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ABSTRACT

The recent trend in regularization methods for inverse prob-
lems is to replace handcrafted sparsifying operators with data-
driven approaches. Although using such machine learning
techniques often improves image reconstruction methods, the
results can depend significantly on the learning methodology.
This paper compares two supervised learning methods. First,
the paper considers a transform learning approach and, to
learn the transform, introduces a variant on the Procrustes
method for wide matrices with orthogonal rows. Second,
we consider a bilevel convolutional filter learning approach.
Numerical experiments show the learned transform performs
worse for denoising than both the handcrafted finite differ-
ence transform and the learned filters, which perform simi-
larly. Our results motivate the use of bilevel learning.

Index Terms— bilevel, co-sparse, denoising

1 Introduction
Image reconstruction problems are active research areas.

New models and algorithms typically attempt to reduce com-
putation time or achieve better results, according to some
quality metric, under given application-specific constraints.
For medical image reconstruction, the ultimate goal is to
provide doctors with information while minimizing patient
exposure to radiation, working toward the goal of “as low as
reasonably achievable” [1] in X-ray computed tomography
(CT) imaging, or reducing scan time in MRI.

To achieve lower radiation doses and/or faster scans, one
must decrease the X-ray source intensity or undersample the
data. This leads to an under-determined system with fewer
knowns than unknowns. Thus, one must make some assump-
tion about the images to reconstruct them. These assumptions
come in the form of different models, or priors. Common
models are total variation (TV) for approximately piecewise
constant (PWC) images and sparsity of a wavelet transform
(e.g., [2]). These are “handcrafted” models because an en-
gineer designed them, often using intuitive image features.
Handcrafted models are often designed to work for many dif-
ferent types of images and to have computational advantages.

As an alternative to handcrafted models, learned priors
can improve image quality [3], with the trade-off of increased
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training time and possibly decreased generality. Learned
priors are becoming more popular in part due to increased
computational resources and access to large, labeled training
datasets [3]. While (deep) learning approaches have seen
much success, they have limited theoretical guarantees and
often lack explainability in inverse problems.

To seek further insights into handcrafted versus learned
signal models, this paper considers a simplification of the re-
construction problem: denoising 1D signals. Section 2 re-
views background material. Section 3 describes two mod-
els and introduces a new method of learning a small number
of orthogonal filters. Finally, Section 4 experimentally com-
pares the learned filters with a handcrafted, finite difference
filter for a simple class of PWC signals. We do not purport
to improve on state-of-the-art results or to offer an especially
novel denoising method. Instead, this paper investigates how
the structure of a learning problem impacts the learned solu-
tions by examining a simple class of signals. These insights
could apply in more complex image reconstruction tasks. In
particular, the results motivate the use of bilevel approaches.

2 Background
Convolution (with circular boundary conditions) is de-

noted as ~. We write vectors as column vectors, use bold
to denote matrices (uppercase letters) and vectors (lowercase
letters), and use Julia style notation for functions, where f.(x)
means the function f applied element-wise to x.

Reconstruction aims to find x̂ to match the observed data,
y, and satisfy prior assumptions. Written as a cost function:

x̂ = argmin
x

1
2 ‖Ax− y‖22 + βR(x). (1)

The first term encourages consistency with observations via
the system model, A; the second, regularization term encour-
ages x̂ to match the prior assumptions; and the hyperparame-
ter, β, controls the relative importance of the two terms.

This work compares regularizers with co-sparse trans-
forms or filters. While synthesis approaches to sparsity are
common, recent co-sparse models show promising results,
e.g., [4], [5]. The model in co-sparse transform learning
is that a transform matrix, when left-multiplied, sparsifies
patches of a signal, i.e., Tsl tends to be sparse, where sl is
one of L training patches. Thus, the transform learning goal
is to find

T̂ = argmin
T∈T

∑L

l=1
‖Tsl‖0 = argmin

T∈T
‖TS‖0 , (2)
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whereD is the patch size and S ∈ CD×L is a matrix with one
training patch per column. To avoid trivial solutions such as
the zero filter or repeated filters, T ⊆ CK×D may be defined,
e.g., as the set of matrices with orthonormal rows [6]. The
co-sparse filter learning model is equivalent to (2) for corre-
sponding boundary conditions on the convolution and patch
extraction. Specifically, the filter perspective views each row
of T as a filter, hk, where hk ~ x is assumed sparse.

Section 3 discusses two approaches to learning the ele-
ments in T or h from training data. The first method learns
a transform that (approximately) sparsifies training data, us-
ing a relaxed version of (2). The learned transforms can then
be used in a regularizer for (1), typically with the assumption
that the learned transform separates noise (assumed to not be
sparsified by T) from signal (assumed to be sparsified by T).

