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ABSTRACT

Most existing fully automatic or semi-automatic medical imaging segmentation methods start from reconstructed
images. However, a framework for joint segmentation and image reconstruction can be beneficial because both
tasks can be mutually dependent. Better segmentation can improve image reconstruction and vice-versa. We
propose to perform joint PET image reconstruction and fully automatic PET image segmentation, using the CT
image from a PET-CT scanner as a given input. Within a unified framework, our proposed method generates
a PET image and a segmentation mask utilizing two connected trained networks: 1) a network dedicated to
denoising the PET image with boundary information from the segmentation network. While reconstructing the
PET image, the algorithm exploits the denoised image recovered from the trained network. 2) a segmentation
network dedicated to estimating the lesion and background (e.g., liver) masks using PET/CT information. A
boundary indicator image is generated based on the gradients of segmentation masks. We simulated extremely
low-count PET, typical for Y-90 imaging, where traditional segmentation and reconstruction methods tend to
perform poorly. For PET reconstruction, proposed method using true boundary improves CNR (RMSE) by 28.9
% (49.1%) and 16.8 % (13.2%) compared to EM and proposed method without using boundary. For multi-modal
segmentation, our proposed method improved global Dice score in tumor by 70.6% compared to our proposed
segmentation framework using only CT information.
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1. INTRODUCTION

Lesion segmentation has been identified as a factor that leads to significant variability in Y-90 radioembolization
dosimetry.1 PET-based segmentation is particularly challenging due to the inherent noise and poor spatial reso-
lution. The (radiologist defined) manual segmentation on morphological images currently used for dosimetry is
time consuming, labor intensive and has high intra- and inter-observer variability.2,3 Most existing fully auto-
matic or semi-automatic medical imaging segmentation is typically performed after reconstruction and typically
uses a single modality. This sequential approach leads to propagation of errors from noisy reconstructions to the
segmentation step. Furthermore, using only a single modality does not fully exploit the information from dual-
modality systems like PET/CT. Hence, fully automatic joint segmentation-reconstruction using multi-modality
images, specifically the CT image from a PET-CT scanner, as proposed here is highly desirable. Previously, for
PET/MRI a joint regularization with a common edge function4 was proposed using a traditional (non-learning)
algorithm that has the potential to fail at low counts, typical for Y-90 PET. We propose a deep-learning based
unified PET/CT reconstruction and fully automatic segmentation method that exploits the mutual dependency
of the two tasks; better estimation in one can benefit the other.
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Figure 1. High-level block diagram of our proposed method

2. METHODS

2.1 Joint PET/CT reconstruction and segmentation framework

We propose to perform joint PET image reconstruction and PET/CT segmentation (optimizing CT recon-
struction is not a focus of this work). Our proposed joint segmentation-reconstruction framework exploits the
capabilities of deep learning networks. The proposed unified framework is inspired by the following variational
problem:

x̂ = arg min
x

f(x) + βR(x;w), (1)

where x is the unknown PET image, f(x) is the Poisson negative log-likelihood for measurement y and estimated
measurement means ȳ(x) = Ax + r̄, the matrix A denotes the system model, r̄ denotes the mean background
events such as scatter and random coincidences, R(x;w) is the joint regularization term, w is a boundary indicator
image (zero-valued at boundary) given by segmentation network utilizing both CT and PET modalities, and β
is the regularization parameter. The regularization term is composed of convolutional operations followed by a
thresholding operation to promote sparsity:

R(x;w) =

K∑
k=1

‖ck ∗ x− zk‖2W + αk ‖zk‖1 , (2)

where W = diag{w}, {ck : k = 1, ...,K} is a set of convolution filters, ∗ denotes convolution operation,
{zk : k = 1, ...,K} is a set of sparse codes, and K is the number of filters. The diagonal weighting matrix W is
designed to avoid smoothing across boundaries between different regions.5,6

