
Jigsaw: A Slice-and-Dice Approach to Non-uniform
FFT Acceleration for MRI Image Reconstruction

Brendan L. West
University of Michigan
westbl@umich.edu

Jeffrey A. Fessler
University of Michigan
fessler@umich.edu

Thomas F. Wenisch
University of Michigan
twenisch@umich.edu

Abstract—The Fast Fourier Transform (FFT) is a fundamental
algorithm in signal processing; significant efforts have been
made to improve its performance using software optimizations
and specialized hardware accelerators. Computational imaging
modalities, such as MRI, often rely on the Non-uniform Fast
Fourier Transform (NuFFT), a variant of the FFT for processing
data acquired from non-uniform sampling patterns. The most
time-consuming step of the NuFFT algorithm is “gridding,”
wherein non-uniform samples are interpolated to allow a uniform
FFT to be computed over the data. Each non-uniform sample
affects a window of non-contiguous memory locations, resulting
in poor cache and memory bandwidth utilization. As a result,
gridding can account for more than 99.6% of the NuFFT
computation time, while the FFT requires less than 0.4%.
We present Slice-and-Dice, a novel approach to the NuFFT’s

gridding step that eliminates the presorting operations required
by prior methods and maps more efficiently to hardware. Our
GPU implementation achieves gridding speedups of over 250×
and 16× vs prior state-of-the-art CPU and GPU implementations,
respectively. We achieve further speedup and energy efficiency
gains by implementing Slice-and-Dice in hardware with JIGSAW,
a streaming hardware accelerator for non-uniform data gridding.
JIGSAW uses stall-free fixed-point pipelines to process M non-
uniform samples in approximately M cycles, irrespective of sam-
pling pattern—yielding speedups of over 1500× the CPU baseline
and 36× the state-of-the-art GPU implementation, consuming
~200 mW power and ~12 mm2 area in 16 nm technology.
Slice-and-Dice GPU and JIGSAW ASIC implementations achieve
unprecedented end-to-end NuFFT speedups of 8× and 36× com-
pared to the state-of-the-art GPU implementation, respectively.

I. INTRODUCTION

One of the ten most influential signal processing algorithms

of the 20th century [22], the Fast Fourier Transform (FFT)

quickly approximates the Discrete Fourier Transform using

a divide-and-conquer approach. As an integral component of

countless applications, much work has been done to increase

FFT performance, including algorithmic optimizations—such

as those used in the well-known FFTW library [9], [13]—and

specialized instructions and hardware units embedded in mod-

ern processors. However, the conventional FFT is applicable

only to data that is uniformly sampled—sample coordinates

must have equal spacing, such as integers on a Cartesian

grid. Imaging applications such as magnetic resonance imag-

ing (MRI) [1], [4], [10], [16], [23], [28], [30], computed

tomography [24], [31], synthetic aperture radar [11], [15], and

This work was supported by the Applications Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by SRC and DARPA.

radio astronomy [14], [29] use non-uniform sampling to enable

reduced imaging scan time or irregular sensor placement.

To enable quick processing of an irregular data set, the

Non-uniform FFT (NuFFT) extends the FFT to non-uniform

sampling patterns [6]. The NuFFT uses a three step process:

(1) non-uniform interpolation, or gridding, (2) apodization, or

weighting, and (3) a normal (uniform) FFT. Fast, efficient,

and accurate NuFFT operations are of paramount importance

for applications where sparse sampling patterns enable real-

time imaging tasks and/or large problem sizes. Unfortunately,

while FFT performance has significantly improved over the

years, NuFFT performance has lagged severely behind.

A decade ago, 85–95% of the computation time required for

the NuFFT was due to the gridding step [16], [17], [19], [27],

wherein non-uniform samples are interpolated onto a uniform

grid so that an FFT can be computed. However, with the vastly

improved FFT performance available today using state-of-the-

art processors and software libraries, we find that gridding

now requires upwards of 99.6% of the NuFFT computation

time using a representative 2D data set [25]. The reason that

gridding dominates computation time is fairly straightforward:

each non-uniform sample in the data set, which is often

randomly ordered, affects a window of non-contiguous points

on the uniform grid. With non-uniformly spaced samples,

prefetching and caching mechanisms in modern processors

are unable to alleviate the widening gap between processor

and memory speeds. The lack of spatial locality, minimal

temporal locality, and resultant poor cache utilization create

massive memory bandwidth utilization problems for gridding

implementations. With the rise in real-time [8] and itera-

tive image reconstruction techniques [5]—particularly in 3D,

wherein millions of NuFFTs are taken iteratively to reconstruct

a single volume—NuFFT performance is key to computing

answers quickly and enabling emerging applications.

In an attempt to overcome these challenges, many opti-

mized variants of gridding have been proposed to improve

performance of the NuFFT [1]–[3], [10], [12], [18], [19],

[23], [27]. The most popular method, a form of geometric

tiling known as binning, pre-sorts the non-uniform samples

into “bins” corresponding to distinct regions, or tiles, of

the uniform grid [12]. These tiles are often configured such

that they are small enough to fit in an on-chip cache or

memory [2], [3], [19]. Binning sequentially processes tile–

bin pairs, improving memory bandwidth use by reducing the

978-1-6654-4066-0/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPS49936.2021.00081

2
0
2
1
 I

E
E

E
 I

n
te

rn
at

io
n
al

 P
ar

al
le

l
an

d
 D

is
tr

ib
u
te

d
 P

ro
ce

ss
in

g
 S

y
m

p
o
si

u
m

 (
IP

D
P

S
)

| 9
7
8
-1

-6
6
5
4
-4

0
6
6
-0

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

P
D

P
S

4
9
9
3
6
.2

0
2
1
.0

0
0
8
1

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2021 at 18:18:15 UTC from IEEE Xplore. Restrictions apply.

number of cache evictions caused by spatially diverse reads

and writes. Binning is common in both software and hardware

accelerator works [2], [3], [10], [18], [19], [23], [27], with

GPU and FPGA implementations among the best in terms

of performance and power efficiency. However, despite these

optimizations achieving gridding performance improvements

ranging up to 40×, they only partially mitigate the bottleneck—

NuFFT computation time remains dominated by gridding.

The prior works suffer from three distinct disadvantages:

(1) they require a pre-processing step to sort the non-uniform

samples, (2) they process elements multiple times when the

interpolation kernel overlaps multiple regions, and (3) they

do not fully alleviate the memory system bottlenecks, causing

computational stalls even in FPGA implementations.

This work presents a novel approach to NuFFT gridding,

Slice-and-Dice, that obviates the binning step in a manner

that maps efficiently to parallel hardware, such as a GPU

or ASIC design. Rather than processing a single tile at a

time, as in binning, Slice-and-Dice stacks the tiles to create

“dice.” Slice-and-Dice processes contributions from an input

sample to all corresponding points in the dice in a manner that

mitigates the bandwidth utilization problems encountered by

prior works. On a GPU, Slice-and-Dice achieves an average

gridding speedup of over 250× and 16× when compared to

the CPU baseline [7] and state-of-the-art GPU implementa-

tion [10], respectively. When run as part of the complete

NuFFT algorithm, Slice-and-Dice GPU results in an end-to-

end speedup of over 118× the CPU baseline and 8× the prior

work, with equal gridding and FFT computation time.

