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Abstract— The polyenergetic nature of the spectra in X-ray 

sources can cause artifacts and non-quantitative values in the 

reconstructed image because of the beam-hardening effect.  

There are several strategies to correct the beam-hardening 

artifacts, but, unless the spectrum is known, the bone values 

remain not quantitative. We recently proposed a quantitative 

method that avoids the use of the spectrum by characterizing the 

beam-hardening effect by acquiring a phantom composed of soft 

tissue and bone. However, this method needs a bone segmentation 

in a preliminary reconstruction that can be difficult in low-dose 

acquisitions. This work solves the segmentation problem by 

incorporating the previous characterization of the beam 

hardening effect in a statistical iterative reconstruction method.  

Evaluation using simulations showed a high reduction of beam-

hardening artifacts in low dose studies when using the proposed 

method, while recovering the real density values. 

Index Terms—Beam-hardening, CT, artifacts, penalized-

likelihood, streaks, polychromatic. 

I. INTRODUCTION 

The beam hardening effect in computed tomography derives 

from the polychromatic nature of the radiation produced by X-

ray tubes. Due to the energy dependence of mass attenuation 

coefficients, low energy photons are preferably absorbed, 

causing a shift of the mean energy of the X-ray beam to higher 

values. This effect leads to two main artifacts in the uncorrected 

images: cupping in homogeneous regions and streaks between 

dense areas in heterogeneous regions [1]. 

Several strategies exist in the literature to compensate for this 

effect. Physical filters are generally used to pre-harden the 

beam before reaching the sample, but this is not enough to 

remove the artifacts. Another method implemented in most 

commercial scanners is the water-linearization, based on a prior 

calibration with a water-equivalent phantom. The calibration 

step characterizes the relation between the attenuation values 

and the quantity of material traversed, that we will refer to as 

beam-hardening function. This method models the object as 

composed only of soft tissue and corrects only cupping artifact 

[2]. To correct also streaks, Nalcioglu et al. [3] applied a 

correction factor to the original projections by using the 

knowledge of the spectrum, the linear attenuation coefficients 

and the thickness of soft tissue and bone traversed estimated by 

segmenting a preliminary reconstruction. Joseph et al. [4] 

proposed a similar idea, modeling the corrected data with a 

second-order polynomial dependent on the bone traversed 

thickness, also needing a complete characterization of the 

spectrum to obtain the optimum parameters for this model. This 

need to know the spectra was avoided in [5, 6], based on a linear 

combination of basis images to correct streaks. That approach 

has two main limitations: the coefficients of this linear 

combination are obtained iteratively maximizing the flatness of 

the soft tissue areas, which could reduce the soft-tissue contrast, 

and it did not provide quantitative values in the bone. 

To obtain quantitative values without knowing the spectrum, 

we recently proposed two methods extending the water-

linearization to characterize the 2D beam-hardening function 

corresponding to soft tissue and bone [7, 8]. In [8], we used a 

phantom composed of soft tissue and bone in a calibration step. 

To avoid the calibration step, in [7] we characterized the 

function by using the information provided by the sample. Both 

methods have two disadvantages. First, the image values are the 

attenuation coefficients of the tissues, which depend on the 

acquisition energy. Second, they need the quantity of traversed 

bone, requiring a good bone segmentation, which may hinder 

their use in low-dose studies.  

To deal with low-dose studies and eliminate the dependence 

of the attenuation values on the energy, Elbrakri et al. presented 

a statistical method that requires knowledge of the spectrum [9, 

10]. That requirement was avoided in [11] with a simplified 

statistical algorithm that parameterizes the beam-hardening 

function following the model proposed by Joseph and Spital 

[4], but where the parameters of the model are found 

empirically. To avoid the issues related to this parameter 

optimization, we combined the works [7] and [11] in [12] to 

eliminate the beam-hardening artifacts. However, it was also 
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necessary to know the bone density. This paper combines the 

previous works [8, 11] by calculating the beam-hardening 

function through a calibration step with a phantom composed 

of soft tissue and bone. 

II. MATERIALS AND METHODS 

A. Forward model 

This section briefly reviews the forward model in [11, 12] for 

clarity. The measurements are modeled as independently 

distributed Poisson random variables corrupted with extra 

background counts [13]: 

��  ~ ������	 
 ��  �, �  1, … , �         (1) 

with: 

��  � ������� � �������� �� �  �             (2) 

where the integral in the exponent follows the trajectory of the 

line Li, !��� is the attenuation coefficient at each energy �,  ����� 

is the incident intensity and the term  � accounts for mean 

scatter and background signals for the ith ray. 

We model the attenuation coefficient in (2) at pixel j as: 

!"���  ∑ $%&'���('
")"*'+,            (3) 

where ) is the density, $%&' is the mass attenuation coefficient 

of the material k, and ('
"
 is a unitless fraction that describes the 

contribution of the material k to attenuation in pixel j. In this 

work, we assume that the object contains only soft tissue (ST) 

and bone (B). We define the contribution of each tissue type to 

the line integral along the ith ray as line density thickness: 

-./�)�  ∑ %�"(./
" 0)"1)"

2
"+,         (4) 

-3�)�  ∑ %�"(3
"0)"1)"

2
"+,           (5) 

where %�"  are the elements of the system matrix. Here we allow 

the unitless fraction (('
"
 ) to be between 0 and 1, i.e., the pixels 

contain mixtures of tissues [11]. Eq. (2) for the expected value 

of the measured data along path i becomes: 

���)�  � ������� � �������� �� �  �  

 ����45678� �9�,6:� �9�; �  �                                (6) 

where 

 �� ≡ � �������           (7) 

and the beam-hardening function, F, is: 

=�-./ , -3�  > log � B���
B ��CDE78���678�CDE:���6:  ��,   (8) 

dropping the dependence on ray i for simplicity. 

