
1Fast Parallelizable Algorithms for Transmission Image ReconstructionJe�rey A. Fessler, Edward P. Ficaro, Neal H. Clinthorne, and Kenneth Lange4240 EECS Bldg., University of Michigan, Ann Arbor, MI 48109-2122Abstract| This paper presents a new class of algorithms forpenalized-likelihood reconstruction of attenuation maps from low-count transmission scans. We derive the algorithms by applyingto the transmission log-likelihood a variation of the convexity tech-nique developed by De Pierro for the emission case. The new al-gorithms overcome several limitations associated with previous algo-rithms. (1) Fewer exponentiations are required than in the trans-mission EM algorithm or in coordinate-ascent algorithms. (2) Thealgorithms intrinsically accommodate nonnegativity constraints, un-like many gradient-based methods. (3) The algorithms are easilyparallelizable, unlike coordinate-ascent algorithms and perhaps line-search algorithms. We show that the algorithms converge faster thanseveral alternatives, even on conventional workstations. We give ex-amples from low-count PET transmission scans and from truncatedfan-beam SPECT transmission scans.I. IntroductionThe importance of statistical methods for reconstructingattenuation maps has increased recently due to the widen-ing availability of SPECT systems equipped with transmis-sion sources [1], the necessity of reconstructing 2D attenu-ation maps for reprojection to form 3D attenuation correc-tion factors in septaless PET [2,3], and the potential for re-ducing transmission noise in whole body PET images andin other protocols requiring short transmission scans [4].The �ltered backprojection (FBP) method and the data-weighted least-squares method for transmission image re-construction lead to systematic biases at low counts [5], dueto the nonlinearity of the logarithm. To eliminate thesebiases, one can use statistical methods which require nologarithms [5].Several reconstruction algorithms based on the Poissonstatistical model for transmission scans have appeared re-cently [6{12, 5], all of which converge faster than the orig-inal transmission ML-EM algorithm [13]. Nevertheless,these methods are still less than ideal due to one or moreof the following reasons.� The EM algorithms [13,9] and coordinate-ascent algo-rithms [14, 12, 5] require at least one exponentiationper nonzero element in the system matrix per itera-tion, which is a large computational expense.� Enforcing nonnegativity in gradient-based algorithms[10,11] is possible but somewhat awkward.� Many algorithms are poorly suited to parallel proces-sors, such as the i860 arrays that pervade septalessPET sites. This is true of coordinate-ascent methodsand of algorithms that use line searches, since a line-search step may not parallelize easily.This paper describes a new class of algorithms for recon-structing attenuation maps from low-count transmissionThis work was supported in part by NIH grants CA-60711 andCA-54362, and DOE grant DE-FG02-87ER60561.

scans. These algorithms are parallelizable, easily accom-modate nonnegativity constraints and nonquadratic con-vex penalties, and require a moderate number of exponen-tiations. The derivation of these transmission algorithmsexploits two ideas underlying recent developments in al-gorithms for emission tomography: updating the param-eters in groups [15, 16], and the convexity technique ofDe Pierro [17, 18]. Integrating these two ideas leads tonew algorithms that converge quickly with less computa-tion than previous methods.II. ProblemFor brevity we consider the transmission measurementmodel without additive background events (random coin-cidences, scatter, emission crosstalk, etc.), although themethod can be extended to include those e�ects. We as-sume yi � Poissonfbi exp(�hai�; �truei)g; (1)where hai�; �i =Pj aij�j ; represents the ith \line integral,"yi denotes the transmission measurement of the ith detec-tor, bi denotes the ith blank scan measurement, �j denotesthe unknown attenuation coe�cient in the jth voxel, andthe aij's are the transmission system model. We assumefbig and faijg are known.The transmission log-likelihood is [13]:L(�; y) =Xi hi(hai�; �i) (2)where hi(l) = yi log(bie�l)� bie�l: (3)Note that each hi is a concave function over all of IR. Thealgorithms developed below apply to any problem of theform (2) with concave hi, including weighted least squares.The goal is to compute a penalized-likelihood estimate�̂(y) of �, de�ned by�̂ = argmax��0 �(�; y); �(�; y) = L(�; y) � �R(�); (4)where the objective includes a roughness penaltyR(�) =Xj 12Xk wjk (�j � �k); (5)where wjk = 1 for horizontal and vertical neighboring pix-els and is zero otherwise. For concreteness, in this paperwe have used one of the penalties in [7]: (x) = �2 [ jx=�j � log (1 + jx=�j) ] ; (6)



