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Abstract - In this paper we provide sufficient con- 
ditions for convergence of a general class of alternat- 
ing estimation-maximization (EM) type continuous- 
parameter estimation algorithms with respect to a 
given norm. 

The following convergence theorem establishes that ,  if R+ 
is not empty, the region in Definition 1 is a region of monotone 
convergence in the norm 1 1 . 1 1  for an algorithm of the form (1). 
It  can be shown that R+ is non-empty for sufficiently regular 
problems (Hero and Fessler (1995)). 

I. Introduction 
Let 0 = [e,, . , , , OplT be a real parameter residing in an 

open subset 0 of the p-dimensional space Ep.  Given a general 
function Q : 0 x 0 + IR and an initial point 8' E 0,  consider 
the following recursive algorithm, called the A-algorithm: 

A-algori t hm: @'+I = argmaxe,nQ(Q, 8 % ) .  (1) 

If there are multiple maxima, then 8"' can be taken to  be 
any one of them. Let 0' E 0 be a fixed point of (1). 

The  A-algorithm contains a large number of popular iter- 
ative estimation algorithms such as: ML-EM algorithms (e.g. 
Dempster, Laird, and Rubin (1977), the penalized EM algo- 
rithm (e.g. Hebert and Leahy (1989)) , and EM-type algo- 
rithms implemented with E-step or M-step approximations 
(e.g., Antoniadis and Hero (1994), Green (1990)). 

11. Convergence Theorem 
A region of monotone convergence relative to the vector 

norm )I . 11 of the A-algorithm (1) is defined as any open ball 
B(O*,6) = (6' : 110 - O * l l  < 6) centered at  8 = 8' with ra- 
dius 6 > 0 such that  if the initial point 8' is in this region 
then l lOe  - O * l l ,  i = 1 , 2 , .  . ., converges monotonically to  zero. 
Note that  as defined, the shape in ELp of the region of mono- 
tone convergence depends on the norm used. However in Ep 
monotone convergence in a given norm implies convergence, 
however possibly non-monotone, in any other norm. 

Define the p x p  matrices obtained by averaging V Z 0 Q ( u ,  E)  

and V1'Q(u1?i) over the line segments U E 88' and ii E 80': 
3 + 

Theorem 1 Let O* E 0 be a fixed point of the A algorithm 
(l) ,  where e'+' = argmaxeE,Q(O,Oi), i = 0 ,1 , .  . ., Assume: 
i) for all 3 E 0,  the maximum maxe Q(O,P) is achieved on the 
interior of the set 0;  ii) Q(O,8) is twice continuously differ- 
entiable in 6 E 0 and 3 E 0,  and iii) the A-algorithm ( 1 )  is 
initialized a t  a point eo E R+ for a norm 11 . 11. 

1. The iterates O', z = 0 , 1 , .  . . all lie in R+,  
2. the successive differences AB' = O i  - @* of the A algo- 

rithm obey the recursion: 

AB"' = [A~(O"l,Oi)]-lA~(O"'l O i )  . AO', (4) 

3. the norm 1 1  AO'll converges monotonically to zero with a t  

4.  A81 asymptotically converges to zero wzth root conver- 
least linear rate, and 

gence factor 

p ( [-VZ0Q(8*, e * ) ]  V1'Q(O*, O*)) < 1. 

111. Tomography Application 
In emission computed tomography the objective is t o  es- 

timate the object intensity vector 0 = [e, , .. . , BPIT , O b  2 0, 
from Poisson distributed projection data  Y = [Yl , .  . . , Y,]*. 
The  Shepp-Vardi implementatinn of the ML-EM algorithm for 
estimating the intensity 0 h he form: 

where Pdlb  is a full rank matrix of transition probabilities 
from emission locations to  projection locations and Pb = 
C L  P d l b .  

Using Theorem 1 we obtain 
[ - 

A1(O,O) = - 

A2(0,3) = 1 V"Q(t0 + (1 - t )O* , t e+  (1 - t ) O * ) d t .  

Also, define the following set: 

V2'Q(t0 + (1 - t)$*,te+ (1 - t ) O * ) d t  

Theorem 2 Assume that the unpenalized ECT EM algorithm 
specified by (5) converges to the strictly positive limit O*. 
Then, for some suficiently large positive integer M :  

S(e) = ( 6  0 : Q ( 6 , e )  3 Q ( B , B ) } .  IIIn8'+1 -1nO'll 5 allInO' -1nO*ll, i >  M ,  
By construction of the A-algorithm (l), we have 8"' E S(0 ' ) .  
Definition 1 For a given vector norm 1 1 . 1 /  and induced matrix 
norm 111 . 111 define R+ c 0 as the largest open ball B(B*, 6) = 
(0 : 116' - 8'11 < 6) such that for each e E B(B*, 6): 

where cy = p([B+ C'-'C), B = B(O*), C =  C(O*), the norm 
1 1  11 is defined as: 

P 

llu112 'Af pbs: (6) 
b=1  A1(O,g) > 0, for all 0 E S(g) ( 2 )  

Lange and Carson (1984) showed that  the E C T  EM al- 
gorithm converges to  the maximum likelihood estimate. As 
long as 8*  is strictly positive, Theorem 2 asserts that  in the 

( 3 )  final iterations of the algorithm the logarithmic differences 
In@'  - In$* converge monotonically to  zero relative to  the 

and for  some 0 5 a < 1 

III[A1(O18)]-' .A2(8,8))/1) I a ,  for a l l0  E S(8). 
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