To fully demonstrate the acceleration potential of our Slice-
and-Dice model, we design and implement JIGSAW. Using a

small set of computational pipelines, JIGSAW performs grid-

ding with time complexity equal to the number of non-uniform

samples—irrespective of the non-uniform sampling pattern,

interpolation kernel width, or uniform grid size—in a single

pass over the data. JIGSAW performs all operations in 32-bit

fixed-point, simultaneously decreasing hardware complexity,

lowering power requirements, and bringing the reconstruction

error closer to the ideal (double precision) as compared to

the prior works. With a pipelined architecture and sufficient

caching to handle all outstanding memory requests, JIGSAW

experiences no stalls—leading to an average gridding speedup

of over 1500× relative to the CPU baseline [7], over 95× when

compared to the state-of-the-art GPU implementation [10],

and 6× relative to Slice-and-Dice on GPU. Implemented in

SystemVerilog and synthesized using an industrial 16nm node,

JIGSAW requires an area of ~12 mm2 and a power budget

of only ~200 mW—nearly 1300× more power efficient than

our GPU Slice-and-Dice implementation. JIGSAW results in

an end-to-end NuFFT speedup of over 258× vs the CPU

baseline and 36× the state-of-the-art GPU implementation,

with gridding consuming only 25% of the computation time.

II. BACKGROUND AND MOTIVATION

The Fast Fourier Transform is widely used in applications

such as signal and image processing to quickly compute the

Fourier Transform of evenly-spaced data; i.e., the coordinates

(or array indices) lie on a uniform grid, such as pixels in

an image. However, computational imaging applications often

rely on non-uniform sampling patterns—such as spiral and

radial scans in MRI—to reduce latency and enable emerg-

ing algorithms and sensor configurations. These non-uniform

patterns result in data that does not lie on a uniform grid.

For irregularly sampled data, applications must rely on the

Non-uniform Fast Fourier Transform (NuFFT). To understand

the algorithmic differences imposed by non-uniform data,

we first review the Non-uniform Discrete Fourier Transform

(NuDFT), which directly computes the Fourier Transform of

non-uniform data. We then take an in-depth look at the NuFFT,

which provides an efficient approximation of the NuDFT by

combining an interpolation step—used to map the non-uniform

samples onto a uniform grid—with a traditional FFT.

A. Non-uniform Discrete Fourier Transform

A generalization of the Discrete Fourier Transform, the

NuDFT allows for processing of non-uniform data. Following

the notation in [17], [27], given a set of M non-uniform sam-

ples {xj} and a uniform Cartesian grid with N points in each

of d dimensions, let fj denote the complex Fourier coefficient
corresponding to the non-uniform sample xj . For the complex

Fourier coefficient f̂k corresponding to the uniform points k
in {0, . . . , N − 1}d, the forward NuDFT is used to compute

fj =
∑

k∈{0,...,N−1}d

f̂k e
−2πik·xj , j = 0, . . . ,M − 1 (1)

The adjoint NuDFT is similarly defined as

ĥk =

M−1∑

j=0

f̂j e
2πik·xj , k ∈ {0, . . . , N − 1}d (2)

Equations (1) and (2) can also be written as matrix-

vector products, as shown in the following equations:

f = Af̂ (3) ĥ = AHf (4)

where A denotes the M ×Nd matrix whose elements are the

complex exponential terms above.

Direct calculation of these operations requires MNd

floating-point operations, which is too expensive for many

applications, even for small problem sizes. Worse, direct

“inversion” of the A matrix would require immense amounts

of memory, quickly becoming prohibitive as the matrix grows.

B. Non-uniform Fast Fourier Transform

The NuFFT extends the traditional FFT to support non-

uniform data, providing approximate solutions to the NuDFT

with significant reductions in computational complexity and

memory requirements. Using three steps, (1) interpolation, (2)

apodization (i.e., amplitude weighting), and (3) an FFT, the

NuFFT computes nearly the same result as the NuDFT but

with a computational complexity of only M +Nd log(Nd)—
orders of magnitude lower than the NuDFT for useful data

sizes. The NuFFT has several variants to handle different

combinations of uniform and non-uniform inputs and outputs,

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2021 at 18:18:15 UTC from IEEE Xplore. Restrictions apply.

�������	
���
����������

�����	������ ���������	������

�������	
���
�������������

Fig. 1: Each NuFFT variant comprises three steps. Forward: (1) pre-
apodization, (2) FFT, (3) regridding. Adjoint: (1) gridding, (2) FFT,
(3) de-apodization. Image data from [25].

with the forward and adjoint NuFFTs a staple in image

reconstruction. As shown in Figure 1, the forward NuFFT

transforms image data to the frequency domain, while the

adjoint NuFFT transforms frequency data to the image domain.

The interpolation step dominates the NuFFT’s computation

time, accounting for upwards of 99.6% [7].

Often called gridding in the adjoint NuFFT and re-gridding

in the forward NuFFT, this interpolation step—visualized in

Figure 2—transforms the data between a uniform grid and

a set of non-uniform samples using an interpolation kernel.

Each sample has a corresponding interpolation window of

W d uniform points, where W is the width of the window.

The distance from the sample to each of the uniform points

within its interpolation window is used to determine the kernel

weight, where points closer to the sample use a larger weight

than those further away. The supported non-uniform coordi-

nate granularity is defined by the table oversampling factor,

L, which determines the number of weights between each

point W in the interpolation kernel. There are WL discrete

interpolation weights for each dimension of the interpolation

kernel window, and locations within the interpolation window

are rounded to the nearest weight. By constraining the kernel

granularity, offline precomputation and storage of the discrete

kernel weights in a look-up table (LUT) is possible for hard-

ware with limited on-chip memory, reducing the amount of

online computation required for each interpolation operation.

Due to the periodicity of complex exponential functions,

the uniform grid is a torus in the frequency domain. As a

consequence, any sample lying within W/2 of an “edge”

of the grid will involve interpolation using “neighbors” that

are determined using periodic boundary conditions (i.e., the

interpolation window affects points on opposite sides of the

grid). This wrapping is visualized in Figure 2, where the

interpolation kernels of samples a, c, and f wrap to other

“sides” of the grid, requiring complicated circular boundary

checks to determine the points lying within the window. The

interpolation kernel itself can be one of a variety of windowing

functions, such as Kaiser-Bessel, Gaussian, B-spline, Sinc, etc.

The choice of windowing function is application-specific.

To improve the NuFFT interpolation accuracy, an oversam-

pling factor σ, set to two in Figure 2, is multiplied by the

uniform and non-uniform coordinates prior to an FFT being

applied. Oversampling increases the resolution of the resulting

grid, reducing overall signal noise. While crucial for accuracy,

oversampling comes with two undesirable traits: (1) increased

FFT computation time, as an N sample FFT now becomes a

��� 	��!	"
	�����#$

�% &�	�	�' '�	�	�' #$�	�	�#$ '�	�	�#$ #$�

(

�

�

�

�

)

�
�$

Fig. 2: Uniform grid (flattened torus) with d = 2 dimensions, M =
6 input samples, base grid dimension N = 8, oversampling factor
σ = 2, and interpolation kernel width W = 6.

σN FFT along each dimension, and (2) increased gridding

memory requirements as N or d grow. To alleviate these

effects, Beatty et al. proposed a method of gridding using

smaller oversampling factors, i.e., σ ≤ 2. However, when the

oversampling factor σ is reduced, the interpolation kernel must

be widened (i.e., larger W) to maintain accuracy [1]. While

a smaller σ leads to faster FFT operations—by processing

a smaller grid—and lower memory requirements, a wider

interpolation kernel increases latency and causes the NuFFT

to be even further dominated by the interpolation operation.