The second method learns filters to best denoise the train-
ing data, according to the following task-based, bilevel set-up

γ̂ = argmin
γ

∑J

j=1

1
2 ‖x̂j(γ)− sj‖22 where (3)

x̂j(γ) = argmin
x

1
2 ‖x− yj‖22 +

∑K

k=1
eβk1′ψ.(hk ~ x)

(4)
where γ contains all learnable parameters (hk and βk), ψ is
a sparsity-promoting function, and yj is a simulated, noisy
version of the jth training sample, sj . Previous work [7]–[9]
also considers the bilevel set-up to learning co-sparse models
for reconstruction. This paper is inspired by those works and
provides additional motivation for the bilevel formulation by
directly comparing the two learning approaches.

3 Learning approaches
3.1 Constrained transform learning
One can relax (2) by splitting the argument [4]:

T̂ = argmin
T∈T

min
zl∈CK

∑L

l=1

1
2 ‖Tsl − zl‖22 + λ ‖zl‖0 . (5)

The tuning parameter λ trades-off enforcing sparsity (larger
λ) of the sparse codes, z, and forcing Tsl ≈ zl (smaller λ).

Using block coordinate minimization (BCM) to optimize
(5), the updates at iteration n are:

z
(n)
l = argmin

z∈CK

∑L

l=1

1
2 ‖T

(n−1)sl − z‖22 + λ ‖z‖0

= prox.(T(n−1)sl) (6)

T(n) = argmin
T∈T

‖TS− Z(n)‖2F, (7)

where Z ∈ CK×L contains the sparse codes in its columns.
The sparse code update (6) is a proximal problem. The prox-
imal operator for the 0-norm in (5) is hard-thresholding [10]
which is cheap to compute despite being non-convex.

When T describes matrices with orthonormal filters, the
transform update (7) is almost a standard Procrustes problem,

Q̂ = argmin
Q:Q′Q=QQ′=I

‖B−QA‖2F, (8)

Algorithm 1 Learning a wide transform matrix with or-
thonormal rows. Inputs: an initialization for the transform
(T(0) ∈ CK×D where K ≤ D), a matrix of training signal
patches (S ∈ CD×L), the number of iterations to perform
(N ), and the proximal operator of ψ (prox).

1: procedure PROCRUSTES-WIDE(T(0), S, N , prox)
2: Q, R = qr(T(0)′ ) . QR decomposition
3: T̃(0) = Q′

4: for n = 1 to N do . Perform N iterations
5: Z = T̃(n−1)S
6: Z1:K,: = prox.(Z1:K,:)
7: U, Σ, V = svd(ZS′)
8: T̃(n) = UV′

9: end for
10: return T̃

(N)
1:K,: . Remove dummy rows

11: end procedure

with solution Q̂ = UV′ where U and V are the left and right
singular vectors of BA′. However T is often rectangular, and
thus not unitary. When T has orthonormal columns, (7) is a
generalized Procrustes problem [11]. However, to compare to
TV approaches, we want to consider cases where T is wide.

Alg. 1 solves (7) when T is wide with orthonormal rows
(K < D) by learning a unitary, D × D transform with the
lastD−K rows containing “dummy” (irrelevant) filters. The
T update in line 8 uses the standard Procrustes problem (8).
Mathematically, this approach defines T̃ ∈ CD×D such that
the first K rows contain the filters from T and the remaining
rows contain the dummy filters. In terms of T̃, (5) is

̂̃T = argmin
T̃∈T̃

min
zl∈CD

L∑
l=1

1
2 ‖T̃sl − zl‖22 + λ ‖Wzl‖0 , (9)

where W =
[
I 0

]
∈ RK×D selects the first K elements of

z and T̃ is the set of D ×D unitary matrices.

3.2 Bilevel filter learning
To learn hyperparameters, γ̂, a general bilevel problem is:

γ̂ = argmin
γ

∑J

j=1
l(x̂j(γ);γ, sj), where (10)

x̂j(γ) = argmin
x

Φ(x;γ,yj). (11)

Here, l is an upper-level loss function (e.g., mean square error
between the jth training signal and x̂j) and Φ is a lower-level
objective function for learning x̂j that typically matches the
end-application of the learned hyperparameters (e.g., a recon-
struction problem). We assume the training data is noiseless,
then define a new variable, yj = Asj + n that is the for-
ward transform of the training data with noise, to use in the
lower-level problem. The bilevel approach does not require a
filter diversity constraint, since it should learn filters that are
best-suited to the lower-level task.

The strategy in bilevel approaches is to calculate the gra-
dient of l with respect to γ and then use a gradient descent
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method to minimize γ. One approach to finding the gradient
of the upper-level loss function is to apply implicit differentia-
tion to find an expression for the gradient of Φ with respect to
γ [12]. When the lower-level cost function is minimized by a
differentiable optimization algorithm, an alternative approach
is to “unroll” the lower-level optimization algorithm then cal-
culate the gradient using backpropagation, as is common in
convolutional neural networks (CNNs). However, unlike in
CNNs, if we unroll a sufficiently large number of iterations to
reach convergence, as in [13], the unrolling is still tied to an
optimization method with an explainable cost function. The
reverse method of calculating the gradient is given in [14].