A traditional optimization approach for solving (1) would be to use a block coordinate descent algorithm
that alternatively updates {zk} and x :

z
(n+1)
k = arg min

zk

∥∥∥ck ∗ x(n) − zk

∥∥∥2
W

+ αk‖zk‖1 = T (ck ∗ x(n), αk � 2w) (3)

x(n+1) = arg min
x

f(x) + β
( K∑
k=1

∥∥∥ck ∗ x− z
(n+1)
k

∥∥∥2
W

)
, (4)

where T (·, ·) is the element-wise soft thresholding operator:

T (t, q)j := sign(tj) max(|tj | − qj , 0). (5)
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When we solve (4), we do not penalize the filtered image at jth voxel when wj = 0. Since w is a boundary
indicator image (zero-valued at edge), our formulation enforces taking no priori information (such as similarity
between adjacent voxels) on the edge (where wj = 0) area, hence promoting edge-preserving. Inspired by this
edge-preserving regularization method with convolution operators, our proposed framework alternatively updates

the reconstructed image x and the denoised image u with convolution filters c
(n)
k and soft-thresholding values

α
(n)
k trained at each iteration:

u(n+1) =

K∑
k=1

c̃
(n)
k ∗

(
W
(
T (c

(n)
k ∗ x(n), α

(n)
k � 2w)

))
(6)

x(n+1) = arg min
x

f(x) + β
∥∥∥x− u(n+1)

∥∥∥2
2
, (7)

where c̃
(n)
k is flipped version of c

(n)
k . (3)-(4) is identical to (6)-(7) when c

(n)
k is fixed at each nth iteration and∑K

k=1 C
T
kWCk = I where Ck is sparse matrix satisfying Ckx ⇐⇒ ck ∗ x. In the training phase, we train

the set of filters {ck : c1, ..., cK} and soft-thresholding values {αk : α1, ..., αK} to map the previously estimated
image to high quality image (e.g., true image if possible) at each iteration:

{ĉ(n)1 , . . . , ĉ
(n)
K }, {α̂

(n)
1 , . . . , α̂

(n)
K } = arg min

{ck},{αk}

∥∥∥∥∥xtrue −
K∑
k=1

c̃k ∗
(
W
(
T (ck ∗ x(n), αk � 2w)

))∥∥∥∥∥
2

2

. (8)

Fig. 1 illustrates equation (6)-(7). To generate the boundary image w, we use multimodal data (PET/CT).
As shown in Fig. 1, using given CT image and sequentially updated PET image x(n), the segmentation network
generates the segmentation masks. A boundary image w is generated based on the gradients of segmentation
mask. For segmentation network, we implemented 3-D version of U-Net.7 Input of segmentation network is four
dimensional array (channel×image depth×image height×image width). First channel is CT image and second
channel is PET image.

2.2 Experimental setup: PET simulation

We use LiTS (Liver Tumor Segmentation) dataset8 to show the efficacy of our proposed method. Among 130
training samples in 3-D, we use 15 samples for training segmentation network and PET denoising module, and
4 samples for testing the performance. We use label images of LiTS dataset for generating true PET image.
We changed the tumor value to 5 to set the tumor-to-liver ratio as 5:1 a typical value in patients following
Y-90 radioembolization. We downsample the CT sized label image (512×512×CT slice#) to PET sized image
(128×128×PET slice#) with a voxel size 4.0×4.0×4.0 (mm3). We simulated the extremely low-count scan
with total true coincidences and random fraction based on numbers from patient PET imaging performed after
radioembolization.9 Fig. 2 shows CT and label image provided by the dataset and PET and boundary image
that we generate based on label image.

2.3 Experimental setup: Training denoising and segmentation networks

2.3.1 PET denoising network: Sparse convolutional autoencoder

We train 3D convolutional filters and thresholding values in each iteration using PyTorch10 deep-learning library.
We train a 10 outer-iteration where each outer-iteration has K = 192 sets of thresholding values and convolutional
encoding/decoding filters. We set the size of each filter as 3× 3× 3. We use Adam optimization method to train
the network with learning rate of 10−2 for encoding filters, 10−3 for decoding filters, and 10−1 for thresholding
values. We use 400 epochs to train the denoising network at each outer-iteration.