B. Beam-hardening function 

We obtain the beam-hardening function =�-./ , -3� 

simulating a digital calibration phantom made of soft tissue and 

bone, as described in [8]. The phantom has two semicircles of 

each material to maximize the combination of traversed soft 

tissue and bone. Both tissues are segmented in a preliminary 

reconstruction with Filtered Back Projection (FBP) using 

binary thresholding and the resulting bone and soft-tissue 

masks are projected to obtain the traversed thicknesses. Fig. 1 

shows the workflow of the calibration step. 

 

Fig. 1.  Workflow of the calibration step. 

C. Cost function 

The negative log-likelihood for independent Poisson 

measurement is: 

F�)�  > ∑ ℎ� H=0-./�)�, -3�)�1IJ�+,      (9) 

where 

ℎ����  >�� log������ �  �� � ����� �  �   (10) 

Since minimizing F�)� is generally an ill-posed problem, 

regularization is included by adding a penalty term to control 

how much the object ) departs from our assumptions about 

image properties. In this work, we use a 3D roughness penalty 

function with the convex edge-preserving Huber potential. The 

resulting penalized cost function is: 

Φ� )�  F�)� � LM�)�      (11) 

where L is a scalar that controls the tradeoff between the data-

fit and penalty terms. 

D. Algorithm 

We derive an iterative algorithm based on separable quadratic 

surrogates using the principles of optimization transfer [14], 

resulting in the following update: 

)NO,  )N > P�,∇Φ�)N�     (12) 

where D is a diagonal matrix that influences the rate of 

convergence. We originally designed D to ensure that the 

algorithm monotonically decreases the cost function. As in 

[14], in practice we choose the elements of D approximately by 

using the precomputed curvature: 

�"  H$%&./R 0�STT1 � $%&3R0�STT1I ∑ %�"J�+, ∑ %�"" ��       (13) 

where the effective $%&0�STT1 values for each tissue are 

approximated using the derivative of beam-hardening function 

at (0,0). 
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III. EVALUATION 

Preliminary evaluation was based on a simulation of a 2D 

phantom of soft tissue (1.06 g/ cm3) with ten cortical bone 

inserts having density 1.92 g/ cm3 and two inserts of adipose 

tissue with density equal to 0.9 g/ cm3 (Fig 2). 

 

Fig. 2.  Test phantom with different cortical bone inserts and two adipose tissue 

inserts inside of a soft-tissue ellipse. 

The polyenergetic X-ray datasets were generated using 

MIRT (https://github.com/JeffFessler/mirt) with a 45 kVp 

spectrum and 0.1 mm aluminum filtration, commonly used in 

preclinical studies. We chose 105 and 106 number of counts per 

ray to simulate low-SNR and high-SNR scenarios respectively. 

We obtained 60 projections and 180 projections of 512×512 

pixels within a 180-degree span for the low-SNR and high-SNR 

cases respectively. These datasets were reconstructed with FBP, 

with FBP corrected by the simple calibration method 

(FBP+sCM) proposed in [7], by a monochromatic statistical 

algorithm [15] and the proposed polyenergetic statistical 

algorithm. Root mean square error (RMSE) with respect to the 

true density phantom of the FBP, the FBP+sCM, the 

monoenergetic and the proposed methods is calculated in three 

ROIs (whole phantom, soft tissue and bone). 

IV. RESULTS 

Fig 3. and Fig. 4, show the results for the high and low SNR 

scenarios respectively. Results of FBP+sCM show a good 

compensation of beam-hardening artifacts but no correction of 

streaks in the low-SNR scenario. The monoenergetic algorithm 

reduces the streaks due to low-sampling in the low-SNR case, 

but it is not able to eliminate completely the beam-hardening 

artifacts. The proposed method is able to correct both the beam-

hardening artifacts and the streaks associated to low-sampling 

in both scenarios.  

Table I shows the RMSE for the different scenarios of high 

and low SNR and the different corrections, where the proposed 

method has the lowest value in all the cases. 

TABLE I 

RMSE FOR THE EVALUATION PHANTOM 

    RMSE FBP FBP+sCM Monochromatic 
Proposed 

Method 

High 

SNR 

Totala 0.64 1.20 0.68 0.06 

Boneb 2.5 4.90 2.69 0.09 

STc 0.21 0.16 0.20 0.06 

Low 

SNR 

Totala 0.67 1.14 0.68 0.06 

Boneb 2.52 4.53 2.69 0.09 

STc 0.28 0.32 0.19 0.06 

Units of density g/cm3. 

 aAverage true density of 1.08 g/cm3. 
 bAverage true density of 1.92 g/cm3. 
 cAverage true density of  1.02 g/cm3 

 

 

Fig. 3.  Results for the 180 projections and high-SNR datasets using FBP (top-

left), FBP + sCM (top-right), monoenergetic statistical algorithm (bottom-left) 

and proposed method (bottom right). 

 

 

Fig. 4.  Results for the 60 projections and low-SNR datasets using FBP (top-

left), FBP + sCM (top-right), monochromatic statistical algorithm (bottom-left) 

and proposed method (bottom right). 

V. CONCLUSIONS 

We have presented a new statistical reconstruction algorithm 

that includes beam-hardening correction based on the modeling 

of the polychromatic effect with a simple phantom composed 

of soft tissue and bone, avoiding the need of spectrum 

knowledge or tuning of parameters. 

Results on simulated data show reduced dark bands 

associated with beam-hardening and reduced streaks due to low 

number of projections, while recovering density values.   

Future work includes evaluation on real data. To this end, we 

need to search for soft tissue and bone equivalent materials to 

build a realistic calibration phantom, since here we considered 

an ideal one not possible to manufacture. 
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