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ABSTRACT

Mixtures of probabilistic principal component analysis
(MPPCA) is a well-known mixture model extension of
principal component analysis (PCA). Similar to PCA,
MPPCA assumes the data samples in each mixture
contain homoscedastic noise. However, datasets with
heterogeneous noise across samples are becoming in-
creasingly common, as larger datasets are generated by
collecting samples from several sources with varying
noise profiles. The performance of MPPCA is subopti-
mal for data with heteroscedastic noise across samples.
This paper proposes a heteroscedastic mixtures of prob-
abilistic PCA technique (HeMPPCAT) that uses a gen-
eralized expectation-maximization (GEM) algorithm to
jointly estimate the unknown underlying factors, means,
and noise variances under a heteroscedastic noise set-
ting. Simulation results illustrate the improved factor
estimates and clustering accuracies of HeMPPCAT com-
pared to MPPCA.

Index Terms— Heterogeneous data, latent factors, ex-
pectation maximization.

1. INTRODUCTION

PCA is a well-known unsupervised dimensionality re-
duction method for high-dimensional data analysis.
It has been extended to capture a mixture of low-
dimensional affine subspaces. When this mixture model
is derived through a probabilistic perspective, it is called
Mixtures of Probabilistic PCA (MPPCA) [1]. MPPCA
models are a statistical extension of union-of-subspace
models [2, 3, 4] and are also related to subspace clus-
tering methods [5, 6]. One can apply MPPCA to many
engineering and machine learning tasks, such as image
compression and handwritten digit classification.

However, a limitation of PPCA and MPPCA is that they
both model the noise as independent and identically dis-
tributed (IID) with a shared variance, i.e., homoscedas-
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tic. Consequently, the performance of PPCA and MP-
PCA can be suboptimal for heteroscedastic noise con-
ditions. Heterogeneous datasets are increasingly com-
mon, e.g., when combining samples from several sources
[7], or samples collected under varying ambient condi-
tions [8]. Recently an algorithm called HePPCAT was
developed to extend PPCA to data with heteroscedastic
noise across samples [9], but no corresponding methods
exist for a mixture of PPCA models. This paper gener-
alizes MPPCA to introduce a Heteroscedastic MPPCA
Technique (HeMPPCAT): an MPPCA method for data
with heteroscedastic noise. This paper presents the sta-
tistical data model, a GEM algorithm, and results with
both synthetic data and motion segmentation from real
video data.

2. RELATED WORK

2.1. MPPCA

The original MPPCA approach [1] models n data sam-
ples in Rd as arising from J affine subspaces:

yi = Fjzi + µj + ϵi (1)

for all i ∈ {1, . . . , n} and some class index j = ji ∈
{1, . . . , J}. Here F1, . . . ,FJ ∈ Rd×k are determinis-
tic factor matrices to estimate, zi ∼ N (0k, Ik) are IID
factor coefficients, µ1, . . . ,µJ ∈ Rd are unknown de-
terministic mean vectors to estimate, ϵi ∼ N (0d, vjId)
are IID noise vectors, and v1, . . . , vJ are unknown noise
variances to estimate.

MPPCA assumes all samples from mixture component
j have the same noise variance vj . In contrast, our pro-
posed HeMPPCAT allows each sample from mixture j to
come from one of L ≤ n noise groups, where L ̸= J in
general.

2.2. Probabilistic PCA for Heteroscedastic Signals

The authors of [10] developed a Riemannian optimiza-
tion method to perform an MPPCA-like method on sig-
nals with heterogeneous power levels. They model n dataIC
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samples in Cd as

yi =
√
τjUjzi + ϵi (2)

for all i = {1, . . . , n} and some j = ji ∈ {1, . . . , J}.
The signal powers τ1, . . . , τJ ∈ R+, known as signal tex-
tures, are factors to estimate, U1, . . . ,UJ ∈ Std,k are or-
thonormal subspace bases to estimate (Std,k denotes the
d × k Stiefel manifold), zi ∼ CN (0k, Ik) are IID sub-
space coefficients, and ϵi ∼ CN (0d, Id) are IID noise
vectors.

The model (2) assumes all signals in subspace j have
the same texture value τj . That assumption is somewhat
analogous to how the MPPCA model assumes all sam-
ples in mixture j have the same noise variance vj . Our
proposed HeMPPCAT model instead allows samples in
the same mixture component to have different noise vari-
ances, and allows different signal components to have
different signal strengths, rather than a common scaling
factor

√
τ .

