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Abstract 
Digital breast tomosynthesis (DBT) reconstruction is an ill-posed inverse problem due to the limited-angle acquisition 
geometry. DBT is also a low dose imaging technique and has very noisy projection views. In this study, we investigated 
the feasibility of improving image quality of DBT reconstruction by combining (1) a model-based iterative 
reconstruction (MBIR) method that models the detector blur and correlated noise (DBCN) of the DBT system, and (2) a 
deep convolutional neural network based DBT denoiser, DNGAN, that we developed in our previous work. DBCN is 
physics-based whereas DNGAN is data-driven. We followed the regularization by denoising (RED) framework to 
construct a regularizer from DNGAN and used the DBCN-modeled terms in the MBIR formulation. We solved the 
optimization problem using the proximal gradient method. The proposed approach, named DBCN+DNGAN, was tested 
on a set of human subject DBT data sets. The image quality was evaluated quantitatively with figures of merit (FOMs) 
including the contrast-to-noise ratio, full width at half maximum, and task-based detectability index of a set of 
microcalcifications individually marked in the human subject data set. We found that these FOMs were improved in the 
DBCN+DNGAN-reconstructed DBT volumes compared to those reconstructed with DBCN alone or with the 
simultaneous algebraic reconstruction technique. The soft tissue appearance was visually satisfactory and the 
background noise level was low in the DBCN+DNGAN reconstructed images.  
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1 INTRODUCTION 
Digital breast tomosynthesis (DBT) is an x-ray imaging modality for breast cancer screening. A DBT scan acquires a 
small number of low dose mammograms while moving the x-ray source over a limited angular range. Reconstruction 
from the limited-angle acquisition produces tomographic image volumes with superior resolution in the slices parallel to 
the detector and reduces tissue overlaps in the depth direction [1]. From an image reconstruction point of view, however, 
the limited-angle design makes the DBT reconstruction an ill-posed inverse problem. Moreover, the total x-ray exposure 
of a DBT scan is set to be about the same as a single conventional digital mammogram, leading to very noisy projection 
view (PV) data. As a result, the reconstructed DBT is relatively noisy, which may obscure the detection of subtle signs 
of malignancy such as microcalcifications (MCs).  

Model-based iterative reconstruction (MBIR) is an image reconstruction technique that considers the physics and photon 
statistics of the imaging system and has been demonstrated to improve image quality [2]. Zheng et al. developed an 
MBIR method for DBT that models the detector blur and correlated noise (DBCN) and achieved promising results using 
an edge-preserving regularizer [3]. In the past decade, the machine learning field has witnessed great success in data-
driven deep learning methods such as deep convolutional neural networks (DCNN) for many applications including 
image denoising and reconstruction. We recently developed a DCNN-based denoiser called DNGAN for denoising DBT 
images [4][5].  

In this work, we investigated the feasibility of combining DBCN and DNGAN, which we call DBCN+DNGAN, to take 
advantage of the benefits of both methods. We started from the DBCN formulation and constructed a regularizer from 
DNGAN for DBT reconstruction. We trained a suite of DNGAN denoisers with digital phantom DBT images and 
evaluated the proposed method using human subject DBTs.  
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2 METHODS AND MATERIALS  

2.1 DBCN+DNGAN Reconstruction 

Conventional MBIR formulates image reconstruction as an optimization problem  

 𝑥𝑥� = argmin
𝑥𝑥

𝐿𝐿(𝑥𝑥) + 𝛽𝛽 ⋅ 𝑅𝑅(𝑥𝑥) (1) 

where 𝑥𝑥 is the unknown image, 𝐿𝐿(𝑥𝑥) is the data fidelity term that usually includes the forward model of the imaging 
system and the measurement data, 𝑅𝑅(𝑥𝑥) is the regularization term that reflects our prior knowledge on the image, 𝛽𝛽 is 
the regularization parameter.  

The DBCN method for DBT reconstruction incorporates the detector blur and correlated noise model into the data 
fidelity term and employs an edge-preserving regularizer to control the noise level [3] 

 𝐿𝐿DBCN(𝑥𝑥) =
1
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 (2) 

where 𝑁𝑁𝑝𝑝 is the number of PVs, 𝐴𝐴𝑖𝑖 is the system matrix of the 𝑖𝑖th scan angle, 𝑦𝑦𝑖𝑖 is the 𝑖𝑖th PV, 𝐵𝐵 is the detector blur 
matrix, 𝐾𝐾𝑞𝑞,𝑖𝑖 is the diagonal quantum noise matrix of the 𝑖𝑖th scan angle, 𝐾𝐾𝑟𝑟  is the diagonal readout noise matrix, 𝑗𝑗 indexes 
over all image voxels, ∇ is the finite difference operator that considers the 8 neighboring voxels within a DBT slice [6], 
𝜂𝜂(𝑡𝑡) = 𝛿𝛿2��1 + (𝑡𝑡/𝛿𝛿)2 − 1� is the hyperbola potential function.  

In an effort to exploit the DNGAN denoiser in the DBCN reconstruction, we followed the regularization by denoising 
(RED) framework [7] and investigated the following additional data-driven regularizer for DBT 

 𝑅𝑅RED(𝑥𝑥) =
1
2
〈𝑥𝑥, 𝑥𝑥 − 𝐷𝐷(𝑥𝑥)〉 (3) 

where 𝐷𝐷(⋅) denotes the pre-trained DNGAN denoiser, 〈⋅,⋅〉 represents the inner product of the two images. Intuitively, 
this regularizer encourages either the denoising residual or the cross-correlation of the residual to the image to be small.  