which approaches  (x) = x2=2 as � ! 1, but provides adegree of edge preservation for �nite �. Since_ (x) = ddx (x) = x1 + jx=�jimplies j _ (x)j < �, this potential function has boundedinuence. The derivative of  (�) requires no transcendentalfunctions, which speeds computation. Since  is strictlyconvex and L(�; y) is concave, the objective � is strictlyconcave under mild conditions on A. This concavity iscentral to the development of the algorithms below.Direct maximization of (4) is intractable, so one mustuse iterative algorithms. Generic numerical methods suchas steepest ascent do not exploit the speci�c structure of �,nor do they easily accommodate nonnegativity constraints.Thus for fastest convergence, one must seek algorithms tai-lored to this problem. Relevant properties of L include:� L(�; y) is a sum of concave functions hi(�).� The arguments of the functions hi(�) are inner prod-ucts.� The inner product coe�cients are all nonnegative.These properties suggest the use of Jensen's inequality.III. AlgorithmsAs shown by frequency domain analysis in [19], sequen-tial updates such as coordinate ascent converge very rapidlyfor tomographic reconstruction. Unfortunately, coordinateascent requires a large number of exponentiations for trans-mission tomography. Consider the partial derivative of thelog-likelihood with respect to the jth pixel value:_Lj(�) = @@�j L(�; y) =Xi aij �1� yi�yi(�)� bie�hai� ;�ni; (7)where �yi(�) = bi exp(�hai�; �i) (see Eqn. (8) of [5]). Ina coordinate ascent algorithm, one must evaluate _Lj(�n)at the current image estimate �n. Since hai�; �ni changesimmediately after each pixel is updated, from (7) each iter-ation requires M exponentiations, where M is the numberof nonzero aij 's. At the other extreme, the transmissionscaled-gradient algorithm [11] updates all pixels simultane-ously. Thus the terms in (7) can be computed simultane-ously before updating the pixels, so onlyN exponentiationsare required, where N is the number of rays. Typically Nis two orders of magnitude smaller thanM . In other words,there is an \economy of scale" in terms of computation byupdating all pixels simultaneously2. However, simultane-ous updates lead to slow convergence [5].Rather than updating all pixels simultaneously, we pro-pose to update only certain groups of pixels simultaneously.If there are G groups of pixels, then only NG exponentia-tions are needed. On the other hand, if the pixels in eachgroup are well-separated spatially, then we anticipate that2Even if the exponentiations are computed approximately, usingtable lookups for example, the ratio between N and M remainsunchanged.

they will be fairly decoupled, so the simultaneous updatewill not su�er from slow convergence. The results belowcon�rm this intuition.Let S be a subset of the pixels f1; : : : ; pg, let ~S be itscomplement3, and let pS be the cardinality of S. Then atthe nth iteration we update �S while holding �n~S �xed [15].Unfortunately it is even too di�cult to maximize �(�S ; �n~S)over �S directly, so we will settle for �nding an approachthat chooses a �n+1S that at least provides monotonic in-creases in the objective function:�(�n+1S ; �n~S ) � �(�nS ; �n~S) = �(�n):To assure monotonicity, we use a generalization ofDe Pierro's optimization transfer idea [17, 18], and sub-stitute a surrogate function �(�S ; �n) with a correspondingregion of monotonicity RS � IRpS that must satisfy:�(�S ; �n~S)��(�n) � �(�S ; �n)��(�nS ; �n) 8�S 2 RS : (8)The SAGE-like update [15,16] then looks like:�n+1S = arg max�S2RS �(�S ; �n); (9)�n+1j = �nj ; j 2 ~S:The condition (8) ensures immediately that the iteratesproduced by the above generic algorithmmonotonically in-crease the objective: �(�n+1) � �(�n).We restrict attention here to additively separable surro-gate functions �(�; �n) satisfying�(�S ; �n) =Xj2S �j(�j ; �n):We use a modi�cation of De Pierro's method [17, 18] tochoose the �j's, rather than the EM approach of [15, 16].Note thathai�; [�S ; �n~S ]i =Xj2S �ij aij�ij (�j � �nj ) + hai�; �ni (10)for any choice4 of �ij that satis�es Pj2S �ij = 1. In par-ticular, in this paper we de�ne�ij = aij=Xk2S aik: (11)Then by concavity of hi(�) and since �ij � 0:L([�S ; �n~S ]; y) =Xi hi(hai�; [�S ; �n~S ]i) �Xj2SQj(�j ; �n);where using (10):Qj(�j ; �n) =Xi �ijhi� aij�ij (�j � �nj ) + hai�; �ni� : (12)3In a grouped coordinate ascent method, S varies with n. To sim-plify notation, we leave this dependence implicit.4We assume �ij = 0 if and only if aij = 0 so that (10) is wellde�ned.