C. Traditional Gridding

As the dominant computational component of the NuFFT,

optimizing the interpolation step of the NuFFT has been a fo-

cus of many previous works [1]–[4], [7], [10], [16]–[19], [23],

[27]. To understand why gridding dominates NuFFT computa-

tion time, we first consider a typical gridding implementation

and its basic parameters. As an example, we consider the

adjoint NuFFT, wherein gridding is performed to map non-

uniform frequency data onto a uniform grid prior to computing

an FFT. Whereas gridding’s computational complexity depends
primarily on the number of non-uniform samples M and the

number of uniform grid points Nd, the computation time can

depend substantially on other implementation parameters. In

particular, gridding time depends on the oversampling factor σ
and the interpolation kernel width W . Commonly set to four

or six, the interpolation kernel width determines how many

points in the target grid are affected by each non-uniform

sample. This width is fixed and is not affected by the grid

dimensions or resolution; rather, its size is often determined

by the choice of σ as part of the trade-off between accuracy,

memory requirements, and computation time [1]. We next

enumerate common gridding inefficiencies and discuss how

existing solutions fail to address them.

Gridding is not easily parallelizable. Whereas gridding

has tractable computational complexity, modern hardware

realities—notably the significant gap between memory and

processor speed—can lead to considerable slowdowns based

on the implementation. Non-uniform samples—often arriving

in effectively random order—each affect a window of W d

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2021 at 18:18:15 UTC from IEEE Xplore. Restrictions apply.

�% &�	�	�' '�

�% &�	�	�#$ #$�

(

�
�

�

�

)

������ ������

�����	 �����

���
�*�	'+	,� �)-
�*�	#+	,� �)-
�*�	�+	,(� � �)-
�*�	.+	,� (� �)-

��������
�����
�*�	'+	$/0.	�	#1�
�*�	#+	$/0.	�	#1�
�*�	�+	$/02	�	.�'
�*�	.+	$/02	�	.�'

����������	�

(a) Binning

(
�

�

�

�

)

�% &�	�	�' '�

�% &�	�	�! !�

��������

��������
�����
3�����*	�*�+	$/0$	�	.!/

�������
��

�%

��������

������

������

�����	

�����

(b) Slice-and-Dice

Fig. 3: Binning vs Slice-and-Dice. In this example, binning performs a boundary check between each of the 64 uniform points in a tile
and each non-uniform sample in its associated bin. Due to some samples affecting multiple tiles—and therefore being placed in multiple
bins—binning processes 16 samples. In contrast, Slice-and-Dice obviates the need to presort the data by performing a two step boundary
check. Slice-and-Dice performs a single comparison between the “top” view and each sample to determine which relative coordinates (i.e.,
“columns”) in the stack are affected; a combination of the tile coordinates gives the tile index of the uniform point affected within the stack.

uniform points that are discontiguous in memory, which results

in gridding commonly suffering from poor memory locality.
The simplest gridding implementation processes the

randomly-ordered non-uniform samples serially. Any uniform

point lying within W/2 distance of the sample’s coordinates is
accumulated with a distance-based contribution of the sample’s

magnitude, with points closer to the sample’s coordinates

receiving a greater contribution than those further away. Once

all affected uniform points have received their updates, the

next sample is processed. Such a serial approach benefits from

being able to quickly determine which points are affected by a

given sample and avoiding write conflicts among samples with

overlapping interpolation kernels. However, since caches are

too small to store the entire output grid, nearly all grid point

accesses incur an off-chip read-modify-write miss. Moreover,

this input-oriented approach has limited parallelism, failing to

take advantage of massively multithreaded systems.
Instead, GPU and FPGA implementations commonly turn

to output-oriented parallelism, wherein one thread or pipeline

accumulates all sample values that affect a single grid point.

This approach does not need any synchronization among

threads, since each modifies disjoint memory locations. How-

ever, output-parallel implementations suffer from a significant

drawback: there is no way to determine if a thread is affected

by a sample without performing a distance boundary check

between the sample and the thread coordinates. Although a

single non-uniform sample only affectsW d uniform points (or

threads), a naı̈ve output-parallel implementation must perform

a boundary check between each non-uniform sample and every

grid point, requiring M boundary checks for each of Nd

uniform grid points. These boundary checks are almost as

expensive as the interpolation operation itself—a table lookup

and multiply-accumulate. Furthermore, since the target grid

dimension N is usually far larger than the interpolation kernel

widthW , the vast majority of the checks will fail, undermining

the effectiveness of output-parallel gridding.
Binning suffers from additional overheads. To reduce

the number of boundary checks and global memory accesses

encountered using output-driven parallelism, modern NuFFT

implementations instead rely on a form of geometric tiling

known as binning. Binning, visualized in Figure 3a, breaks the
uniform grid into small subsections, or tiles, the dimensions

of which are chosen such that a single tile fits in the on-

chip cache of the target system. The non-uniform samples

are then pre-sorted into subsets, or bins, corresponding to

the tiles that they affect. Rather than performing a boundary

check between every sample and every uniform point in the

entire grid, samples in each bin must only be checked against

the uniform points in the associated tile. Tile–bin pairs are

processed sequentially, significantly reducing global memory

accesses after a tile is fully loaded into the on-chip cache. In

Figure 3a, Tile 0 has an associated bin consisting of samples

{d, e, f}, Tile 1 has an associated bin {a, d, f}, and so on.

Processing the samples in this manner allows for significant

execution time improvement, as the tile remains cached and

only the samples in the bin must be read from global memory.

While binning greatly improves memory locality and re-

duces stalls due to global memory accesses, it still suffers

from several factors that result in suboptimal computation

time. First, the non-uniform data must be pre-sorted to map

well to the hardware; good binning parameters are hardware

and data-set dependent and are not always readily evident.

If the wrong parameters are chosen, such as the tiles not

maximally utilizing the available cache, binning performance

can be severely limited. Second, non-uniform samples lying

within W/2 of tile edges affect multiple tiles, requiring those

samples to be processed as part of multiple bins. As an

example, in Figure 3a, samples d and f must be placed in

all four bins, resulting in a significant increase in redundant

boundary checks. Third, and perhaps most important, binning

limits parallelism. While binning improves cache hit rates,

its restriction of memory accesses to a single tile severely

limits the available Memory-Level Parallelism (MLP). With

limited MLP, instruction reordering is insufficient to entirely

hide the memory latency, causing computational stalls due

to pending memory requests. GPU-based implementations try

to parallelize across titles to leverage the massive Thread-

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2021 at 18:18:15 UTC from IEEE Xplore. Restrictions apply.

Level Parallelism (TLP) of GPUs. However, their approach

undermines the original goal of binning—improving locality—

as different warps evict one another’s data from the cache.

As a result, neither CPUs nor GPUs are able to entirely hide

the memory latency via Instruction-Level Parallelism (ILP) or

TLP, negatively impacting the performance due to memory

stalls. GPU-based implementations also suffer from severe

branch divergence as all threads within a warp (operating on

different points in a tile) are not affected by all samples within

a bin, resulting in massive under-utilization of SIMD execution

lanes. More specifically, with warp and interpolation kernel

sizes T and W , T/W threads will be unaffected—and thus

idle—when processing every sample.

