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Abstract—Current standard methods for voxel-level dosimetry
in radionuclide therapy suffers from a tradeoff between accu-
racy and computational efficiency. Monte Carlo (MC) radiation
transport algorithms are considered as the gold standard, but
are associated with long computation time, while fast voxel dose
kernel (VDK) based methods can be inaccurate in the presence
of tissue density heterogeneities. This paper investigates a deep
residual Convolutional Neural Networks (CNN) approach that
learns the difference between the MC and the VDK dose-rate
maps to address the speed-accuracy trade-off issue. As with
MC and VDK-based dosimetry, the input to the CNN was the
patient’s SPECT activity map and CT-based density map. MC
dosimetry was used only during the training process to generate
ground truth training labels. Furthermore, to potentially account
for the degradation of dose-rate maps due to poor SPECT
spatial resolution, we trained the CNN using dose-rate maps
directly corresponding to phantom activity/density maps that
were generated from patient’s PET scans. The test data consisted
of phantom simulations and one patient who underwent 177Lu
DOTATATE therapy for neuroendocrine tumors. In phantom
cases, the lesion/organ mean dose-rates from ground truth (GT)
agreed better with the CNN dose-rates compared to VDK with
density scaling, with an average of 60% improvement for lesions
and 55%, 63% improvement for left/right kidney, respectively.
For all regions, the normalized root mean square error (NRMSE)
relative to GT was substantially lower with CNN than with
VDK and MC, i.e., an average of 23%, 22% improvement for
lesion, respectively. Using a GPU, the CNN took only about 2.0
seconds to generate a patient’s 512×512×130 absorbed dose-rate
map while the same calculation took about 40 minutes using
our fast in-house Dose Planning Method (DPM) MC algorithm
that runs on a CPU. In conclusion, the proposed CNN approach
demonstrated consistently higher accuracy than VDK-density
scaling and comparable accuracy versus MC and is fast enough
to be used clinically.

I. INTRODUCTION

IN dosimetry guided treatment planning of internal radionu-

clide therapy, it is important to have accurate and compu-

tationally efficient methods for voxel-level dosimetry estima-

tion. Coupling a patient’s own images with full Monte Carlo
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radiation transport is broadly accepted to be the gold standard

for patient specific voxel-level dosimetry. However, running

enough histories of MC is very computationally expensive and

time consuming thus it can be impractical for the clinical use.

Faster voxel dose kernel (VDK) methods such as those based

on Medical Internal Radiation Committee (MIRD [1]) voxel

S-values, can be inaccurate in the presence of heterogeneous

tissues, e.g., at the liver-lung interface. Moreover, the accuracy

of dose estimation by both MC and VDK methods can be

significantly degraded by the poor SPECT camera spatial

resolution.

Recently, deep learning has achieved much success in med-

ical imaging. For example, U-Net [2] showed the state-of-the-

art performance on challenging medical imaging segmentation

task. In nuclear imaging, deep learning methods were also been

pursued in nuclear medicine [3] including for dosimetry tasks.

Lee et al. [4] applied a 3D U-Net with positron emission

tomography (PET) and CT-based density image patches as

input to accurately and efficiently predict 3D voxel-level dose-

rate maps. Götz et al. [5] proposed a hybrid Deep Neu-

ral Network - Empirical Mode Decomposition (DNN-EMD)

method that could enhance the precision and reliability of dose-

rate estimations. Akhavanallaf et al. [6] employed a CNN to

represent specific S-value kernels to predict the distribution of

deposited energy; that method had comparable performance to

direct MC approach. A limitation of CNN training in these

prior studies [4, 5, 6] is that the ground truth dose distribution

was derived from SPECT-based activity maps where the poor

SPECT resolution could limit the voxel-level dose-rate accu-

racy. To overcome this limitation, we proposed a CNN training

strategy that had the following features:

1) We adopted images from phantoms instead of patients for

training so that the CNN can be trained by the ground

truth without SPECT resolution effect.

2) We used patient 68Ga PET scans to generate phantoms

for training/testing to make simulated activity distribu-

tions that were realistic yet in higher resolution than

possible with SPECT-based phantoms.