Now the overall optimization problem for the reconstruction becomes 

 𝑥𝑥� = argmin
𝑥𝑥

𝐿𝐿DBCN(𝑥𝑥) + 𝛽𝛽EP ⋅ 𝑅𝑅EP(𝑥𝑥) + 𝛽𝛽RED ⋅ 𝑅𝑅RED(𝑥𝑥).  (4) 

We solved the optimization problem using the proximal gradient method for RED (RED-PG) [8], using the gradient 
approximation described in [7]. The updates of the image variable 𝑥𝑥 and the auxiliary variable 𝑧𝑧 are given by  

 𝑥𝑥𝑛𝑛 = argmin
𝑥𝑥

𝐿𝐿(𝑥𝑥) + 𝛽𝛽EP ⋅ 𝑅𝑅EP(𝑥𝑥) +
𝛽𝛽RED

2
‖𝑥𝑥 − 𝑧𝑧𝑛𝑛−1‖2 (5) 

 𝑧𝑧𝑛𝑛 = 𝐷𝐷(𝑥𝑥𝑛𝑛) (6) 

where 𝑛𝑛 is the iteration index. We solved the inner minimization problem (5) using the ordered subset version of the 
preconditioned gradient descent (OS-PGD).  

2.2 DNGAN Training, Data Set and Figures of Merit 

The noise level of DBT varies among patients. We trained a suite of DNGAN denoisers with digital phantom DBT 
images [9] generated for wide ranges of breast thicknesses, breast densities, and x-ray exposures. During reconstruction, 
the program estimated the DBT noise level and adaptively chose a matched denoiser for deployment.  

We tested the DBCN+DNGAN reconstruction method on a data set consisting of 9 human subject DBT volumes. The 
DBTs were acquired with a prototype DBT system (GEN2, GE Global Research) that took 21 PVs within 60º. To 
simulate low dose scans and the current commercial DBT systems that use narrow-angle scanning, we used only the 
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central 9 PVs corresponding to 24º in our experiments. A total of 301 individual MCs were manually marked in the 9 
DBT volumes. We calculated the contrast-to-noise ratio (CNR), full width at half maximum (FWHM), and task-based 
detectability index (d’) on the focal plane of each marked MC [4] as figures of merit (FOMs) to quantify the conspicuity 
of the individual MCs and to compare different reconstruction algorithms.  

3 RESULTS 
Figure 1(a) shows the scatter plots of CNR, FWHM, and d’ for DBCN+DNGAN versus simultaneous algebraic 
reconstruction technique (SART), which is an unregularized algorithm. The averaged CNR of the MCs for 
DBCN+DNGAN was improved by 115.5% (p < 0.0001, two-tailed paired t-test) compared to  that for SART. The 
averaged FWHM was reduced (i.e., sharper) by 7.5% (p = 0.045). The averaged d’ was improved by 87.8% (p < 0.0001).  

DBCN was able to improve the image quality substantially compared to SART [3]. The proposed DBCN+DNGAN was 
able to advance it even further, as shown by the scatter plots for DBCN+DNGAN versus DBCN in Figure 1(b). The 
averaged CNR and averaged d’ were improved by 24.3% and 28.5%, respectively (p < 0.0001 for both FOMs). It is also 
worth noting that nearly all data points in the CNR or d’ scatter plots, especially for those with lower values representing 
smaller MCs, were above the diagonal line. The FWHM decreased by an average of 14.1% (p < 0.0001), indicating that 
the MCs were sharper in the DBCN+DNGAN reconstructed images than in the DBCN images.  

 
(a) 

 

 
(b) 

 
Figure 1. The scatter plots of CNR, FWHM, and d’ for the MCs in the human subject data set. (a) DBCN+DNGAN 

vs. SART. (b) DBCN+DNGAN vs. DBCN.  

Figure 2 illustrates the visual image quality of an MC cluster and a mass in two regions of interest. The example 
demonstrated the lower noise level of the background and the better conspicuity of MCs for DBCN+DNGAN than 
SART or DBCN, which was consistent with the quantitative results in Figure 1. The example of a spiculated mass 
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demonstrated that the tissue texture was smoother, and the mass margins remained satisfactory in the DBCN+DNGAN 
reconstructed images.  
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Figure 2. Example images of human subject DBTs with a ductal carcinoma in situ (MC cluster) and an invasive 

ductal carcinoma (spiculated mass). The focal planes of some of the MCs are not on this slice so they 
appeared blurred.  The images show a 20 mm × 18 mm region. The images in the same row are displayed 
with the same window/level settings.  

4 DISCUSSION AND CONCLUSION 
We proposed to combine DBCN and DNGAN for DBT reconstruction. DBCN is physics-based and considers the noise 
statistics of the image acquisition process to reconstruct DBT images. DNGAN is a data-driven DCNN method and was 
shown to be effective for denoising DBT images. We unified the two methods using the RED reconstruction framework 
and solved the optimization problem using the proximal gradient method. We demonstrated that the new 
DBCN+DNGAN method effectively improved the CNR and d’ for the MCs in a small set of human subject DBTs in 
comparison to DBCN or SART in this feasibility study. The MCs were also sharper, as indicated by the lower FWHM 
values. The background noise level was reduced, and the soft tissue appearance was well preserved according to our 
visual judgement on the DBCN+DNGAN reconstructed images.  

We observed that some noise specks or fibrous tissue edges were falsely enhanced in the DBCN+DNGAN-reconstructed 
images, which may cause false positive detection of MCs. Our next step is to deploy computerized detection programs 
and take into account any false enhancements in the evaluation and to optimize the reconstruction method and 
parameters. Future work also includes further improving the visibility of subtle MCs in the reconstructed DBTs and 
testing the reconstruction approach on a larger patient cohort.  
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