D. Summary and Goals

NuFFT computation is dominated by the gridding operation,

which can account for upwards of 99.6% of computation

time. Even with the optimizations proposed by the prior work,

gridding suffers from limited parallelism, poor memory band-

width utilization, redundant computation, and computational

stalls due to outstanding memory requests. Our objective is

to find an approach that eliminates (1) pre-processing of

the data set, (2) duplicate sample processing, (3) and the

limited MLP encountered using binning, to enable an efficient

streaming model for high-throughput gridding computation.

Using hardware/software co-design, we aim to break down the

gridding algorithm into core components, redesigning gridding

from the ground up to better map to commodity parallel

architectures and enable novel hardware accelerators.

III. SLICE-AND-DICE DESIGN

We next introduce the Slice-and-Dice processing model

for NuFFT gridding and describe its design choices, which

facilitate a streaming model that is able to unlock substantial

performance gains in conventional parallel architectures, such

as GPUs, as well as enable highly optimized accelerators.

In contrast to optimizations such as binning, Slice-and-
Dice obviates the pre-processing step of sorting the data into

bins, instead incorporating the sorting step into a two-part

boundary check. Slice-and-Dice uses a stacked tile memory

layout, which increases MLP, reduces the number of boundary

checks, and enables streaming implementations by guarantee-

ing interaction-free processing of parallel threads or pipelines.

Rethinking Binning. Most recent NuFFT acceleration im-

plementations use binning to improve spatial locality. How-

ever, sorting data samples into the appropriate bins requires an

additional step in the gridding process. Worse, inevitably some

samples are assigned into up to four bins (or more, with higher

dimensionality) because their interpolation window intersects

adjacent tiles, resulting in redundant boundary checks. As

a result, whereas binning improves locality, its performance

potential significantly suffers from (1) precomputation to sort

the samples, (2) unnecessary boundary checks, and (3) a lack

of (memory-level) parallelism.

As an alternative to binning, we introduce Slice-and-Dice,
a novel gridding optimization technique which obviates the

' # � . / 2 $ 4 ! 1 #' ## #� #. #/ #2
'
#
�
.
/
2
$
4
!
1

#'
##
#�
#.
#/
#2

' # � . / 2 $ 4
'
#
�
.
/
2
$
4

%����

&�
��

�

%����

&�
��

�

5������	��6��+
%�172 	&�#'72

�*�	5����+
58�%98�#
5��&9��#

��*���:�	5����+
�58��;<�%98��#72
�5���;<�&9����72

�*�	����8+
5�0�=�58�#���

>�6�*���+
%�2 	&��

?��6	5@��A+
�58	B	%6	�	&�C
�5�	B	&6	�	
�

D����*	?���@	
?8�$?��$

�*�	?���@	
8�! 	��!

>�6�*���	�))�����+
�58	B	?8	�	&�C
�5�	B	?�	�	&�C

�8 	��	�	�' 	'�

Fig. 4: Slice-and-Dice in action. The thread assigned to uniform
points with relative positions (x, y) = (5, 2) is affected by an input
sample if both relative coordinates are less than the interpolation
kernel width. This thread is affected in tile (0, 1) but the sample’s
coordinate is in tile (1, 1), causing a wrap in the X dimension.

need for an additional pre-sorting step and drastically reduces

the number of boundary checks required. We design Slice-
and-Dice by leveraging a tiling-based, output-driven parallel

model and a unique decomposition of the sample coordinates.

As shown in Figure 3b, Slice-and-Dice breaks the target grid

into multiple, smaller tiles, each of dimensions T d. The tiles,

which we will refer to as virtual tiles hereafter, are stacked

to form dice. Whereas binning sequentially processes tiles

that each fit into the on-chip cache, Slice-and-Dice leaves

the dice in global memory, instead relying on overlapping

memory requests and using the cache to exploit memory

locality opportunities available in the dice layout. In this

model, a block of T d threads processes the entire grid, where

each thread processes a single position in each of the virtual

tiles, corresponding to a “column” in the dice. For example,

Thread 0 in Figure 3b will process the uniform grid points at

relative position (x, y) = (0, 0) in each of the four virtual tiles.
As long as the interpolation window is smaller than the tile

size—i.e., W ≤ T—this layout guarantees that each sample

will only affect a single point in any column.

Efficiently handling boundary checks in the stacked tile

model is enabled by a novel decomposition of the input

samples’ coordinates, as shown in Figure 4. For coordinates

ranging from [0:N) in each dimension, we perform a two-

part decomposition by dividing each coordinate by the virtual

tile size. The division’s quotient is the tile coordinate, while
the remainder is the relative coordinate. The relative coordi-
nate indicates where the sample lies within the tile (i.e., in

which column), and is used to determine whether the current

input sample affects the uniform points assigned to a given

thread. For each sample, Slice-and-Dice performs a boundary

check only against every column in the stack of virtual

tiles, rather than every point in the target grid—resulting in

MT d total checks. Since points are processed sequentially in

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2021 at 18:18:15 UTC from IEEE Xplore. Restrictions apply.

E�����	
�����)���

�

����	�;
	=	E;F;5	'

����	�;
	=	E;F;5	#

����	�;
	=	E;F;5	�

����	�;
	=	E;F;5	.

����	�;
	=	E;F;5	

�

G:
��

C�
�

6*
��

	��
��

�6
�*

��
��

�	
?

��
�@

�	F
��

A�
6	

�F
H

�

��
��

�8	$/�(��
G��6��	3�*C

��
��

E��<
	'

E��<
	#

E��<
	�

E��<
	.

�

�����	����	E������
E��<	�����	��!<I�

<�5	'

<�5	#

<�5	�

<�5	.

<�5	

��'	�I9C

E��<
	

Fig. 5: JIGSAW microarchitecture. Operating at 1.0 GHz, non-uniform
samples arrive on a 128-bit bus and are broadcast to all pipelines in
parallel. After gridding is complete, two 64-bit uniform target points
are read through the bus each cycle.

output-driven parallelism—while their effects are applied in

parallel—the block of threads quickly determines which sam-

ples affect their assigned target points. Using an arrangement

in which the target grid points assigned to each thread are

placed in a contiguous array, for each affected thread we next

determine the index into that array (i.e., the “depth” in the

column) by finding the global tile address, a combination of

the tile coordinates in each dimension—much like calculating

a total linear index in GPU programming. Even with an

all-sample to all-column comparison, use of the Slice-and-
Dice binning-free model results in a computational complexity
reduction of Nd/T d versus a naı̈ve parallel implementation. In

Figure 4—where different colors in the interpolation window

indicate different depths (tiles) in the dice—we demonstrate

the coordinate decomposition, tile index calculation, and wrap

compensation utilized by Slice-and-Dice for a single non-

uniform sample.

IV. JIGSAW MICROARCHITECTURE

A primary bottleneck in many gridding acceleration works

lies within the memory subsystem, due to poor bandwidth

utilization, non-contiguous memory accesses, or insufficient

memory-level parallelism. Even in FPGA implementations,

the memory layout requires that each pipeline have access to

any point within the target tile, resulting in high inter-pipeline

communication requirements and memory system contention.

In Slice-and-Dice, we use the stacked slice memory layout to
eliminate unnecessary hardware interaction in custom acceler-

ators. With a single hardware thread, or pipeline, assigned to

process the contributions to each column in the dice, memory

accesses can be controlled on a per-pipeline basis—allowing

for deterministic, constant performance. To demonstrate the

full potential of Slice-and-Dice when coupled with a custom

processing pipeline and memory hierarchy, we present the

JIGSAW streaming architecture for 2D and 3D NuFFT gridding

acceleration. As a hardware implementation of Slice-and-Dice,
JIGSAW uses a streaming approach to fully process an input

stream in a single stall-free pass, accumulating contributions

to the uniform target grid columns stored in private memory

TABLE I: JIGSAW System Parameters.

