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Abstract

Since the data sizes in fully 3D PET imaging are very

large, iterative image reconstruction algorithms must

converge in very few iterations to be useful. One

can improve the convergence rate of the conjugate-

gradient (CG) algorithm by incorporating precondi-

tioning operators that approximate the inverse of the

Hessian of the objective function. If the 3D cylindri-

cal PET geometry were not truncated at the ends,

then the Hessian of the penalized least-squares objec-

tive function would be approximately shift-invariant,

i.e. G

0

G would be nearly block-circulant, where G is

the system matrix. We propose a Fourier precondi-

tioner based on this shift-invariant approximation to

the Hessian. Results show that this preconditioner

signi�cantly accelerates the convergence of the CG

algorithm with only a small increase in computation.

I. Introduction

Statistical methods for tomographic image recon-

struction from fully 3D PET scans are particularly

promising since the number of unknown parameters

(pixels) is the same as in the 2D problem typically,

but the number of measurements (rays) is many times

larger. However, since the data sizes in fully 3D PET

imaging are very large, an iterative image reconstruc-

tion algorithm stands to be clinically useful only if it

converges in very few iterations.

Due to the large data sizes in 3D PET, it would

be particularly inconvenient to have to acquire and

store a separate set of \sinograms" or projections

corresponding to random-coincidence events. Hence

it is likely that in most 3D PET scans the random

coincidences will be precorrected in real time using

the delay-window method, rather than collected as

a separate projection set (on systems that support

this mode). This precorrection makes the data non-

Poisson, so the usual Poisson-based iterative algo-

rithms are inappropriate. We propose instead to re-

construct the image volume by minimizing a penal-

ized weighted least-squares (PWLS) objective func-

tion [1]. (Although see [2] for possible alternatives.)

II. Theory

Both the 2D and 3D reconstruction problems can

be described by the measurement model:

y = Gx+ noise (1)

where y is the measured sinograms, G is the system

model (geometric response), and x = [x

1

; : : : ; x

p

]

0

is

the image or volume, where p is the number of pixels

or voxels. We would like to estimate x from y by

minimizing the PWLS objective function:

x̂ = argmin

x

�(x)

�(x) = (y �Gx)

0

W(y �Gx) + �R(x); (2)

where W is an estimate of the inverse of the noise

covariance [1], R(x) is a penalty function that dis-

courages rough images, and � controls the tradeo�

between resolution and noise [3].

Most of the convex penalty functions proposed for

regularization of imaging problems can be expressed

in the following very general form, e.g. [4]:

R(x) =

K

X

k=1

 

k

([Cx� c]

k

); (3)

where C is a K � p matrix and c 2 IR

K

, for some

user-de�ned number K of soft \constraints" of the

form [Cx]

k

� c

k

:

The standard roughness penalty, which penalizes

di�erences between neighboring pixel values, is the

special case of (3) where c = 0, whereK is the number

of pairs of neighboring pixels

1

, and where each row of

C contains one \+1" and one \-1" entry so that

[Cx]

k

= x

j

k;1

� x

j

k;2

; k = 1; : : : ; K;

where x

j

k;1

and x

j

k;2

are two neighboring pixels.

The preconditioned CG algorithm is naturally

suited to the PWLS objective, and has been used ex-

tensively in tomography, e.g. [5{11]. The precondi-

tioned form of the Polak-Ribiere CG method [12] is

1

For 3D penalty functions, K � 3p and K � 13p for �rst and

second-order neighborhoods respectively.
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given as follows:

g

n

= �r

0

�(x

n

) (-gradient)

p

n

=Mg

n

(precondition) (4)



n

=

8

>

<

>

:

0; n = 0

hg

n

� g

n�1

; p

n

i

hg

n�1

; p

n�1

i

; n > 0

d

n

= p

n

+ 

n

d

n�1

(search direction)

�

n

= argmin

�

�(x

n

+ �d

n

) (step size) (5)

x

n+1

= x

n

+ �

n

d

n

(update):

Computing the gradient of the objective function re-

quires a forward projection and backprojection:

�r

0

�(x) = G

0

W(y�Gx)��C

0

diag

n

_

 

k

([Cx� c]

k

)

o

= G

0

W(y �Gx)� �C

0

D

!

(x)(Cx� c)

= [G

0

Wy +C

0

D

!

(x)c]� [G

0

WG+ �C

0

D

!

(x)C]x

= b(x)�H

!

(x); (6)

where

H

!

(x) = G

0

WG+ �C

0

D

!

(x)C; (7)

D

!

(x) = diagf!

k

([Cx� c]

k

)g ;

b(x) = G

0

Wy +CD

!

(x)c;

!

k

(t) =

_

 

k

(t)

t

=

d

dt

 

k

(t)

t

: (8)

The computation of G

0

W(y �Gx) is the most time

consuming step in the algorithm, so minimizing the

number of iterations is essential.