To apply the co-sparse model in the bilevel setting with
unrolling, we can no longer use the 0-norm, as the corre-
sponding algorithm (6) is not differentiable. Instead, follow-
ing [9], we define the bilevel problem as given in (3)-(4) for
some sparsity-penalizing function ψ that is twice differen-
tiable. The vector of hyperparameters to learn, γ, contains
all elements in β and h.

Using gradient descent on (4), the differentiable lower-
level update is x(n+1) = x(n) − 1

L∇Φ(x(n);γ,y), where L
is the Lipschitz constant of Φ. For a given outer-level step,
the filters and tuning parameters are constant and

L = 1 + eβ0Lψ
∑

k
eβk ‖hk‖2 , (12)

where Lψ is the Lipschitz constant of the sparsity promoting
function ψ. We update L after every gradient step on the hy-
perparameters and we run a sufficient number of iterations to
reach convergence for each L.

4 Experiments
Our training data set is noiseless PWC 1D signals (1,024

for transform learning and 128 for bilevel filter learning).
Each signal has 32 elements with exactly three “jumps,”
which are indices where the left difference is non-zero. There
is at most one jump in any given length-4 patch. The sig-
nal values are uniformly distributed over [-1, 1]. We assume
circular boundary conditions. We define T as the set of
single, length-4 filters with unit norm, i.e., K = 1 and
D = 4. We quantify disparities between learned and hand-
crafted filters using the formula for the angle between vectors:
cos−1 (|〈z1, z2〉|/ ‖z1‖ ‖z2‖).

Our test data includes s1, a length-1000 input signal with
50 jumps (a slight generalization of our training data), and
s2, a collection of 128 signals created in the same way as
the training data but with a different random seed. All test
signal values are uniformly distributed over [-1, 1]. The cor-
responding noisy input signals, y1 and y2 are the true signal
plus mean zero Gaussian noise with a standard deviation of
0.1. We report the average root mean square error (RMSE),√

1
N ‖x̂− s‖2 where N is the signal length.
For the PWC signals considered here, we expect that the

best sparsifying filter corresponds to the “TV transform:”

TTV =
1√
2

[
0 1 -1 0

]
, (13)

which is the minimizer of the transform learning problem (2).

4.1 Transform learning

Using TTV as the initialization, we learned transforms for
(5) using Alg. 1 for different values of λ. In-line with our
empirical observations, a grid search over the free variables
in T, showed that, for large training sets,

T̂ =
[
-
√

1−2d
2 d -d

√
1−2d

2

]
, (14)

which is a smoothed version of the TTV transform. Without
loss of generality, we can assume 1

2 ≤ d ≤
1√
2

because of the
circular shift invariance. Taking (14) as the correct form for
the minimizer of (5), finding T̂(λ) is a 1-D problem. There-
fore, for a given λ, it is easy to sweep over d, compute the
cost function, and find the global minimizer d̂.

Fig. 1 shows the value of the cost function (5) and the
minimizers, d̂, for various λ values. As λ increases, the trend
is that d̂ decreases (the filter gets smoother). This behavior
corresponds to the learned filter moving from TTV to 22.5
degrees away from TTV, as seen in Fig. 2.

For denoising, we use (1) with A = I and

R(x) =
∑

l
min
zl

‖TPlx− zl‖22 + α ‖zl‖0 , (15)

where Pl is the matrix that extracts the lth patch from x. The
filter matrix, T, is either the handcrafted filter TTV defined
in (13) or a learned filter, taking the form given in (14) with
d = 0.67 (corresponding to λ = 0.23).

We use BCM to optimize (15). The x update is the solu-
tion to the least squares problem

x(i+1) = (I +
1

β

∑
l
P′lT

′TPl)
-1(y + β

∑
l
P′lT

′z
(i)
l )

=
1

1 + βd
(y + β

∑
l
P′lT

′z
(i)
l ),

which simplifies because T′T = I by the definition of T and∑
l P
′
lPl = dI since P creates patches in a circular man-

ner. The zl update is simply hard thresholding applied to
TPlx

(i+1)
l . We alternate updating x and z for 10,000 iter-

ations or until
∥∥x(i+1) − x(i)

∥∥ /∥∥x(i+1)
∥∥ < 10−6.

We did a grid search to find the parameters α and β that
yield the lowest MSE for s1. In practice, this would require a
validation data set, but we use a test signal to get an optimistic
error. For TTV, the best tuning parameters are α∗ = 0.025
and β∗=28. For T̂, they are α=0.006 and β∗=310. Tab. 1
reports the RMSE results.

