Sufficient Conditions for Norm Convergence of the EM Algorithm¹

Alfred Hero and Jeffrey Fessler

Dept. of EECS, The University of Michigan, Ann Arbor, Michigan, USA

Abstract — In this paper we provide sufficient conditions for convergence of a general class of alternating estimation-maximization (EM) type continuousparameter estimation algorithms with respect to a given norm.

I. Introduction Let $\theta = [\theta_1, \dots, \theta_p]^T$ be a real parameter residing in an open subset Θ of the *p*-dimensional space \mathbb{R}^p . Given a general function $Q: \Theta \times \Theta \to I\!\!R$ and an initial point $\theta^0 \in \Theta$, consider the following recursive algorithm, called the A-algorithm:

A-algorithm:
$$\theta^{i+1} = \operatorname{argmax}_{\theta \in \Theta} Q(\theta, \theta^i).$$
 (1)

If there are multiple maxima, then θ^{i+1} can be taken to be any one of them. Let $\theta^* \in \Theta$ be a fixed point of (1).

The A-algorithm contains a large number of popular iterative estimation algorithms such as: ML-EM algorithms (e.g. Dempster, Laird, and Rubin (1977), the penalized EM algorithm (e.g. Hebert and Leahy (1989)), and EM-type algorithms implemented with E-step or M-step approximations (e.g., Antoniadis and Hero (1994), Green (1990)).

II. Convergence Theorem

A region of monotone convergence relative to the vector norm $\|\cdot\|$ of the A-algorithm (1) is defined as any open ball $B(\theta^*, \delta) = \{\theta : \|\theta - \theta^*\| < \delta\}$ centered at $\theta = \theta^*$ with radius $\delta > 0$ such that if the initial point θ^0 is in this region then $\|\theta^i - \theta^*\|$, i = 1, 2, ..., converges monotonically to zero. Note that as defined, the shape in $I\!R^p$ of the region of monotone convergence depends on the norm used. However in \mathbb{R}^p monotone convergence in a given norm implies convergence, however possibly non-monotone, in any other norm.

Define the $p \times p$ matrices obtained by averaging $\nabla^{20} Q(u, \overline{u})$ and $\nabla^{11}Q(u,\overline{u})$ over the line segments $u \in \overline{\theta}\overline{\theta}^*$ and $\overline{u} \in \overline{\overline{\theta}}\overline{\theta}^*$:

$$A_1(\theta,\overline{\theta}) = -\int_0^1 \nabla^{20} Q(t\theta + (1-t)\theta^*, t\overline{\theta} + (1-t)\theta^*) dt$$
$$A_2(\theta,\overline{\theta}) = \int_0^1 \nabla^{11} Q(t\theta + (1-t)\theta^*, t\overline{\theta} + (1-t)\theta^*) dt.$$

Also, define the following set:

$$\mathcal{S}(\overline{\theta}) = \{ \theta \in \Theta : Q(\theta, \overline{\theta}) \ge Q(\overline{\theta}, \overline{\theta}) \}.$$

By construction of the A-algorithm (1), we have $\theta^{i+1} \in \mathcal{S}(\theta^i)$. **Definition 1** For a given vector norm $\|\cdot\|$ and induced matrix norm $\|\cdot\|$ define $\mathcal{R}_+ \subset \Theta$ as the largest open ball $B(\theta^*, \delta) =$ $\{\theta: \|\theta - \theta^*\| < \delta\}$ such that for each $\overline{\theta} \in B(\theta^*, \delta)$:

$$A_1(\theta, \overline{\theta}) > 0, \qquad \text{for all } \theta \in \mathcal{S}(\overline{\theta})$$
 (2)

and for some $0 \leq \alpha < 1$

$$\left\| \left[A_1(\theta, \overline{\theta}) \right]^{-1} \cdot A_2(\theta, \overline{\theta}) \right\| \le \alpha, \qquad \text{for all } \theta \in \mathcal{S}(\overline{\theta}).$$
(3)

¹This work was partially supported by grants: NSF-BCS-9024370, DOE-FG02-87ER60561, NIH-CA-60711

The following convergence theorem establishes that, if \mathcal{R}_+ is not empty, the region in Definition 1 is a region of monotone convergence in the norm $\|\cdot\|$ for an algorithm of the form (1). It can be shown that \mathcal{R}_+ is non-empty for sufficiently regular problems (Hero and Fessler (1995)).