Assuming the groups are chosen so that no two neighboringpixels are in the same group5, then we can de�ne6�j(�j ; �n) = Qj(�j ; �n)� �Xk wjk (�j � �nk ): (13)Each �j only depends on one �j , so since RS = IRp in thisproblem due to the concavity of hi(�), the maximizationstep in (9) reduces to separate 1D maximizations. Thus (9)becomes the parallelizable operations:�n+1j = argmax�j�0 �j(�j ; �n); j 2 S: (14)A. ConvergenceIt is fairly straightforward to apply the general conver-gence proof in [15] to prove that the sequence of estimatesf�ng produced by the above algorithm monotonically in-creases �(�) and converges from any starting image to theunique global maximizer of � subject to � � 0. There area few caveats that must be considered however. When us-ing �nite precision arithmetic, monotonicity often does nothold exactly once the sequence gets nears the maximum.Also, usually one will not perform exact 1D maximizationsas implied by (14), but rather partial or approximate max-imizations (see below). Finally, when one includes addi-tive background e�ects in the statistical model, the log-likelihood is no longer globally concave [5]. Nevertheless,it is comforting to know that at least under ideal circum-stances the convergence is well understood.B. The Maximization StepOne simple approach to implementing the maximiza-tion (14) would be to apply a few iterations of the 1DNewton Raphson method:�workj = �nj�workj := 2664�workj + dd�j �j(�j ; �n)����j=�workj� d2d�2j �j(�j ; �n)����j=�workj 3775+ (15)�n+1j = �workj :Typically the middle step would be repeated a few times.Unfortunately, the partial derivatives of �j(�; �n) are fairlyexpensive to compute.To reduce computation, we apply methods from [12] and[5]. For the numerator, we approximate the Qj function(but not the penalty!) by its second order Taylor series,in a spirit similar to [12]. For the denominator, we use atrick similar to [5] for precomputing an approximation tothe second derivative of the Qj function, and a new trickfor the penalty term that exploits its bounded curvature.5If a group contains neighboring pixels, then one can also applyDe Pierro's device [17, 18] to the penalty function to ensure (8).6Note that the 12 in (5) disappears in (13) since each pair of pixelsis counted twice in (5).

The second-order Taylor's approximation about �nj forthe Qj(�; �n) component of the numerator is:Qj(�j ; �n) � Qj(�nj ; �n)+ _Lj (�n)(�j��nj )�dj(�n)2 (�j��nj )2;because from (12) it follows thatdd�jQj(�j ; �n)�����j=�nj = @@�j L(�)�����=�n = _Lj(�n);and where (also from (12)):dj(�n) = � d2d�2j Qj(�j ; �n)������j=�nj = �Xi a2ij�ij �hi(hai�; �ni):Note that �n only enters dj(�n) through its projectionshai�; �ni. Thus dj(�n) is fairly insensitive to �n, so we re-place hai�; �ni with a precomputed approximation to theith line integral, such as log(bi=yi). Therefore we replacedj(�n) with d̂j =Xi a2ij�ij �hi(log(bi=yi)); (16)which one can precompute prior to iterating. Thus, wereplace the numerator of (15) with this approximation:dd�j �j(�j ; �n)�����j=�workj �_Lj(�n) � d̂j � (�workj � �nj )� �Xk wjk _ (�workj � �nk ): (17)For the denominator of (15), note that� d2d�2j �j(�j ; �n)������j=�nj = dj(�n) + �Xk wjk � (�nj � �k):Since  has bounded curvature:� (x) = 11 + jx=�j � 1; (18)we replace the denominator of (15) with� d2d�2j �j(�j ; �n)������j=�workj � d̂j + �Xk wjk; (19)which can be precomputed as described in [5]. This ap-proach provides a form of built in under-relaxation becauseof the bounded curvature (18) of  .To summarize, in practice we replace (15) with (17) and(19), and apply 2 or 3 iterations of (15). No forward orbackprojections are computed during these subiterations,so they compute quickly. As in [19, 14, 12, 5], we keep aupdated \forward projection" hai�; �ni to further save com-putation when evaluating the \backprojection" step (7).



