radionuclide concentration in the ECT image.

2. THEORY

2.1. NMR System and Boundaries

We make three common assumptions about the mag-

netic resonance imaging system: it is linear and spa-

tially invariant, its point spread function is Gaussian,

and the source of noise is additive thermal noise intro-

duced solely by the electronic instrumentation. This

noise is well-modeled by white Gaussian noise [4]. Un-

der this model, the magnetic resonance image I corre-

sponding to a proton spin density I

true

is

I(x; y) = I

true

(x; y) � �G(x; y) +N (x; y) ; (1)

where the point spread function G is given by

G(x; y) =

1

p

2��

s

e

�(x

2

+y

2

)

2�

2

s

;

N is a zero-mean spatial white noise process whose vari-

ance we will denote by �

2

n

, and the ** operator denotes

2D convolution. Figure 1 is a simulated discretized

Simulated NMR Image

Figure 1: Simulated NMR image



NMR image of an elliptical phantom of interior inten-

sity 6.0 and background intensity 0 with �

s

= 1:2 pixels

and �

2

n

= :20.

We parameterize the NMR phantom (I

true

) bound-

ary using a periodic polar spline function f(�) of known

degree and known number of knots. A periodic polar

spline of degree d de�ned with respect to strictly in-

creasing scalar \knots" fk

1

; : : : ; k

n

g 2 [0; 2�] is any

function f(�) which has k

1

= 0 and k

n

= 2�, and
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; k
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]
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]

(iii) Is a polynomial of dth degree or less on intervals
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] i = 1; : : : ; n� 1

(iv) Satis�es f

(j)
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) = f

(j)

(k

n

) j = 0; : : : ; d� 1

The simplicity, continuity, and smoothness of splines

has made them an obvious choice as boundary mod-

eling functions in many applications [5], [6]. Since a

polar spline is a single valued function it can be used

to represent any closed curve that can be de�ned as a

polar function with respect to some interior point (i.e.

a star shaped region). This requires that the interior

point be known (or estimated) a priori. We will assume

in this paper that this polar origin is known, and we

will use a quadratic spline model consisting of n = 16

equi-angularly spaced knots on [0; 2�].

Any n-knot quadratic, periodic spline function on

[0; 2�] can be expressed as a linear combination of a set

of n b-spline basis functions [6]:

f
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X
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(�) � 2 [0; 2�]

where each basis function B

j

(�) depends on the de-

gree d as well as the number of knots n, and is de�ned

in terms of divided di�erences of truncated polynomial

functions (see [5]). With the b-spline parameterization

the phantom I

true

in (1) becomes a parametric function

of the vector of coe�cients � = (�

1

; : : : ; �

n

). We will

extract the boundary side information from the dis-

cretized NMR image using ML estimation of �. Since

the noise model is Gaussian this is equivalent to solving

the non-linear least squares problem:

^

� = argmin

�
�
�

jjI

�
�
�

true

� �G� Ijj

2

: (2)

Here I's dependence on � has been explicitly written,

and the operator �� now represents discrete rather than

continuous convolution. In order to minimize this ob-

jective function, we must generate a smoothed version

I

�
�
�

true

��G of the \true" image corresponding to bound-

ary �. For simplicity, we assume that the Gaussian

noise variance, point spread parameter �

s

, and the

NMR image intensity inside the spline boundary are

known (our method could easily be extended to include

these quantities as parameters to be estimated).

2.2. Modi�ed Penalty for Emission Data

In emission tomography, a patient is injected with ra-

dionuclide, and emissions are counted by pairs of detec-

tors oriented around a particular anatomical slice. The

reconstruction problem consists of estimating parame-

ters � = (�

1

; : : : ; �

P

), the radionuclide concentrations

in the slice pixels, from a dataset Y of detected counts.

The emission measurements have independent Poission

distributions, and we assume that Y

n

has mean

�

Y

n

(�) =

X

j

a

nj
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where the a

nj

are proportional to the probability that

an emission in pixel j is detected by the nth detector

pair, and fr

n

g represents additive background events

(e.g. random coincidences). Given a measurement re-

alization (sinogram) Y = y, the goal in PML emission

reconstruction is to compute the penalized maximum

likelihood estimate

^

� of the emission intensities, de-

�ned by:

^

� = argmax

�
�
�

flnf(y;�)� P (�)g (3)

where f(y;�) is the Poisson probability distribution of

random vector Y , and P (�) is a roughness penalty. A

common choice for the penalty P (�) is the function

P (�) = �

1
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where the summations above are over pixels, and f!

kj

g

is a set of penalty weights that for �xed k promote

smoothing within the neighborhood of the kth pixel.

We use a Gibbs weighting scheme, where a �rst-order

2D pixel neighborhood consists of four (up, down, left,

right) adjacent neighbors, a second-order neighborhood

includes all eight surrounding pixels, and the weights

are chosen to be symmetric (!

kj

= !

jk

) with !

kj

non-

zero only in the neighborhood of the kth pixel.

Since large P decreases our objective function, it

is clear that the maximization of (3) will attempt to

some extent to minimize P by encouraging pixels with

non-zero weights to take on similar values in the recon-

struction

^

�. The smoothing parameter � controls the

tradeo� between the conicting goals of maximizing

lnf(y;�) and minimizing P (�). The objective func-

tion maximum can not be found analytically; there-

fore, an iterative method must be used. In the sequel

we use the SAGE3 algorithm [7] to maximize (3). This



EM-type algorithm is characterized by monotonic, fast

convergence.