Property Value

Target Grid Dimensions (N) 8–1024
Virtual Tile Dimensions (T) 8
Interpolation Window Dimensions (W) 1–8
Table Oversampling Factor (L) 1–64
Pipeline Bit Width 32-bit
Interpolation Weight Bit Width 16-bit

arrays. This leads to runtime linear in the number of non-

uniform samples, independent of ordering of the input sam-

ples, uniform target grid size, or interpolation window width.

We implement JIGSAW in SystemVerilog to enable func-

tional verification and obtain power/area synthesis estimates.

As illustrated in Figure 5, JIGSAW comprises a set of identical

32-bit fixed-point pipelines logically arranged as a 2D grid.

To support both 2D and 3D gridding operations, there are two

variants of JIGSAW: JIGSAW 2D and JIGSAW 3D Slice. In

this section, we describe the basic hardware implementation

of JIGSAW, followed by the differences between processing

2D and 3D data. For clarity, we assume a target grid with

N = 1024 points in each dimension, virtual tiles with T = 8
points in each dimension, an interpolation window width of

W = 6, and an interpolation table oversampling factor of

L = 32. JIGSAW comprises pipelines logically arranged as

a 2D grid of dimensions T 2, to match the virtual tile size.

JIGSAW’s range of supported runtime parameters are listed in

Table I. Each pipeline Tx,y is split into four stages: select,

weight lookup, interpolation, and accumulate.

Select. The select unit, shown in Figure 5, is responsible for
determining whether a sample affects grid points assigned to a

given pipeline, calculating the relative and tile coordinates, the

global tile address, and the table addresses for each dimension.

To determine whether a pipeline’s points are affected by a

sample, the select unit calculates the distance from the sample

to the relative coordinates (i.e., the column) assigned to the

pipeline. For each dimension, the select unit performs the

distance calculation in hardware using two steps: (1) truncating

the upper bits of sample’s coordinates to obtain the relative

coordinate, and (2) adding the tile dimension to the relative

coordinate and subtracting the pipeline’s index. The resulting

value is the forward distance (i.e., left to right in 1D) from the

pipeline’s column and the input sample. The select unit then

compares the distance against the interpolation window size to

determine whether the sample affects a point in the column.

If the distance in each dimension is less than the interpolation

window size, the sample affects a point in the column.

For any sample affecting a point in its column, the select

unit uses the previously truncated coordinate bits (the tile coor-

dinate) to determine the appropriate entry in the accumulation

array. Interpolation window overlaps onto other tiles in a given

dimension, or “wraps,” are handled by decrementing the tile

coordinate in that dimension. To check if a tile wrap occurred,

the select unit compares the relative coordinate against the

pipeline index—if the relative coordinate is less than the

pipeline index, a wrap has occurred in that dimension; this is

visualized in Figure 4. The updated tile coordinates are then

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2021 at 18:18:15 UTC from IEEE Xplore. Restrictions apply.

combined to form the global tile address.

The select unit next calculates the table addresses. The

table addresses are used to index an oversampled interpolation

table, extracting the weights in each dimension necessary to

generate the distance-based weight for the final interpolation.

The select unit determines the table addresses by multiplying

the previously calculated distances by the table oversampling

factor—32 in this example—and rounding to the nearest

integer. Because the table oversampling factor is a power

of two, the multiplication can be implemented efficiently by

truncating the lower bits of the distances.

Weight Lookup. Each interpolation weight lookup unit

contains a dual-ported SRAM (in the 2D variant) capable of

storing up to 256 32-bit complex weights (16 bits for each

real and imaginary component), which are used to generate the

final weight for the interpolation. As the interpolation window

is symmetric around its center, only half of the weights for a

given window must be stored: capacity for 256 weights enables

an oversampling factor of up to L = 64 given a maximum

interpolation kernel width of W = 8. The weight lookup unit
multiplies the complex weights for each dimension—retrieved

according to the addresses generated in the select unit—

to calculate the final weight. Because weights are complex

numbers, the unit performs the multiplication using three

real multiplication operations and five real addition/subtraction

operations, as described by Knuth [21].

Interpolation. The interpolation unit, part of the Multiply-

and-Accumulate (MAC) blocks in Figure 5, multiplies the

complex interpolation weight and the complex sample mag-

nitude, again using Knuth’s method [21]. The interpolation

unit then forwards the resulting value, which represents the

weighted contribution of the input sample to the target grid

point, to the accumulation unit.

Accumulation. The accumulation unit maintains the sum

of the interpolated values for all points in the pipeline’s

associated Slice-and-Dice column. In JIGSAW, we collocate

the adders used for accumulation with local SRAM arrays

that store the partial sums for the set of points assigned to

the corresponding pipeline. Inputs to the accumulation unit

are the newly calculated interpolation value and the global

tile address—previously calculated in the select unit—which

acts as an index into the output array. Once the data stream is

complete, data stored in SRAM arrays is read out tile by tile.

Gridding in 2D and 3D. Due to the large memory require-
ments found in 3D NuFFT processing—approximately 8GB

for a 10243 target grid—modern algorithms and accelerators

often process 3D volumes in a series of 2D slices. We follow

this trend with JIGSAW, implementing support for a third

coordinate dimension in the select and interpolation weight

lookup pipeline stages. Since JIGSAW only has ~8MB of

on-chip SRAM, a N3 = 10243 target grid is processed by

iterating over 2D slices; i.e., a 10243 grid is broken into 1024
slices of 10242 points each. While this decreases the overall

gridding performance of the accelerator, as unsorted input data

must be processed up to Nz times, this approach requires

minimal additional logic and reaps the benefits of on-chip

memory, thereby allowing stall-free execution of each layer.

System Integration. JIGSAW can be interfaced with a host

system much like other standalone accelerators, such as GPUs

and FPGAs. Input data is transmitted to JIGSAW from the

host via a direct memory access (DMA) stream, with one

non-uniform sample and its associated coordinates arriving

each cycle. Using a DMA stream instead of individual copy

commands frees the host to continue operations while JIGSAW

performs gridding asynchronously. With a synthesized clock

speed of 1.0 GHz, JIGSAW is able to transmit and receive

data at DDR4 bandwidth (~20GB/s). Once the data stream

is complete, the DMA controller notifies the host via an

interrupt signal. The host then initiates a second stream, which

transfers the gridded data from JIGSAW to the host memory.

The lightweight communication is enabled by JIGSAW’s fully-

provisioned hardware architecture—no delay is required be-

tween the host-to-device stream completing and the device-to-

host stream being initiated, minimizing end-to-end latency.

V. EVALUATION METHODOLOGY

To evaluate the Slice-and-Dice model and our JIGSAW

microarchitecture, we implement Slice-and-Dice in GPU and

SystemVerilog ASIC variants with virtual tiles of dimension

8 × 8. We employ the Michigan Image Reconstruction Tool-

box (MIRT) [7]—a matrix-based Matlab implementation that

uses double-precision floating point for all calculations—as a

baseline for both quality and performance. The performance

of the CPU-based MIRT is on par with that of the well-known

NFFT [17] library, but separates the gridding and FFT steps,

allowing for a more direct comparison.

