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Abstract — In this paper we provide sufficient con-
ditions for convergence of a general class of alternat-
ing estimation-maximization (EM) type continuous-
parameter estimation algorithms with respect to a
given norm.

I. Introduction
Let 8 = [61,...,0,]7 be a real parameter residing in an
open subset © of the p-dimensional space IR?. Given a general
function Q : ©® x ©® — IR and an initial point §° € ©, consider
the following recursive algorithm, called the A-algorithm:

A-algorithm: 9! = argmax, ¢ Q(6, 6°). (1)

If there are multiple maxima, then #°T! can be taken to be
any one of them. Let §* € © be a fixed point of (1).

The A-algorithm contains a large number of popular iter-
ative estimation algorithms such as: ML-EM algorithms (e.g.
Dempster, Laird, and Rubin (1977), the penalized EM algo-
rithm (e.g. Hebert and Leahy (1989)) , and EM-type algo-
rithms implemented with E-step or M-step approximations
(e.g., Antoniadis and Hero (1994), Green (1990)).

I1. Convergence Theorem

A region of monotone convergence relative to the vector
norm || - || of the A-algorithm (1) is defined as any open ball
B(68*,86) = {6 : ||6 — 6%|| < 6} centered at § = 6* with ra-
dius 8§ > 0 such that if the initial point #° is in this region
then ||6° — 6*||, s = 1,2,..., converges monotonically to zero.
Note that as defined, the shape in IR? of the region of mono-
tone convergence depends on the norm used. However in [R?
monotone convergence in a given norm implies convergence,
however possibly non-monotone, in any other norm.

Define the p x p matrices obtained by averaging V°Q(u, @)

and V' Q(u, @) over the line segments u € 96* and T €89*:

1
A1(6,8) = —/ VOQt0 + (1 — 1)8*, 18 + (1 — )8")dt
0

A2(6,0) = /1 VIQt8 + (1 —1)8%, 18 + (1 — 1)8*)dt.

0

Also, define the following set:
SO ={0c® : Q@b,0) 2Q®F,0)}.

By construction of the A-algorithm (1), we have §°*! € S(6").
Definition 1 For a given vector norm ||| and induced matriz
norm || - || define Ry C © as the largest open ball B(0*,6) =
{6:1|6 — 6*|| < 8} such that for each 8 € B(8*,6):

A1(6,8) >0,

for all € §(9) (2)

and for some 0 < a < 1
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[41(0,9)] _A2(9,§)m <a,  foralldeS@). (3)
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The following convergence theorem establishes that, if R4
is not empty, the region in Definition 1 is a region of monotone
convergence in the norm || - || for an algorithm of the form (1).
It can be shown that R4 is non-empty for sufficiently regular
problems (Hero and Fessler (1995)).

Theorem 1 Let 8% € © be a fized point of the A algorithm
(1), where gt = argmaweeGQ(H)H"), 1= 0,1,.... Assume:
i) for all@ € ©, the mazimum maxe Q(6, §) is achicved on the
interior of the set ©; ii) Q(8,8) is twice continuously differ-
entiable in § € © and 8 € ©, and iis) the A-algorithm (1) is
initialized at a point 6° € Ry for a norm || - ||.

1. The iterates 8¢, i =0,1,... all lie in Ry,

2. the successive differences A8* = §° — 6* of the A algo-
rithm obey the recursion:

A = [A1(8°F,0%)] 7 A2 (61, 6Y) - AGY, (4)

3. the norm ||A8*|| converges monotonically to zero with at
least linear rate, and

4. NG asymptotically converges to zero with root conver-
gence factor

o ([-77qe 0] 7 v1Qer,6n) <1,

IT1I. Tomography Application
In emission computed tomography the objective is to es-
timate the object intensity vector 8 = [61,...,6,]T , 6 > 0,
from Poisson distributed projection data Y = [Y1,..., Ym]%.
The Shepp-Vardi implementati~n of the ML-EM algorithm for

estimating the intensity § h-  he form:
; 6 & Ya. o
Ot = 2y e —, b=1,...,p, (5)
Pb ; Zf:=1 Pd|10]

where Py is a full rank matrix of transition probabilities
from emission locations to projection locations and Pp =
Z:=1 Pdlb'

Using Theorem 1 we obtain
Theorem 2 Assume that the unpenalized ECT EM algorithm
specified by (5) converges to the strictly positive limit 6*.
Then, for some sufficiently large positive integer M :

ln 6t —1n 8% < o||ln §' — In 6%, i> M,

where o = p([B+ C|™'C), B = B(9*), C = C(8*), the norm
|| ®]| is defined as:

14
d
lul” =S Py o,
b=1

Lange and Carson (1984) showed that the ECT EM al-
gorithm converges to the maximum likelihood estimate. As
long as 8* is strictly positive, Theorem 2 asserts that in the
final iterations of the algorithm the logarithmic differences

In 4" —In8* converge monotonically to zero relative to the
norm (6).

(6)