3. HEMPPCAT DATA MODEL

We assume there are n1 + · · ·+ nL = n data samples in
Rd from L different noise groups with model

yℓ,i = Fjzℓ,i + µj + ϵℓ,i (3)

for all i ∈ {1, . . . , nℓ}, ℓ ∈ {1, . . . , L}, and some j =
ji ∈ {1, . . . , J}. F1, . . . ,FJ ∈ Rd×k are unknown fac-
tor matrices to estimate (not constrained to the Stiefel
manifold, so different signal components can have differ-
ent amplitudes), zℓ,i ∼ N (0k, Ik) are IID coefficients,
and µ1, . . . ,µJ ∈ Rd are unknown mean vectors to esti-
mate. To model heteroscedastic noise, we assume ϵℓ,i ∼
N (0d, vℓId), where v1, . . . , vL are unknown noise vari-
ances to estimate. Importantly, the noise model asso-
ciates noise variance with data sample, regardless of the
underlying affine subspace.

The joint log-likelihood of the samples is

L(F ,µ,v,p) =

L∑
ℓ=1

nℓ∑
i=1

ln
{
p(yℓ,i)

}
=

L∑
ℓ=1

nℓ∑
i=1

ln

{
J∑

j=1

πjp(yℓ,i | j)

}
, (4)

p(yℓ,i | j) = (2π)−d/2det(Cℓ,j)
−1/2exp(−E2

ℓij/2),

E2
ℓij = (yℓ,i − µj)

⊤C−1
ℓ,j (yℓ,i − µj),

Cℓ,j = FjF
⊤
j + vℓId,

where F = [F1, . . . ,FJ ], µ = [µ1, . . . ,µJ ], v =
[v1, . . . , vL], and p = [π1, . . . , πJ ], with πj being the

jth mixing proportion, such that πj ≥ 0 and
∑

j πj = 1.
Conceptually, to draw samples from this model, one
first picks a class j according to the categorical distribu-
tion with parameters p, generates random coefficients to
multiply with the factor matrix Fj , and then adds noise,
where the noise variance depends on the noise group.

4. GEM ALGORITHM

The joint log-likelihood (4) is nonconvex with respect to
the parameters of interest. MPPCA [1] maximized a sim-
ilar expression using an EM method. We derived a GEM
algorithm to maximize (4) with respect to the parame-
ters F , µ, v, and p, using a complete-data log-likelihood
formulation.

Let zℓij denote the coefficients associated with mixture j
for sample yℓ,i, and let gℓij be random variables that fol-
low a categorical distribution, where gℓij = 1 indicates
“mixture j generated sample yℓ,i.” Treating zℓij and gℓij
as missing data, the complete-data log-likelihood is

LC(θ) =

L∑
ℓ=1

nℓ∑
i=1

J∑
j=1

gℓij ln
{
πjp(yℓ,i, zℓij)

}
,

p(yℓ,i, zℓij) = p(yℓ,i|zℓij)p(zℓij),
yℓ,i|zℓij ∼ N (Fjzℓij + µj , vℓI),

p(zℓij) = (2π)−k/2exp{−1

2
z⊤
ℓijzℓij},

(5)

where θ = [F ,µ,v,p] is shorthand for all the parame-
ters to estimate. The derivations for the GEM algorithm
can be found in [11].

4.1. Expectation step

For the E-step of the GEM algorithm, we compute the
expectation of (5) conditioned on the observed data sam-
ples. Ignoring irrelevant constants, one can show this ex-
pression is

〈
LC(θ;θ

(t))
〉
=

L∑
ℓ=1

nℓ∑
i=1

J∑
j=1

R
(t)
ℓij

{
ln(πj)−

d

2
ln(vℓ)

− 1

2
tr
(
⟨zℓijz⊤

ℓij⟩
)
− 1

2vℓ
∥yℓ,i − µj∥22

+
1

vℓ
⟨zℓij⟩⊤F⊤

j (yℓ,i − µj)

− 1

2vℓ
tr
(
F⊤
j Fj⟨zℓijz⊤

ℓij⟩
)}

, (6)

where θ(t) = [F (t),µ(t),v(t),p(t)] denotes the pa-
rameter estimates at iteration t, and ⟨·⟩ denotes condi-
tional expectation. The conditional moments ⟨zℓij⟩ and
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⟨zℓijz⊤
ℓij⟩ are