Choosing a uniform weight scheme (e.g. all !

kj

=

1) results in a global smoothing of the reconstructed

image that in turn causes severe bias as image detail is

blurred indiscriminantly across region boundaries. Our

side information � can be used to encourage more in-

telligent smoothing that occurs within, but not across,

the region boundary present in the NMR image (which

is assumed correlate highly with the functional region

boundary). We encode this information into the Gibbs

weights as follows. First, a \soft limited" image I

�
�
�

is

generated whose pixel intensities lie in [0; 1] | each

intensity is equal to the normalized area of that pixel

which belongs to the interior of closed curve �. Then,

the set of weights f!

�
�
�

kj

g is assigned using I

�
�
�

as follows:

!

jk

(I

�
�
�

) =

8

<

:

min(I

�
�
�

j

; I

�
�
�

k

) : I

�
�
�

j

; I

�
�
�

k

� :50

1�max(I

�
�
�

j

; I

�
�
�

k

) : I

�
�
�

j

; I

�
�
�

k

< :50

0 : else

9

=

;

This scheme divides image pixels into two groups, inte-

rior and exterior, and associates all pixels whose inten-

sities are � :50 to the interior and the remainder to the

exterior. The strength of the bond between neighbors

of the same type varies between :50 and 1, and is equal

to the value of the smaller neighbor (interior) or one

minus the larger neighbor (exterior).

2.3. Mean Uptake Measurement

To compare the performance of PML emission recon-

struction with and without side information, it is cru-

cial to examine the tradeo� between the bias and vari-

ance components of mean squared estimate error. In

this paper, we focus on mean uptake in a region of in-

terest (ROI) de�ned as the pixels where the elliptical

hot spot of the phantom pictured in Figure 2(a) is non-

zero. If we let v be a vector whose length is the same

as � and is 1 in the speci�ed ROI and 0 elsewhere, we

can estimate mean uptake as

�̂ =

^

�

0

v

M

where M is the number of pixels in the ROI and oper-

ator

0

denotes vector transpose. The bias and standard

deviation of our mean uptake estimate are de�ned as

b(�̂) = E[
^
�]��

s(�̂) =

p

E[(�̂�E[
^
�])

2

]

In the simulations that follow, we quantify estimator

performance by examining estimates of the bias and

standard deviation of � for a wide range of values of �,

the smoothing parameter.

3. RESULTS

3.1. Qualitative

To qualitatively assess the di�erences between recon-

structions performed with no side information (!

jk

= 1

for all neighbors), noiseless (ideal) side information,

and noisy (extracted) side information, we generated

simulated PET emission data for the 64 x 64 phan-

tom shown in Figure 2(a) using 64 bins and 60 angles

covering an orbit of 180 degrees. Total counts were

normalized to 10

6

, random coincidences made up 15%

of total counts, and e�ects of both attenuation and lim-

ited detector e�ciency were ignored.

Figure 2 (b)-(d) shows reconstructions that were

obtained by maximizing the PML objective via 40 it-

erations of the SAGE3 algorithm. A 2nd order Gibbs

neighborhood was used, and the algorithm was initial-

ized with a �ltered backprojection reconstruction (Han-

ning �lter with a discrete frequency cuto� of :50). Fig-

ure 2(b) is the reconstructed image when � = 0 and

no side information is used: as one would expect, the

boundary of the ROI ellipse is severely blurred. In �g-

ure 2(c), we kept � constant, but encoded ideal bound-

ary side information into the Gibbs weights. Note that

despite the smoothing that has been achieved in both

background and interior regions, the ellipse edges are

perfectly clean. Figure 2(d) shows the result using side

information that has been extracted from the simu-

lated NMR image of Figure 1. Twenty iterations of

a standard conjugate gradient algorithm were used to

perform the minimization of (2). Some boundary esti-

mation error is evident; however, considering the level

of smoothing and blurring present in the NMR image of

Figure 1, the reconstruction quality seems quite good.

3.2. Quantitative

Bias and standard deviation estimates for our measure

^
� of the mean uptake in our ROI were obtained by re-

constructing 100 independent realizations of emission

data via 40 SAGE3 iterations for a range of � val-

ues. Sample mean and standard deviation values were

then used to calculate bias and standard deviation esti-

mates, which are expressed in our plots as a percentage

of the true mean uptake value for our region of interest.

Figure 3 shows the performance of uniform versus ideal

side information. The uniform and ideal curves shown

were swept out from upper right to lower left by in-

creasing �. We can immediately see that the use of side

information has improved reconstruction performance

with respect to both bias and % standard deviation

for nearly all values of � (note that the perfect perfor-

mance would be achieved at the origin, where both bias
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Figure 2: (a) emission phantom with background ellipse of intensity 3 and ROI ellipse of intensity 9. (b) emission

reconstruction using 40 sage3 iterations with no side information (� = 0). (c) using ideal spline side information. (d)

using a spline extracted from a single noisy NMR image via MLCG estimation.

and variance are 0). For nearly all levels of standard

deviation, the selective smoothing a�orded by the ideal

side information resulted in signi�cantly less bias than

was present without side information. The di�erence is

most striking for smaller values of standard deviation.

For example, at a standard deviaton level of .25%, in-

creased smoothing has pushed bias up to almost -10%

for the uniform case, while the reconstructions that em-

ployed ideal side information had bias of less than 2%.

Results for the case of extracted side information were

similar to those for ideal side information, with a curve

that looked nearly identical to that of the ideal case,

but with slightly higher bias and variance due to the

estimation error of the extraction process.
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Figure 3: Bias variance estimates for reconstructions

of Figure 2 (b) and (c) as a function of �
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