To highlight how Slice-and-Dice performs versus a state-of-
the-art GPU implementation, we compare to Impatient [10].

Impatient is a GPU-accelerated framework for non-Cartesian

sampling trajectories in MRI. Using an output-driven paral-

lelism gridding approach combined with binning, Impatient

achieves significant speedups versus direct matrix inversion.

With the fastest publicly available code base—updated in

2018 to support new-generation GPUs—Impatient provides a

comparison to Slice-and-Dice on traditional parallel systems.

Our test system uses an Intel i9-9900KS with 128 GB of

DDR4 3600 MHz memory for the CPU-based benchmarks,

and an Nvidia Titan Xp for the GPU-based benchmarks. The

GPU implementation of Slice-and-Dice uses single-precision

floating-point values to closely match the prior work, while

the ASIC implementation uses 32-bit fixed-point pipelines.

We estimate the performance of our JIGSAW ASIC imple-

mentation using its synthesized 1.0 GHz clock frequency, the

pipeline depth (12 cycles), and the number of non-uniform

input samples. Functional verification and quality evaluation

is performed against MIRT’s output using doubles.

For power and area analysis, we synthesize our SystemVer-

ilog implementations of JIGSAW 2D and JIGSAW 3D Slice

using an industrial 16 nm node and a 1.0 GHz clock speed.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2021 at 18:18:15 UTC from IEEE Xplore. Restrictions apply.

/

#!
.1

1 1

.4/
�'# �/! �/1 �'�

� .!$
42' 14.

4�! # 421

#

#'

#''

#'''

#''''

 !�"���
#$%�&%�
'$
�((�

 !�"��	
#$%�&%�
'$%%�)*	

 !�"��

#$)%&)%

'$��)(��%)%

 !�"���
#$
��&
��
'$����)	�

 !�"��)
#$)�	&)�	
'$����%%�

+�
��

��
�"

��
,�

��
�,

�-
.�.

�.�
'

 /
�

 !,�������0+123 �����4���45����0+123 6�"�-�07� �3

Fig. 6: Gridding speedups, normalized to MIRT.

VI. RESULTS

A. Performance Comparison

We evaluate gridding performance using five images of

differing dimension and number of non-uniform samples.

Figure 6 and Figure 7 show the gridding and end-to-end

NuFFT performance of each implementation normalized to the

performance of MIRT. Since 3D gridding is a derivative of 2D

gridding—serially operating on 2D slices—for the compared

implementations, we only report results for the 2D case.

GPU. The Slice-and-Dice GPU implementation relies on

the CUDA threading model to hide the long external memory

latencies through quick context switching among thread warps.

Slice-and-Dice GPU uses blocks of 8 × 8 threads, where

each thread is assigned to a single uniform grid point in

each virtual tile. A single block does not contain nearly

enough threads to fully utilize the GPU’s processing units;

we therefore populate a grid of 128× 128 blocks to improve

occupancy, with each block operating on its own subset of

the non-uniform input data and writing to the shared output

grid. This implementation breaks the Slice-and-Dice output-

parallelization model, as multiple threads may now write to

the same output location. We use atomic addition instructions

to ensure proper synchronization and that no updates are

lost. In this manner, the Slice-and-Dice GPU implementation

achieves an average gridding speedup of over 250× relative

to the baseline and approximately 16× over Impatient [10]

for all problem sizes, as shown in Figure 6. The end-to-

end NuFFT performance improvements in Figure 7 follow a

similar trend, with an average speedup of over 118× relative

to the baseline and 8× over Impatient. This dramatic increase

in performance relative to the prior work arises for several

reasons: (1) Slice-and-Dice GPU uses a lookup table for

interpolation weights, while Impatient [10] calculates them

during processing, (2) Slice-and-Dice GPU achieves an L2 hit

rate of ~98% compared to Impatient’s ~80%, (3) Slice-and-
Dice achieves an occupancy of ~80% compared to the ~47%

for Impatient, and (4) Slice-and-Dice GPU utilizes parallelism

across both the non-uniform input array and the output grid,

allowing for far more computational overlap between warps. In

short, Slice-and-Dice maps more efficiently to GPU hardware.

ASIC. JIGSAW 2D, Slice-and-Dice’s ASIC implementation

for 2D gridding, comprises a set of 8 × 8 pipelines with a

12-cycle pipeline latency from input to accumulation. Using

/ #4
.!

1 1

!$

#2#

���

4. $#
#'$

..4
$$!

14 !�

'
2'

#''
#2'
�''
�2'
.''
.2'
/''

 !�"���
#$%�&%�
'$
�((�

 !�"��	
#$%�&%�
'$%%�)*	

 !�"��

#$)%&)%

'$��)(��%)%

 !�"���
#$
��&
��
'$����)	�

 !�"��)
#$)�	&)�	
'$����%%�

8�
�4

��
48

��
�#

�9
9�

�,
��

��
,

-
.�.

�.
'

 /
�

 !,�������0+123 �����4���45����0+123 6�"�-�07� �3

Fig. 7: End-to-end NuFFT speedups, normalized to MIRT.

TABLE II: JIGSAW Synthesis Results in 16 nm Technology.

JIGSAW with 1.0 GHz Clock Power Area

2D (8MB SRAM) 216.86 mW 12.20 mm2

2D (no accum SRAM) 94.22 mW 0.42 mm2

3D Slice (8MB SRAM) 104.36 mW 12.42 mm2

3D Slice (no accum SRAM) 63.62 mW 0.64 mm2

the fixed-point pipeline and on-chip buffers to hide memory

latency, JIGSAW is fully pipelined and does not experience

any hardware stalls, accepting a new non-uniform sample

each cycle. This uninterrupted data flow provides constant

throughput: total runtime is proportional to the input data set

size, irrespective of sampling pattern, uniform target grid size,

or interpolation window width. Given the pipeline depth of 12

cycles and the synthesized 1.0 GHz clock speed, the runtime of

an M -sample input is M+12 cycles, or M+12 nanoseconds.
The JIGSAW 3D Slice variant extends JIGSAW’s 2D imple-

mentation to support a third dimension in the input data and

output grid. Like the 2D variant, the 3D implementation is

synthesized for a 1.0 GHz clock speed; 3D support extends

the pipeline depth to 15 cycles. The 3D Slice variant performs

3D gridding in Nz sequential steps, where Nz is the size of the

grid in the Z dimension. For an arbitrary, unsorted 3D dataset

ofM samples, the runtime is (M+15)∗Nz cycles. However, if

the dataset is pre-sorted into subsets of samples affecting each

Z-dimension slice—essentially binning in the Z-dimension and

letting Slice-and-Dice obviate binning in 2D—runtime can be

reduced to (M + 15) ∗Wz cycles, where Wz is the width of

the interpolation kernel in the Z dimension.

With a streaming architecture and no memory or com-

putational stalls, JIGSAW offers orders of magnitude better

performance than all prior works. Figure 6 demonstrates an

average gridding speedup of approximately 1500× relative to

the baseline. End-to-end NuFFT performance is also drasti-

cally increased in Figure 7, with speedups of over 258× and

16× compared to the baseline and prior work, respectively.

B. Power & Area

Table II reports our synthesis results, with the JIGSAW 2D

and 3D Slice variants shown both with and without target grid

SRAM to illustrate the amount of power and area required for

the accelerator pipeline and lookup tables. The 2D variant has

an estimated power consumption of 216.86 mW and an area

of 12.20 mm2. Approximately 95% of this area is used for the

on-chip storage of the 1024×1024 uniform target grid, which

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2021 at 18:18:15 UTC from IEEE Xplore. Restrictions apply.

