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Abstract| Transmission scans are necessary for estimating the

attenuation correction factors (ACFs) to yield quantitatively accu-

rate PET emission images. To reduce the total scan time, post-

injection transmission scans have been proposed in which one can

simultaneously acquire emission and transmission data using rod

sources and sinogramwindowing. However, since the post-injection

transmission scans are corrupted by emission coincidences, accu-

rate correction for attenuation becomes more challenging. Con-

ventional methods (emission subtraction) for ACF computation

from post-injection scans are suboptimal and require relatively long

scan times. We introduce statistical methods based on penalized-

likelihood objectives to compute ACFs and then use them to recon-

struct lower noise PET emission images from simultaneous trans-

mission/emission scans. Simulations show the e�cacy of the pro-

posed methods. These methods improve image quality and SNR of

the estimates as compared to conventional methods.

I. Introduction

For accurate PET emission images, one must correct

for e�ects of attenuation, or absorption of the gamma

photons within the patient being imaged. The e�ects

of attenuation on the �nal emission image quality are

particularly severe in thorax imaging, since the larger di-

mension of the chest decrease the survival probability of

photon pairs to as low as 2%. There is potential new clin-

ical applications for performing PET of the thorax, such

as detection of breast cancer and lung tumors. Hence, the

improvement of attenuation correction methods is getting

more important.

The development of ring and rod sources for PET

transmission scans made it possible to measure attenu-

ation properties of a patient directly. Currently, atten-

uation correction factors (ACFs) are computed from a

transmission scan that precedes the radiotracer injection,

thereby increasing total scan time. Reducing the scan

time is crucial to increase the patient throughput and to

make attenuation corrected total body PET scans possi-

ble. For this purpose, post-injection measurements have

been proposed that use rotating rod sources and sino-

gram windowing to simultaneously acquire transmission

and emission sinograms. Simultaneous scans also elimi-

nate the problem of misregistration between emission and

transmission reconstructions.

Sinogram windowing is performed by taking a nar-

row window in the sinogram domain around the detec-

tor pair locations that are collinear with the rod source.

This window captures the transmission coincidences, and

is called the transmission window. There are also true

emission events in the transmission window that must

be corrected. The remaining sinogram bins, called the

emission window, contain emission coincidences, scat-

tered and random coincidences. The random events in

the emission window are due both to emission and trans-
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mission events and are generally higher count as com-

pared to a single emission scan [1].

Conventional methods of reconstruction used in simul-

taneous scans are suboptimal. Simple subtraction of

emission data from the transmission sinogram and FBP

reconstruction of emission image ignore the Poisson na-

ture of the measured data. Although these methods give

satisfactory results for brain scans [2], they perform much

worse in the thorax where attenuation is more nonuni-

form and its correction is more important. This paper

presents Maximum Penalized Likelihood (MPL) meth-

ods to improve the quality of the image reconstructions

in simultaneous transmission/emission scans.

We compare conventional and statistical methods by

use of bias versus standard deviation plots. We also

present reconstructed images for comparison. The e�ects

of resolution mismatch between attenuation and emission

images are also determined.
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The a

ij

contain factors representing the tomographic

system geometry, scan time, detector e�ciencies, and

dead time correction factors. The g

ij

have units of

length and represent attenuation geometry. Here b

i

are

the blank scan counts, p

i

and l

i

are the projections of

true emission and attenuation parameters, r

T

i

and r

E

i

are

background events in their respective windows, k

T

is the

fraction of emission counts in the transmission window.

Our �nal goal is to estimate � from the two set of

measurements. But, an estimate for the attenuation map

� is also found in the process for statistical reconstruction

methods.



III. Resolution Matching

Generally, for reducing noise in the transmission scan,

sinogram smoothing is employed. Even though this re-

duces the noise in the attenuation correction factors, it

introduces a resolution mismatch between two scans. It is

well known that when the transmission data is smoother

than the emission data, the outcome is serious artifacts

at the edges which can be misinterpreted as pathological

changes [3], [4]. Particularly, the photon activity at or

around the edges of the attenuation map will be underes-

timated at the high attenuation side, and overestimated

at the low side, an artifact caused by oversmoothed at-

tenuation map.

We found that using smooth ACFs in statistical meth-

ods causes a similar e�ect on the emission image, as might

be expected. Since, we include a biased (blurred) esti-

mate of survival probabilities e

�l

i

in the emission data

model, this bias propagates to the �nal image, causing

visually disturbing images. This is illustrated in Figure

1.

It is possible to overcome the mismatch problem in

non-statistical reconstructions by smoothing the emission

sinogram to the resolution of the attenuation correction

factors [3]. However, when one uses statistical meth-

ods, the same procedure cannot be done, since it will

destroy the Poisson nature of the data. Consequently,

for the statistical methods, it is necessary to use atten-

uation reconstructions having as small bias as possible.

This suggests use of nonquadratic penalties which result

in sharper edges in the attenuation map [5]. The per-

formance of statistical methods may degrade faster than

FBP with use of smoother ACFs.