2.3.2 Segmentation network: U-Net

For training U-Net, we also use Adam optimization method with learning rate of 10−2. We set the number
of convolutional filter channels of first layer of encoder as 32 with four times of contraction and four times of
expansion.
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Figure 2. LiTS dataset provides CT image (a) in HU unit and label image (b) (tumor:2, liver:1) corresponding to CT. We
generated PET image (d) simulating Y-90 PET after radioembolization. We set the tumor-to-liver ratio as 5:1. Image
(e) shows true boundary based on label image. Boundary is zero-valued. Slice thickness of PET-sized images (c)-(e) is 4
times that of CT-sized images (a)-(b).

2.4 Evaluation metrics

We evaluate PET reconstruction performance with contrast to noise ratio (CNR) and root mean squared error
(RMSE):

CNR =
CLesion − CLiver

STDLiver

RMSE (%) =

√∑
j(xtrue[j]− x̂[j])2

JFOV
× 100,

where CVOI is mean counts in the volume of interest (VOI), STDLiver is standard deviation between voxel values
in background liver, and JFOV is the total number of voxels in field of view (FOV). We evaluate segmentation
performance with global Dice similarity coefficient:8

Dice(A,B) =
2|A ∩B|
|A|+ |B|

,

where A is a estimated segmentation mask and B is a true segmentation mask.

3. RESULTS

For evaluation of PET reconstruction, we compare the proposed joint framework (using true or estimated bound-
ary) to the standard EM (1 subset), proposed PET reconstruction method without using boundary information.11
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Figure 3. Segmentation results (a)-(b) and reconstructed images (c)-(e) from different reconstruction and segmentation
methods.

R(x;w) in (2) is replaced by

R(x) =

K∑
k=1

‖ck ∗ x− zk‖22 + αk ‖zk‖1 . (9)

For evaluation of segmentation, we compare the proposed method to the segmentation network using only single
modality (CT). The proposed method with or without boundary information significantly improves overall re-
construction performance over the standard reconstruction method. See Table 1 and Fig. 3(c)-(e). Table 1 shows
that proposed method achieves best results in all evaluation metrics when true boundary is given. In particular,
proposed method using true boundary improves CNR (RMSE) by 28.9 % (49.1%) and 16.8 % (13.2%) compared
to EM and proposed method without using boundary. Our proposed method gives more clear improvement
in segmentation. See Table 2 and Fig. 3(a)-(b). Our proposed method improves tumor Dice score by 70.6%
compared to the segmentation method using only single modality (CT).

4. DISCUSSION AND CONCLUSION

We presented a framework that jointly reconstructs and segments the PET images aided by CT images from
multimodal PET/CT systems. This paper is a proof-of-concept study to demonstrate that segmentation and
reconstruction tasks can be mutually beneficial to each other. The proposed joint multi-modality framework
achieves significant qualitative and quantitative improvements over the standard image reconstruction and the
segmentation utilizing single modality. However, further investigation of the potential challenges including
impact of misregistration between modalities and inconsistency in activity distribution (tumor-to-liver ratio,
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Table 1. Evaluation result on PET reconstruction. Numbers shown here are averaged over 4 testing samples.

Method CNR RMSE

EM 8.72 14.36

Proposed method w/o boundary 9.62 8.41

Proposed method w/ true boundary 11.2 7.30

Proposed method w/ estimated boundary 9.89 8.41

Table 2. Evaluation result on segmentation. We evaluate on 4 testing samples combined into a single volume.

Method Dice tumor Dice liver

Proposed method using single-modality (CT) 0.51 0.92

Proposed method using multi-modality (PET/CT) 0.87 0.93

uniformity in background liver) is required. Moreover, in Y-90 imaging, anatomical and emission image based
lesion boundaries can differ significantly not only due to variability in segmentation, but also due to tumor biology
(micro-spheres are delivered based on blood flow, not metabolized). We plan to investigate whether including
such cases in our training set would enable the CNN to learn those outlier cases. Future work also includes
training and testing on measurement datasets where the activity distribution is non-uniform and misregistration
can be significant as well as training neural networks for segmentation and denoising together with a weighted
combination of loss functions.
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