One could also run a grid search over λ, creating a bilevel
transform learning problem. While this would be feasible in
our simple experiment, it would be impractical for models and
tasks such as those in [6].
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Fig. 1: Plot of the value of the cost func-
tion value (5) versus T as a function of d in
(14) for various λs. Smaller values of dmean
smoother filters. The points mark d̂.

Fig. 2: Plot of the angle (in degrees) between
the learned transform and TTV versus the
tuning parameter in (5).

Fig. 3: Scatter plot of the angle between TTV

and the learned filter, ĥ, versus the angle be-
tween TTV and the randomly initialized fil-
ter, h(0) (in degrees).

4.2 Bilevel filter learning
This section considers minimizing (3) with γ = [β1;h] and
ψ(z) =

√
|z|2 + 0.12 (Lψ = 10). We use Adam [15] with

the default settings for the γ gradient step since a line search
would be expensive (evaluating l requires solving the lower-
level function). The returned minimizer is the one with the
lowest loss function after 7,000 Adam iterations.

We first consider initializing h with hTV
..= TTV and

sweeping values of eβ1 between 0.001 and 0.35. With this
informed initialization for h, the mean and maximum angle
between the learned filters and TTV are 1.3 degrees and 1.5
degrees respectively. Further, the minimum upper level loss
function shows no obvious trend with the initialization of the
tuning parameter, β1.

The more interesting test of the non-convex bilevel prob-
lem is a random initialization. For this, we initialized h with
100 normalized Gaussian noise realizations and set eβ1 = 1.
There is a strong positive correlation (correlation coefficient
of 0.80) between the minimum loss function value and the an-
gle between the learned filter and TTV, suggesting the angle
from TTV is a reasonable indicator of the denoising perfor-
mance during training. Fig. 3 shows that, for a wide range
of random initial filters, the learned filters are all within 1.44
to 5.16 degrees of TTV. This result is promising considering
the highly non-convex nature of the bilevel problem.

To test denoising performance, we use (4) with the same
ψ as in training and the learned parameters. For comparison,
we report the denoising performance of hTV using (4), with
the filter norm and β1 tuned (19.5 and -4 respectively) using a
grid search to minimize RMSE for s1. Tab. 1 shows the results
for the learned filters corresponding to the smallest (best) and
largest (worst) training loss functions.

5 Conclusion
We started this investigation to discover why we did not

learn TTV using (5) with noiseless PWC training signals. We
showed that the smoothness in the learned transform results
from splitting the objective function as in (5), and that the
smoothness increases as the tuning parameter increases.

By construction, the learned transform achieves a lower
training loss (5) than TTV. Though this might suggest that the

Transforms Filters (Bilevel)
TTV T̂ hTV ĥbest ĥworst

s1 ∈ R1000 4.0 6.2 4.4 5.1 6.3
s2 ∈ R32 5.2 8.2 5.4 5.5 6.6

Table 1: RMSE ·100 for denoised test signals. Left columns: de-
noising using (15) with T being TTV or learned according to (5)
for λ = 0.23. Other values of λ (not shown) also yield higher
RMSE values than TTV. The (smoothed) learned transform per-
forms worse than TTV. Right columns: denoising using the lower-
level cost function (4) with hTV and the best and worst performing
filters learned using the bilevel method with random initializations.
The filters learned using bilevel perform better than T̂(λ = 0.23)
and similar to TTV, especially for s2, which mimics the training
data. Note that TTV in the left column performs better than hTV in
the right column due to the zero-norm in (15) (compared to the the
corner-rounded 1-norm in (4)).

learned transform is “better,” in fact the handcrafted transform
better denoises the test signals. The disparity is due to the
structure of the training objective: the transform is learned to
make training data approximately match sparse codes, which
is best accomplished by a smooth transform, rather than to
separate signal and noise for denoising.

This observation naturally leads to the task-based bilevel
formulation for learning filters based on denoising perfor-
mance. Our simple experimental results show the learned
filters perform similar to TV, exemplifying the benefit of the
bilevel approach, which is more important in problems with
no obvious handcrafted solution. Although this paper did
not discuss time complexity, optimizing the bilevel problem
(3) requires more computation than the transform learning
problem (5). However, once optimized, there is no need for a
hyperparameter grid search because the learned hyperparam-
eters were trained to work well in the lower-level task.

Bilevel for co-sparse filter learning is a relatively new re-
search area and there are many open questions. For exam-
ple, future research directions include rigorous comparisons
of the two approaches to optimizing the bilevel problem (the
implicit function theorem and unrolling), applying bilevel co-
sparse filter learning to image reconstruction problems, exam-
ining sensitivity to initialization for more complex problems,
and using application-specific upper-level loss functions.
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