IV. Methods of Reconstruction

A. Attenuation Map

To precisely estimate the attenuation map, we need

to get an initial estimate of emission contamination in

the transmission window. Conventional methods esti-

mate this contamination from either a preceding emission

scan or the emission window measurements in the simul-

taneous scan. Then, the emission contamination estimate

is subtracted from the transmission measurements, or in-

cluded in the statistical model depending on the method

to be used for ACF estimation.

We used three di�erent methods for ACF computation,

described as follows.

A.1 RAW

For this type, we ignore the emission contamination in

the transmission window, and divide transmission mea-

surements to blank scan data to yield the survival prob-

abilities along lines of response. We, then smooth with a

2-D gaussian kernel in the sinogram domain to achieve a

target resolution:
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Note that we do not need to obtain the image domain

attenuation map for this method. If we need to refer to

�̂ for this method, we �nd it by:
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where the FBP is performed by a ramp �lter with cuto�

at Nyquist frequency. The back projection is done pixel-

driven with linear interpolation in the radial direction of

the sinogram domain, so that no additional blurring is

introduced.

A.2 SUBTRACTION (SUB)

We subtract the emission contamination estimated by

k

T

(y

E

� r

E

) and randoms estimate from transmission

data and divide by blank scan. Then, the resulting sino-

gram is 2-D smoothed to achieve various resolutions. In

other words:
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Similarly, the attenuation map estimate is found using

FBP with a ramp �lter.

A.3 MPL

To use a statistical penalized likelihood method to re-

construct the attenuation map, we estimate the emission

contamination in the transmission window from y

E

and

include it in the statistical model for y

T

as part of the

background events. Then, we estimate � using the pe-

nalized likelihood objective function for the transmission

problem:
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) and the objective includes

a roughness penalty function, given in general by:
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Ordinarily w

jk

= 1 for horizontal and vertical nighbor-

ing pixels, w

jk

= 1=

p

2 for diagonal neighboring pixels,

and w

jk

= 0 otherwise. The parameter � controls the

level of smoothing. In our reconstructions, we adopt the

modi�cation described in [6] to achieve more uniform spa-

tial resolution.

The potential function  is a measure of similarity

between pixels in the reconstructed image. For the

quadratic penalty (MPL-Q), we use:

 (x) = x

2

=2;

and for non-quadratic penalty reconstructions (MPL-N),

we focus on one of the penalties proposed in [5]:

 (x) = �

2

[jx=�j � log(1 + jx=�j)]:



The latter penalty approaches the quadratic penalty as

� !1, whereas for �nite values of �, di�erent degrees of

edge preservation can be achieved.

The MPL methods can also be called \reprojected"

ACF computation since the line integrals are found by

projecting the attenuation maps, or

^
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These projections are then used to �nd the ACFs.

B. Emission Image

To reconstruct the emission image, there are again (at

least) two alternatives: FBP and MPL reconstructions.

B.1 FBP

We smooth the randoms-corrected emission measure-

ments y

E

� r

E

with a gaussian 2-D kernel to achieve

the same resolution as the �̂

i

def

=

d

e

�l

i

in the sinogram

domain. The kernel size is determined from the best

gaussian match to the survival probabilities �̂. After at-

tenuation is corrected by division, the emission image is

reconstructed by FBP with a ramp �lter. In other words:
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B.2 MPL

We include the survival probability estimates �̂

i

in the

statistical model for emission data as part of the calibra-

tion factors. Then, the penalized likelihood problem can

be formulated as:
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and R(�) is the quadratic penalty function (MPL-Q).

We again use a modi�cation of the weights w

jk

to

achieve near-uniform resolution [6]. The parameter � is

varied to obtain di�erent levels of smoothing.

V. Performance Simulations

A. The Phantom and The Parameter Values

To compare di�erent methods, we used a synthetic at-

tenuation map and emission distribution shown in top

left corners of Figures 5 and 6 as �

true

and �

true

. The

attenuation map represents a human thorax cross sec-

tion with linear attenuation coe�cients 0.16 cm

�1

, 0.096

cm

�1

, 0.025 cm

�1

, for bone, soft tissue and lungs, respec-

tively. The emission image represents sample activity in

the same cross section with values 1, 2 and 4 for lungs,

soft tissue and heart, respectively. The pixel size is 4.22

mm. We simulated PET transmission and emission scans

with 160 radial bins and 192 angles uniformly spaced over

180

�

. The a

ij

factors corresponded to 6 mm wide strip

integrals with 3 mm center to center spacing, which is

an approximation to ideal line integral that accounts for

�nite detector width.

We set the number of counts of transmission scan to

2 million and of emission scan to 1 million. The ran-

doms rate were 10% in both scans. The randoms rate in

emission window is usually higher than 10%, but it is pos-

sible to reduce it by using weaker rod sources [1]. Emis-

sion scan can also be done separately after removing the

rod sources in which case the T+E scan is termed post-

injection transmission scan. This does not change our

formulation if we assume no patient motion in between

these two scans and consider the radioactive decay. De-

tector e�ciencies and blank scan sinograms were assumed

to be uniform. Deadtime was ignored in the simulations.

There was emission contamination of 10% (k

T

) in the

transmission window.