#.' $�. ../ �$. 4/$ 4$/

/ �.! !#/ #'2
!'' /�! #4!

. ..$!$' 4$#

/4/ /$!
#2 .44 4/#

.!/ 2#� 4#' // .$4 /.� 12 $2/ ./!

!�#
#/ ///

./# /!.

�� $$1 /' '/!

#

#''

#''''

#''''''

#''''''''

#''''''''''

 !�"���
#$%�&%�
'$
�((�

 !�"��	
#$%�&%�
'$%%�)*	

 !�"��

#$)%&)%

'$��)(��%)%

 !�"���
#$
��&
��
'$����)	�

 !�"��)
#$)�	&)�	
'$����%%�

+�
��

��
�"

�8
��

�"
��

0�
63

 !,�������0+123 �����4���45����0+123 6�"�-�07� �3

Fig. 8: Energy requirements of gridding implementations.

is also responsible for over 56% of the power consumption.

The 3D Slice variant shows lower power consumption due to

reduced switching activity, as each slice fully processes only a

subset of the non-uniform points (approximately M/Nz); only

the select stage processes allM points for any individual slice.

To showcase the energy efficiency achieved by JIGSAW, we

compare it to the single-precision floating-point GPU gridding

implementations of Slice-and-Dice and Impatient in Figure 8.

Across all of the images tested, Impatient energy consump-

tion averages 1.95 J, while Slice-and-Dice GPU averages

108.27 mJ. In contrast, JIGSAW consumes only 83.89 μJ—
an energy reduction of over 23000× compared to Impatient

and nearly 1300× compared to Slice-and-Dice GPU.

C. Image Quality

We verify JIGSAW image quality using visual comparison of

2D liver slices from [25] and their associated normalized root

mean square difference (NRMSD). Using our SystemVerilog

implementation to simulate the hardware, we feed the non-

uniform sample data into the JIGSAW pipeline, comparing

the final output grid to that of our Matlab reference imple-

mentation using doubles. As shown in Figure 9, our fixed-

point hardware produces images indistinguishable from those

produced with double-precision floating-point, even when the

oversampling factor is reduced by a factor of 32×. Similarly,

the NRMSD percentages for 32-bit floating-point and our

32-bit fixed-point implementations are 0.047% and 0.012%,

respectively—1/4 the error while halving the ALU width

and table storage requirements. These results demonstrate that

JIGSAW’s fixed-point hardware contributes negligible image

quality degradation compared to the reference [20].

VII. RELATED WORK

Gridding acceleration methods have been previously pro-

posed using algorithmic optimizations [7], [23], [26] and hard-

ware accelerators, such as GPUs [10], [27] and FPGAs [2],

[3], [18], [19]. We describe several works from each category.

A. Algorithmic Optimizations

[23], [26] describe variations of an algorithmic approach

that breaks the uniform grid into smaller tiles and pre-sorts

the non-uniform samples into bins based on which tile(s) they

affect. This approach, today commonly known as binning,

reduces computational complexity in parallel implementations

by lowering the number of total boundary checks for a sample.

(a) L = 1024, Doubles (b) L = 32, 16-bit Fixed-Point

Fig. 9: Direct NuFFT reconstructions with differing table oversam-
pling factors and numeric precision. Image data from [25].

The Michigan Image Reconstruction Toolbox (MIRT) [7],

a collection of open-source algorithms for MRI reconstruction

and related imaging problems widely used in the imaging

community, relies on optimized matrix processing and com-

piled executables to efficiently perform gridding using both

interpolation table and sparse matrix implementations.

B. GPU Implementations

In one of the earliest GPU gridding works, Sørensen et

al. [27] implement a model in which each thread is responsible

for the interpolation operations affecting a set of neighboring

points, with all points held in registers during computation.

Operating on sets of eight points in parallel, Sørensen et al.

achieve a 20-85× speedup versus a contemporary CPU imple-

mentation for various problem sizes and sampling trajectories.

More recently, a Toeplitz-based MRI reconstruction strategy

using binning was implemented on GPUs [10]. To reduce data

races caused by multiple non-uniform samples affecting the

same uniform points, every uniform grid point was assigned

to a different thread. Paired with a Kaiser-Bessel interpolation

kernel, this output-driven parallel model achieved speedups of

over 200× compared to the same group’s previous direct matrix

inversion (NuDFT) approach to NuFFT computation [30].

In comparison to these works, we eliminate the need to

pre-sort the data for binning by instead using our Slice-and-
Dice decomposition model, which “sorts” samples within the

boundary check operation. Our GPU implementation combines

input- and output-driven parallelism, parallelizing across dis-

tinct subsets of the input samples and between columns in the

dice. With thousands of blocks operating on the same grid,

overlapping computation effectively hides memory latency.

C. FPGA Implementations

Kestur et al. [19] implemented a variant of gridding using

binning in an FPGA, dynamically adding non-uniform samples

to linked lists associated with each tile. Focusing on maximiz-

ing write throughput of the samples, the implementation uses

contiguous local memory storage to improve spatial locality;

a trajectory-optimized variant was later implemented [18].

In [2], [3], Cheema et al. design an FPGA gridding acceler-

ator which implements binning using a set of fixed-size FIFOs.

The FPGA reads non-uniform samples from external memory

and sorts them into the FIFOs, with an arbiter determining

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2021 at 18:18:15 UTC from IEEE Xplore. Restrictions apply.

which FIFO should be processed. The associated tile is then

loaded into on-chip memory, operating on 16 points in parallel.

In contrast, JIGSAW is integrates the sorting process into

the boundary check, reducing the end-to-end latency of the

gridding operation. JIGSAW further enhances performance by

storing the entire target grid in a set of SRAM arrays—where

each array holds a single column in the dice—and operating on

all tiles in parallel. JIGSAW’s specialized parallel architecture

eliminates all pipeline stalls, using the Slice-and-Dice model

to achieve trajectory-agnostic, deterministic performance.

VIII. CONCLUSION

In this work we presented Slice-and-Dice, a model for

NuFFT gridding that maps efficiently to traditional par-

allel hardware architectures. Slice-and-Dice eliminates pre-

processing of the non-uniform data by performing binning

on-the-fly, breaking the target grid into multiple tiles and

operating on all tiles simultaneously. When implemented on a

GPU, Slice-and-Dice achieves average speedups of over 250×
and 16× when compared to the CPU baseline and GPU state-

of-the-art implementations for representative problems.

We then described JIGSAW, a streaming accelerator im-

plementation of Slice-and-Dice that performs gridding with

runtime proportional to the number of non-uniform samples—

irrespective of uniform target grid size, interpolation kernel

width, or sampling pattern. Our 32-bit fixed-point imple-

mentation achieves orders of magnitude better performance

and lower power while retaining better error characteristics

over single-precision floating point. Our evaluation of JIG-

SAW demonstrates gridding speedups of over 1500× and 95×

when compared to the CPU baseline and state-of-the-art GPU

implementations, respectively. Synthesized using an industrial

16 nm technology node, the 2D variant of JIGSAW achieves a

1.0 GHz clock frequency with an area of ~12mm2 and a power

consumption of ~200 mW. JIGSAW’s fixed-point streaming

implementation is nearly 1300× more power efficient than

Slice-and-Dice GPU.