One can signi�cantly improve the convergence rate

of the conjugate-gradient algorithm by incorporating

preconditioning operatorsM in (4) that approximate

H

�1

, the inverse of the Hessian of the objective func-

tion, de�ned by

H(x) = r

2

�(x) = G

0

WG+ �C

0

D

�

 

(x)C

where

�

 

k

(t) = d

2

=dt

2

 

k

(t) and

D

�

 

(x) = diag

n

�

 

k

([Cx� c]

k

)

o

:

But we would also like M to be easy to compute,

unlike H

�1

.

The standard diagonal preconditioner is simply:

M

D

= diagfH

jj

g ;

which improves the convergence rate somewhat, but is

suboptimal since it ignores the o�-diagonal structure

of the Hessian.

For some tomographic systems, the matrices G

0

G

and C

0

C are approximately block-Toeplitz or block-

circulant, i.e. they correspond to shift-invariant op-

erators. Block-circulant matrices are diagonalized by

the Fourier basis. In other words,

K(�) = G

0

G+ �C

0

C � Q

0


(�)Q;

where Q is the 2D or 3D DFTmatrix, and 
(�) is the

diagonal matrix of the DFT coe�cients of the kernel

of K. For the unweighted least-squares problem with

W = I=�

2

and for a quadratic penalty (QPULS), we

have

H =

1

�

2

G

0

G + �C

0

C

so the following Fourier preconditioner leads to very

rapid convergence:

M

F

= Q

0




�1

(�

2

�)Q � K

�1

(�

2

�):

Clinthorne et al. applied this idea to 2D tomography

in [13].

In PET the noise covarianceW

�1

is highly nonuni-

form, so the Fisher information matrixG

0

WG is very

shift variant. Thus Fourier preconditioning is subop-

timal. In [10, 14] we derived the following combined

diagonal/Fourier preconditioner:

M = diag

n

�

�1

j

o

T

0

Q

0




�1

(�)QT diag

n

�

�1

j

o

which uses the following approximation from [3]:

G

0

WG � diagf�

j

gG

0

G diagf�

j

g ; (9)

where

�

j

=

v

u

u

t

P

i

g

2

ij

W

ii

P

i

g

2

ij

: (10)

The above form is for quadratic penalties with the

modi�cation described in [3].

Additional preconditioners for nonquadratic penal-

ties are described in [14].

III. 3D PET

If the 3D cylindrical PET geometry were not trun-

cated at the ends, then the Hessian of the penal-

ized least-squares objective function would be approx-

imately shift-invariant. We propose a Fourier precon-

ditioner based on this shift-invariant approximation
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to the Hessian. This approach is a 3D generalization

of the ideas in [13,10].

To evaluate this approach, we performed a simu-

lation for a small 3D PET geometry consisting of

four 64

2

image slices and 3D projections at tilts

� = f�1

�

; 0

�

; 1

�

g. Each sinogram had 64 radial bins

by 70 angles over 180

�

. The measurement model is as

in (1), where the three terms are de�ned in Fig. 2. To

estimate the image volume x, we would like to min-

imize the penalized weighted least-squares objective

function in (2), where R(x) is a 3D roughness penalty.

For simplicity, we initially tried a block-diagonal

2D preconditioner:

M =

2

6

6

6

4

Q

0


Q

Q

0


Q

Q

0


Q

Q

0


Q

3

7

7

7

5

where Q is the 2D Fourier matrix, and 
 is the fre-

quency response of the kernel of the approximately

Toeplitz matrix G

0

0;0

G

0;0

+ �R

2D

and R

2D

is the in-

plane roughness penalty. In the implementation we

use 2D FFTs to perform the multiplication by Q.

The simulated object is shown in Fig. 1. Us-

ing noiseless data and initializing with a uniform

image, we iterated the conjugate-gradient algorithm

with and without the preconditioner described above.

Fig. 1 compares the objective function �(x̂) at each

iteration of the algorithm. Clearly the proposed

preconditioner accelerates the convergence of the

conjugate-gradient algorithm. The computation of

the FFTs is very mild compared to the forward and

back-projection operations, so it adds only a small

increase in computation to the conjugate-gradient al-

gorithm.

Future work includes more realistic system

sizes, noisy data, nonquadratic penalties, non-

negativity constraint, a 3D Fourier precondi-

tioner (using 3D FFT), comparisons with the

grouped coordinate ascent algorithm [15] etc. See

http://www.eecs.umich.edu/~fessler for current

preprints.
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Fig. 1. 4-slice object used in simulation.
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Fig. 2. Model de�nition for small 3D PET system used in simulations having 4 64

2

slices and 3 tilt angles

� = f�1

�

; 0

�

; 1

�

g. G

�;z

denotes the system response for a given tilt � and axial z-o�set, and y

�;z

denotes

the corresponding sinogram measurement, each of which was 64 radial bins by 70 angles over 180

�

. The

usual 2D PET geometry corresponds to the upper 4 � 4 block. Note that the additional rows of the

system and measurement matrix mean additional counts and information, but of course at the price of

superposition of the di�erent slices.
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Fig. 3. Minimization of the objective function by conjugate-gradient algorithm with and without the proposed

Fourier preconditioner. The objective converges towards its minimum more rapidly with the proposed

Fourier preconditioner.