Theorem 1 Let $\theta^* \in \Theta$ be a fixed point of the A algorithm (1), where $\theta^{i+1} = \operatorname{argmax}_{\theta \in \Theta} Q(\theta, \theta^i)$, $i = 0, 1, \ldots$ Assume: i) for all $\overline{\theta} \in \Theta$, the maximum $\max_{\theta} Q(\theta, \overline{\theta})$ is achieved on the interior of the set Θ ; ii) $Q(\theta, \overline{\theta})$ is twice continuously differentiable in $\theta \in \Theta$ and $\overline{\theta} \in \Theta$, and iii) the A-algorithm (1) is initialized at a point $\theta^0 \in \mathcal{R}_+$ for a norm $\|\cdot\|$.

- 1. The iterates θ^i , i = 0, 1, ... all lie in \mathcal{R}_+ ,
- 2. the successive differences $\Delta \theta^i = \theta^i \theta^*$ of the A algorithm obey the recursion:

$$\Delta \theta^{i+1} = [A_1(\theta^{i+1}, \theta^i)]^{-1} A_2(\theta^{i+1}, \theta^i) \cdot \Delta \theta^i, \qquad (4)$$

- 3. the norm $\|\Delta \theta^i\|$ converges monotonically to zero with at least linear rate, and
- 4. $\Delta \theta^i$ asymptotically converges to zero with root convergence factor

$$\rho\left(\left[-\nabla^{20}Q(\theta^*,\theta^*)\right]^{-1}\nabla^{11}Q(\theta^*,\theta^*)\right)<1.$$

III. Tomography Application

In emission computed tomography the objective is to estimate the object intensity vector $\theta = [\theta_1, \dots, \theta_p]^T$, $\theta_b \ge 0$, from Poisson distributed projection data $\mathbf{Y} = [\mathbf{Y}_1, \dots, \mathbf{Y}_m]^T$. The Shepp-Vardi implementation of the ML-EM algorithm for estimating the intensity θ h he form:

$$\theta_{b}^{i+1} = \frac{\theta_{b}^{i}}{P_{b}} \sum_{d=1}^{m} \frac{\mathbf{Y}_{d-1,b}}{\sum_{j=1}^{p} P_{d|j} \theta_{j}^{i}}, \qquad b = 1, \dots, p,$$
(5)

where $P_{d|b}$ is a full rank matrix of transition probabilities from emission locations to projection locations and P_b = $\sum_{d=1}^{m} P_{d|b}.$ Using Theorem 1 we obtain

Theorem 2 Assume that the unpenalized ECT EM algorithm specified by (5) converges to the strictly positive limit θ^* . Then, for some sufficiently large positive integer M:

$$\|\ln \theta^{i+1} - \ln \theta^*\| \le \alpha \|\ln \theta^i - \ln \theta^*\|, \qquad i \ge M,$$

where $\alpha = \rho([B + C]^{-1}C), B = B(\theta^*), C = C(\theta^*)$, the norm $\| \bullet \|$ is defined as:

$$||u||^{2} \stackrel{def}{=} \sum_{b=1}^{p} P_{b} \theta_{b}^{*} u_{b}^{2}.$$
 (6)

Lange and Carson (1984) showed that the ECT EM algorithm converges to the maximum likelihood estimate. As long as θ^{\star} is strictly positive, Theorem 2 asserts that in the final iterations of the algorithm the logarithmic differences $\ln \theta^i - \ln \theta^*$ converge monotonically to zero relative to the norm (6).