Note that if one were to use only one subiteration of New-ton Raphson7 then the \maximization step" would have thefollowing form:�n+1S = �nS +D�1rT�S�(�n); (20)where D is a pS � pS diagonal matrix with entries d̂j forj 2 S. Thus this algorithm is related to the scaled gradientalgorithm of [11], but with a very di�erent scaling matrix,and with groups of pixels rather than all pixels.C. Special CasesIn the special case where the subset S contains onlyone pixel (S = fjg), the above algorithm is equivalentto coordinate ascent [14, 12, 5], i.e., it turns out that�j(�j ; �n) = �(�n1 ; : : : ; �nj�1; �j ; �nj+1; : : : ; �np ). At the otherextreme, when S = f1; : : : ; pg, the above algorithm is sim-ilar to the scaled gradient algorithm [11], with a di�erentdiagonal scaling (and one that leads to faster convergence).However, the algorithms that are between those two ex-treme choices of S are the most useful, as discussed next.D. Grouped AscentOptimization algorithms seem to involve the followingtradeo�. The more parameters one updates simultane-ously, the smaller the step sizes must be to ensure mono-tonicity, since the parameters are coupled. Therefore up-dating the parameters in small groups typically yields thefastest convergence rates, with coordinate ascent (one pa-rameter at a time) being the extreme case. On the otherhand, as mentioned above there are often \economies ofscale" that can be used when updating several parameterssimultaneously. So the actual computation per iteration isoften reduced by updating larger groups. Thus for fast con-vergence but moderate computation, we would thus like toupdate the parameters using a few large groups, but chosensuch that the parameters within each group are relativelyuncoupled.We have investigated the following grouped ascentmethod. We divide the image into blocks of size m�m, forsmall m, and then update only 1 pixel out of each m �mblock on a given subiteration. The number of groups isthus m2, with p=m2 pixels per group. Thus the requirednumber of exponentiations is then onlym2N , which is con-siderably smaller than the number of nonzero aij for smallm. Note that m = 1 is the scaled gradient algorithm,and m = pp is the coordinate ascent algorithm. As oneincreases m, the pixels within each group become moreseparated and therefore less coupled, which increases theconvergence rate, but the computation also increases. Thusthere is a basic tradeo� that can be adapted to the char-acteristics of the particular architecture.IV. ResultsTo examine the convergence rates, we performed simula-tions using the thorax phantom shown in Fig. 1. The object7One subiteration is adequate when  is quadratic, for example.

Fig. 1. Top: thorax phantom attenuationmap (�true). Middle: FBPreconstruction. Bottom: penalized-likelihood reconstruction �̂.is 128 � 64 4.5mm pixels, and the system had 192 radialbins and 256 angular samples over 180�, with 6mm widestrip integrals on 3mmspacing [5]. We used � = 0:004cm�1in (6), and generated noisy data with 3M counts. (Most ofthese counts correspond to rays that do not intersect theobject.) Fig. 1 also shows the FBP reconstructed attenua-tion map and the penalized-likelihood reconstructed imageusing 10 iterations of the grouped-ascent algorithm. Thestatistical method appears to produce better image quality.(See [20] for quantitative comparisons.)Fig. 2 shows that with m = 3 (9 groups), the pro-posed grouped-ascent algorithm increased the penalizedlog-likelihood almost as fast as the coordinate ascent al-gorithm per iteration. More important is the actual CPUtime, which is shown in Fig. 3 (for DEC 3000/800). Be-cause of the fewer exponentiations, the grouped-ascent al-gorithms use far less CPU time per iteration than the coor-dinate ascent algorithm, so with m = 3 the penalized log-likelihood attens out in about 25 CPU seconds, whereascoordinate ascent takes over 100 CPU seconds. Further-more, the grouped ascent algorithm is parallelizable, sowith appropriate hardware could be signi�cantly acceler-ated. Note that \1 ? 1 grouped ascent" is similar to thescaled gradient algorithm of [11].Fig. 4 shows similar results for truncated transmissionscans, such as would be obtained in fan-beam SPECT.V. DiscussionBased on the results in this paper and recent work [11,5],we consider the transmission EM algorithm [13,9] to be ob-
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Fig. 4. As in Fig. 1, but for truncated transmission data.
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