Slice-and-Dice GPU and JIGSAW achieve end-to-end

NuFFT speedups of over 118× and 258× the CPU baseline,

and 8× and 36× the state-of-the-art GPU implementation,

resulting in the FFT being the bottleneck for the first time.

REFERENCES

[1] P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding
reconstruction with a minimal oversampling ratio,” IEEE Transactions
on Medical Imaging, Jun. 2005.

[2] U. I. Cheema, G. Nash, R. Ansari, and A. Khokhar, “Memory-optimized
re-gridding architecture for non-uniform fast Fourier transform,” IEEE
Transactions on Circuits and Systems I: Regular Papers, Jul. 2017.

[3] U. I. Cheema, G. Nash, R. Ansari, and A. A. Khokhar, “Power-efficient
re-gridding architecture for accelerating non-uniform fast Fourier trans-
form,” in Int. Conf. on Field Prog. Logic and Appl. (FPL), Sep. 2014.

[4] J. A. Fessler, “On NUFFT-based gridding for non-Cartesian MRI,”
Journal of magnetic resonance (San Diego, Calif. : 1997), Nov. 2007.

[5] J. A. Fessler, “Model-based image reconstruction for MRI,” IEEE Signal
Processing Magazine, Jul. 2010.

[6] J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms
using min-max interpolation,” IEEE Trans. Signal Proc., Feb. 2003.

[7] J. A. Fessler, “Michigan image reconstruction toolbox (MIRT).”
[Online]. Available: https://web.eecs.umich.edu/~fessler/code/

[8] J. Frahm, D. Voit, and M. Uecker, “Real-time magnetic resonance
imaging: Radial gradient-echo sequences with nonlinear inverse recon-
struction,” Investigative Radiology, Dec. 2019.

[9] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proceedings of the IEEE, Feb. 2005.

[10] J. Gai, N. Obeid, J. Holtrop, X.-L. Wu, F. Lam, M. Fu, J. Haldar, W.-
m. Hwu, Z.-P. Liang, and B. Sutton, “More IMPATIENT: a gridding-
accelerated Toeplitz-based strategy for non-Cartesian high-resolution 3D
MRI on GPUs,” Journal of parallel and distrib. computing, May 2013.

[11] X. Y. He, X. Y. Zhou, and T. J. Cui, “Fast 3D-ISAR image simulation
of targets at arbitrary aspect angles through nonuniform fast Fourier
transform (NUFFT),” IEEE Trans. Antennas Propagation, May 2012.

[12] K. O. Johnson and J. G. Pipe, “Convolution kernel design and efficient
algorithm for sampling density correction,” Mag. Res. Med., Feb. 2009.

[13] S. G. Johnson and M. Frigo, “Implementing FFTs in practice,” in Fast
Fourier Transforms, Sep. 2008.

[14] Junklewitz, H., Bell, M. R., Selig, M., and Enßlin, T. A., “RESOLVE:
A new algorithm for aperture synthesis imaging of extended emission
in radio astronomy,” Astronomy & Astrophysics, Feb. 2016.

[15] H. Kajbaf, J. T. Case, Y. R. Zheng, S. Kharkovsky, and R. Zoughi,
“Quantitative and qualitative comparison of SAR images from incom-
plete measurements using compressed sensing and nonuniform FFT,” in
IEEE RadarCon (RADAR), May 2011.

[16] D. D. Kalamkar, J. D. Trzaskoz, S. Sridharan, M. Smelyanskiy, D. Kim,
A. Manduca, Y. Shu, M. A. Bernstein, B. Kaul, and P. Dubey, “High per-
formance non-uniform FFT on modern x86-based multi-core systems,”
in IEEE Int. Parallel and Distrib. Processing Symposium, May 2012.

[17] J. Keiner, S. Kunis, and D. Potts, “Using NFFT 3—a software library
for various nonequispaced fast Fourier transforms,” ACM Transactions
on Mathematical Software, Aug. 2009.

[18] S. Kestur, K. Irick, S. Park, A. Al Maashri, V. Narayanan, and
C. Chakrabarti, “An algorithm-architecture co-design framework for
gridding reconstruction using FPGAs,” in Des. Automat. Conf, Jun. 2011.

[19] S. Kestur, S. Park, K. M. Irick, and V. Narayanan, “Accelerating the
nonuniform fast Fourier transform using FPGAs,” in IEEE Int. Symp.
on Field-Programmable Custom Computing Machines, May 2010.

[20] F. Knoll, T. Murrell, A. Sriram, N. Yakubova, J. Zbontar, M. Rabbat,
A. Defazio, M. J. Muckley, D. K. Sodickson, C. L. Zitnick,
and M. P. Recht, “Advancing machine learning for MR image
reconstruction with an open competition: Overview of the 2019
fastMRI challenge,” Magnetic Resonance in Medicine, 2020. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.28338

[21] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. Addison Wesley Longman Publishing, 1997.

[22] G. Madey, X. Xiang, S. E. Cabaniss, and Y. Huang, “Agent-based
scientific simulation,” Computing in Science & Engineering, Jan. 2005.

[23] N. M. Obeid, I. C. Atkinson, K. R. Thulborn, and W.-M. W. Hwu, “GPU-
accelerated gridding for rapid reconstruction of non-Cartesian MRI,” in
Proc. of the Int. Society for Magnetic Resonance in Medicine, 2010.

[24] Y. Z. O’Connor and J. A. Fessler, “Fourier-based forward and back-
projectors in iterative fan-beam tomographic image reconstruction,”
IEEE Transactions on Medical Imaging, May 2006.

[25] R. Otazo, E. Candès, and D. K. Sodickson, “Low-rank plus sparse
matrix decomposition for accelerated dynamic MRI with separation of
background and dynamic components,” Magnetic Reson. in Med., 2015.

[26] C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten, and W.-M. W.
Hwu, “GPU acceleration of cutoff pair potentials for molecular modeling
applications,” in Proc. 5th Conf. on Computing Frontiers, May 2008.

[27] T. S. Sørensen, T. Schaeffter, K. ø. Noe, and M. S. Hansen, “Acceler-
ating the nonequispaced fast Fourier transform on commodity graphics
hardware,” IEEE Transactions on Medical Imaging, Apr. 2008.

[28] B. Sutton, D. Noll, and J. Fessler, “Fast, iterative image reconstruction
for MRI in the presence of field inhomogeneities,” IEEE Transactions
on Medical Imaging, Mar. 2003.

[29] S. Wenger, M. Magnor, Y. Pihlström, S. Bhatnagar, and U. Rau,
“SparseRI: A compressed sensing framework for aperture synthesis
imaging in radio astronomy,” Astronomical Soc. of the Pac., Nov. 2010.

[30] X. Wu, J. Gai, F. Lam, M. Fu, J. P. Haldar, Y. Zhuo, Z. Liang,
W. Hwu, and B. P. Sutton, “Impatient MRI: Illinois Massively Parallel
Acceleration Toolkit for image reconstruction with enhanced throughput
in MRI,” in Int. Symp. Biomed. Imag.: From Nano to Macro, Mar. 2011.

[31] D. Xu, Y. Huang, and J. U. Kang, “GPU-accelerated non-uniform fast
Fourier transform-based compressive sensing spectral domain optical
coherence tomography,” Optics Express, Jun. 2014.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 18,2021 at 18:18:15 UTC from IEEE Xplore. Restrictions apply.