⟨zℓij⟩ = M
(t) −1
ℓ,j F

(t) ⊤
j (yℓ,i − µ

(t)
j ),

⟨zℓijz⊤
ℓij⟩ = v

(t)
ℓ M

(t) −1
ℓ,j + ⟨zℓij⟩⟨zℓij⟩⊤,

M
(t)
ℓ,j = v

(t)
ℓ Ik + F

(t) ⊤
j F

(t)
j ,

(7)

and the conditional expectation of gℓij , denoted as Rℓij ,
is the posterior mixing responsibility of mixture compo-
nent j generating sample yℓ,i:

R
(t)
ℓij =

p(yℓ,i | j)π(t)
j

p(yℓ,i)
. (8)

The probabilities are evaluated at the current parameter
estimates θ(t).

4.2. Maximization step

For the M-step, it appears impractical to maximize (6)
over all parameters simultaneously, so we adopt a GEM
approach [12] where we update subsets of parameters in
sequence.

Maximizing (6) with respect to πj , vℓ, µj , and Fj , in that
sequence, results in the following M-step update expres-
sions:

π
(t+1)
j =

1

n

L∑
ℓ=1

nℓ∑
i=1

R
(t)
ℓij ,

v
(t+1)
ℓ =

1

d
nℓ∑
i=1

J∑
j=1

R
(t)
ℓij

[
nℓ∑
i=1

J∑
j=1

R
(t)
ℓij∥yℓ,i − µ

(t)
j ∥22

− 2

nℓ∑
i=1

J∑
j=1

R
(t)
ℓij⟨zℓij⟩

⊤F
(t) ⊤
j (yℓ,i − µ

(t)
j )

+

nℓ∑
i=1

J∑
j=1

R
(t)
ℓijtr

(
⟨zℓijz⊤

ℓij⟩F
(t) ⊤
j F

(t)
j

)]
,

µ
(t+1)
j =

L∑
ℓ=1

nℓ∑
i=1

R
(t)
ℓij

v
(t+1)
ℓ

(
yℓ,i − F

(t)
j ⟨zℓij⟩

)
L∑

ℓ=1

nℓ∑
i=1

R
(t)
ℓij

v
(t+1)
ℓ

,

F
(t+1)
j =

(
L∑

ℓ=1

nℓ∑
i=1

R
(t)
ℓij

v
(t+1)
ℓ

(yℓ,i − µ
(t+1)
j )⟨zℓij⟩⊤

)

·

(
L∑

ℓ=1

nℓ∑
i=1

R
(t)
ℓij

v
(t+1)
ℓ

⟨zℓijz⊤
ℓij⟩

)−1

.

These expressions naturally generalize those in [1]. For
the subsequent results, we initialized the parameter es-
timates by using final MPPCA estimates. MPPCA was
initialized using 1000 iterations of K-Planes [13] [14].

5. EXPERIMENTS & RESULTS

5.1. Synthetic Datasets

We generated 25 separate synthetic datasets. Each
dataset contained n = 103 data samples of dimen-
sion d = 102 according to the model (3), where there
were L = 2 noise groups and k = 3 factors for each of
the J = 3 affine subspaces. The factor matrices were
generated as Fj = UjDiag1/2(λ) for j = 1, . . . , J ,
where Uj ∈ Std,k was drawn uniformly at random, and
λ = (16, 9, 4) in all datasets. The elements of the mean
vectors µj were drawn independently and uniformly at
random in the interval [0, 1].

In all 25 datasets, the first n1 = 800 samples had noise
variance v1 that we swept through from 1 to 4 in step
sizes of 0.1. Mixtures 1 and 2 each generated 250 of
these samples, while mixture 3 generated the remaining
300. The other n2 = 200 samples had noise variance
v2 = 1, where mixtures 1 and 3 each generated 50 of
these samples, and mixture 2 generated 100 of them.

We applied K-Planes, MPPCA, and HeMPPCAT to com-
pute estimates F̂j of the underlying factors Fj across all
25 datasets. In every dataset, we recorded the normal-
ized estimation errors ∥F̂jF̂

⊤
j − FjF

⊤
j ∥F/∥FjF

⊤
j ∥F of

all methods at every value of v1. For each v1, we aver-
aged the errors across all 25 datasets.