We generated M = 100 realizations of pseudorandom

Poisson transmission and emission measurements accord-

ing to (1), then reconstructed using previously mentioned

methods. For the MPL reconstructions, we used the

grouped ascent algorithm for transmission [7], and SAGE

algorithm for emission reconstructions [8].

B. Results

We present the average bias versus standard deviation

estimate graphs for both attenuation and emission image

reconstructions in Figures 2, 3 and 4. In these �gures,

the horizontal axis values are obtained from the sample

mean image of M reconstructions. We take the average

of absolute di�erences between the true image and the

sample mean within a region of interest (W ). The values

are normalized by the average value of the true image

in that region. Let �

n

; n = 1::M denote the reconstruc-

tions obtained fromM realizations, and let

�

� denote their

sample mean, then:
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P
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is the estimate of the average bias. We choose the win-

dowW to be a central rectangular region containing both

lungs for bias estimates.

The vertical axis values are the average standard de-

viation estimate found from M realizations in another

region of interest, i.e:
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The window W for the attenuation map is the same as

the bias window, whereas for emission standard deviation

estimates, we choose a smaller region around the cardiac

activity area.

The plot in Figure 2 clearly indicates that both MPL

methods have better performance than the subtraction

method for transmission processing. The raw estimate is

severely biased as expected. Also, MPL-N has a better

bias-variance trade-o� than MPL-Q reconstruction. Non-

quadratic penalties appear to be preferable for transmis-

sion reconstruction.



In Figure 4, we used an emission MPL-Q reconstruc-

tion with �xed � = 2

6:4

giving a resolution of about 12

mm. Thus, the di�erence in the bias values are only due

to di�erent transmission reconstructions. The bias in-

creases as we use smoother attenuation maps, but the

standard deviation estimates do not go down as much. It

can be seen that MPL-N transmission followed by MPL-

Q emission reconstruction seems to give the best result.

Figure 3 presents a similar plot for FBP emission re-

constructions. In this case, the resolutions of emission

data are matched to attenuation resolution and no further

smoothing is done. Thus, actually initial points on the

graph are very noisy which results in the strange curves

in the plot. This is due to the fact that, even the mean

images corresponding to these reconstructions are noisy,

which show up in the bias estimate. Actually, in the

ideal case, we should put error bars to show the accuracy

of our bias and standard deviation estimates. However,

since the resolutions are matched, there should not be

any contribution from systematic artifacts at the edges

unlike MPL-Q estimates. The bias values in this case

are proportional to FWHM values for reasonably smooth

reconstructions. The plot indicates that FBP method

is inferior to MPL-Q for low values of bias. But, for

higher values of bias (� 13%) , FBP seems comparable

to MPL-Q because of the resolution mismatch problem

in the statistical method.

We also present sample reconstruction images from a

single realization. In Figure 5, the attenuation maps can

be observed. The MPL-N looks much better than MPL-Q

or SUB reconstructions. Here, note that the resolutions

of the last two estimates are almostmatched, but the �rst

one is sharper at the edges. Even then, MPL-N looks less

noisy.

Emission images are presented in Figures 6 and 7.

Overall, MPL-Q estimates look better qualitatively than

FBP ones which contain disturbing streak artifacts. The

reconstructions with RAW ACFs have systematic nega-

tive bias. Visually, the best one is the combination of

MPL-N for attenuation and MPL-Q for emission, which

seems to reduce the noise inside the lungs appearing as

hot spots in other reconstructions. This noise is appar-

ently coming from noisy transmission data, which is suc-

cessfully reduced in the MPL-N attenuation map esti-

mate.

VI. Conclusion

We investigated the use of statistical image reconstruc-

tion methods for simultaneous transmission/emission

PET imaging. We compared the conventional methods

with statistical ones, as well as hybrid ones. The MPL

reconstructions are shown to outperform conventional

methods for reasonable values of bias. Non-quadratic

penalties yield better results than quadratic ones since

they allow for sharp edges and yet still reduce the noise.

We have used MPL-N only for transmission. Its use for

emission may improve the image quality further.

In this work, we only used conventional methods with

linear smoothing in the sinogram domain. For future

work, the statistical methods should be compared with

FBP with segmentation of the attenuation map. We still

suspect that statistical MPL methods will outperform

that approach, since segmentation algorithms generally

misclassify important number of pixels due to noise. But,

some sort of soft-segmentation might work. Meanwhile,

we are in search of methods to obtain sharper but less

noisy reconstructions of attenuation maps to further re-

duce the transmission component of the image noise.

The next step in this area is to use the �rst emission im-

age to estimate the emission contamination in the trans-

mission window and reconstruct � and � in alternation

until more satisfactory results are obtained. Another al-

ternative we are investigating is to jointly estimate � and

� from the two set of measurements y

E

and y

T

.
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Fig. 1. The artifacts casued by mismatch of resolutions. At-

tenuation is reconstructed from noiseless data using quadratic

penalty with log

2

� = 7:6 resulting in a psf of FWHM 14 mm.

The emmission image is reconstructedagain from noiseless data

using quadratic penalty with log

2

� = 3:0 yielding a psf of

FWHM 6 mm.
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