Figure 1 compares the average Fj estimation errors
across the 25 datasets against v1. When v1 was close
to v2, the dataset noise was fairly homoscedastic and
MPPCA and HeMPPCAT had similar estimation errors.
As v1 increased, the dataset noise became increasingly
heteroscedastic, and HeMPPCAT had much lower er-
rors than MPPCA. At almost all values of v1, the non-
statistical K-Planes method had higher errors than both
MPPCA and HeMPPCAT.

5.2. Hopkins 155 Dataset

In computer vision, motion segmentation is the task of
segmenting moving objects in a video sequence into sev-
eral independent regions, each corresponding to a dif-
ferent object. The Hopkins 155 dataset is a series of
155 video sequences containing bodies in motion. The
dataset has the coordinates of n feature points xf,i ∈ R2

tracked across F video frames. A feature point trajec-
tory is formed by stacking the feature points across the
frames: ti =

[
x⊤
1,i . . . x⊤

F,i

]⊤
. These trajectories

are clustered to segment the motions using affine sub-
space clustering methods. A single body’s trajectories lie
in an affine subspace with dimension of at most 4 [15],
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(a) F1 error vs. v1

(b) F2 error vs. v1

(c) F3 error vs. v1

Fig. 1: Average Fj estimation error vs. v1 (lower is bet-
ter).

so the trajectories of J bodies lie in a union of J affine
subspaces. The dataset includes the ground-truth cluster
assignments for each trajectory.

Many motion segmentation methods assume the moving
bodies are rigid. In practice, many common objects of
interest do not satisfy rigid body motion. For instance,
feature points on a walking human’s legs move with dif-
ferent velocities than feature points on the torso. These
differences can be modeled as heteroscedastic noise: tra-
jectories of the leg feature points may lie in a different
noise group than those of the torso.

Each video sequence contains either J = 2 or J = 3
moving bodies. To simulate nonrigid body motion, we

K-Planes MPPCA HeMPPCAT
Noise group 1 (low noise) 24.1% 19.4% 18.6%

Noise group 2 (medium noise) 24.5% 27.3% 19.3%
Noise group 3 (high noise) 28.0% 34.8% 20.1%

Overall 24.8% 24.5% 19.1%

Table 1: Average misclassification rate on Hopkins 155
video dataset with synthetic heteroscedastic noise (lower
is better).

added synthetic Gaussian noise to the trajectories. In
each sequence, we created L = 3 synthetic noise groups
with variances v1, v2, v3 corresponding to signal to noise
ratio (SNR) values of −30,−25, and −20 dB relative
to that sequence’s maximum trajectory ℓ2 norm. Noise
groups 1, 2, and 3 contained 50%, 35%, and 15% of all
trajectories, respectively.

For each sequence, we divided the dataset of trajectories
into train and test sets using an 80/20 split. We applied
K-Planes, MPPCA, and HeMPPCAT on the train set, and
then used parameter estimates from all methods to clas-
sify trajectories in the test set. The test trajectories were
classified based on nearest affine subspace using the K-
Planes estimates, and by maximum likelihood using MP-
PCA and HeMPPCAT estimates, i.e., the predicted body
for a test point t was argmaxj π̂jp(t | j; θ̂), where π̂j

is the estimated mixing proportion of body j. We com-
puted p(t | j; θ̂) according to the approaches’ respective
data models (1) and (3).

Table 1 shows the misclassification rate on the test set
using the methods’ parameter estimates. Using HeMPP-
CAT’s estimates achieved lower classification error than
using the other two approaches’ estimates in each of the
noise groups, and on the overall test set.

6. CONCLUSION

This paper generalized MPPCA to jointly estimate the
underlying factors, means, and noise variances from data
with heteroscedastic noise. The proposed EM algorithm
sequentially updates the mixing proportions, noise vari-
ances, means, and factor estimates. Experimental results
on synthetic and the Hopkins 155 datasets illustrate the
benefit of accounting for heteroscedastic noise.

There are several possible interesting directions for fu-
ture work. We could generalize this approach even fur-
ther by accounting for other cases of heterogeneity, e.g.,
missing data or heteroscedastic noise across features.
There may be faster convergence variants of EM such
as a space-alternating generalized EM (SAGE) approach
[16] that could be explored. Another direction could
be jointly estimating the number of noise groups L and
mixtures J along with the other parameters.
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