Furthermore, we applied residual learning by training the CNN

to only learn the difference between the MC ground truth

and the VDK dose-rate map so that the CNN model could

potentially be simplified. Our proposed method is theoretically

applicable to other radionuclides for internal therapy dosimetry

in general; in this work, the implemented neural network was

for 177Lu DOTATATE therapy of neuroendocrine tumors.
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II. METHOD

A. Virtual Patient Phantom Generation & Data Set

Prior to 177Lu DOTATATE therapy, patients undergo di-

agnostic 68Ga DOTATATE PET/CT imaging to determine

the eligibility for 177Lu therapy. To generate phantoms for

training/testing, we selected thirteen such 68Ga PET images

(nine were used for training and the rest for testing) from

our clinic patient database. The selected PET activity maps

were then registered into CT image space (512 × 512 × 130
with voxel size 0.98 × 0.98 × 3mm3) followed by extracting

130 slices that covered the field of view of SPECT camera

with liver and kidney centered. Meanwhile, the corresponding

CT images were converted into density maps according to the

following formula that was determined from a prior calibration

measurement using a phantom with 16 tissue equivalent rods:

ρ(HU) =

{

0.00108 ·HU + 1.02351, HU ≤ 0
0.00069 ·HU + 1.03107, HU > 0

. (1)

Next, 177Lu SPECT/CT projections with 128 views were

generated using the SIMIND MC code [7] where the inputs

were activity maps and density maps generated above. We

simulated ∼2 billion photon histories to generate projections

with high statistics. The projection counts were then scaled to

4 count levels (1.9e7, 5.5e6, 4.4e6, 3.0e6) that were chosen

based on the counts of SPECT/CT that typically imaged at 4

time points within 7 days after therapy corresponding to one

of our 177Lu patients. An in-house developed OSEM SPECT

reconstruction algorithm (16 iterations, 4 subsets, scatter and

attenuation correction, collimator-detector response modeling)

was applied after adding Poisson noise to the scaled projec-

tions. To prevent under/over-fitting, we randomly selected 20%

of training slices to serve as validation dataset. In addition, a

patient’s SPECT/CT scan at day 0 post 177Lu DOTATATE was

also included in our test dataset.

B. Monte Carlo Dosimetry & Voxel Dose Kernels

To provide the ground truth for training/testing, true activity

and density maps were directly input to our previously devel-

oped Dose Planning Method (DPM) Monte Carlo code [8] to

generate absorbed dose-rate maps with full radiation transport

simulating ∼1 billion histories.

To provide the VDK dose-rate maps for residual learning,

soft tissue voxel kernels (beta particle kernel of size 9× 9× 9
and photon kernel of size 99 × 99 × 99, both have voxel

size 0.98 × 0.98 × 3mm3) were also generated by the same

DPM MC code. After convolving the VDKs with the normal-

ized 3D SPECT activity maps, each voxel was multiplied by

1.04 (g/cm3) and divided by CT-derived local voxel density

(g/cm3) as a simple correction to account for differences in

density.

C. CNN Training

Different from [4] and [5] where a 3D U-Net was applied,

we first extracted the depth features of the concatenated

inputs using three 3D convolutional layers (with kernel size

7×7×5, 7×7×3, 7×7×3, respectively). Next, we implemented

a 2D U-Net that had 4 down-sample and up-sample layers

with 16 initial filters and added the VDK dose-rate map to

the 2D U-Net output to obtain the final CNN dose-rate map.

Thus, the parameters of CNN were updated only according

to the difference between GT dose-rate maps and VDK dose-

rate maps. Fig. 1 shows our CNN model. To cover the range of
177Lu beta particles (maximum CSDA range in water = 1.8mm

[9]) and part of emitted photons that are low in intensity, we

resized the 3D input SPECT activity/CT-derived density maps

into packs containing 5 adjacent slices for each side. Thus

there were two 3D input arrays of size (512× 512× 11 with

slice thickness 3mm) and one 2D output of size (512 × 512)

corresponding to the dose distribution in the middle slice of

the input arrays. Together with phantom generation, Fig. 2

summarizes our entire workflow.

Fig. 1. Our CNN Architecture.
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Fig. 2. Entire Workflow of our proposed method.

D. Evaluation Metrics

1) Mean dose error (MDE). For each organ/lesion, MDE

is defined as the absolute error of the mean dose-rate

relative to GT across that organ/lesion.

2) Normalized root mean square error (NRMSE). The

NRMSE was calculated by:

NRMSE =

√

1

np

∑np

j=1

(

x̂j − xj

)2

√

1

np

∑np

j=1
x2

j

, (2)

where np is the total number of voxels, x is the ground

truth (GT) image, x̂ denotes the estimated image and the
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subscript j indicates the jth voxel of the corresponding

image.

III. EXPERIMENTS

A. Implementation Details

To cover different input count levels, we normalized (divided

by the sum) each SPECT activity map put into the CNN. Then

we scaled the normalized SPECT along with the VDK and

GT dose-rate maps with a constant value so that they have

similar range with the density maps. The CNN was trained

using ADAM optimizer to minimize the mean square error

(MSE) with dynamic learning rate (an initial value 0.001

with ReduceOnPlateau management strategy) and batch size

32 for 200 epochs on two Nvidia Tesla V100 GPUs. The

training/validation loss converged to 288/410 after 4 hours of

training for 200 epochs, as demonstrated in Fig. 3.

niter
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s

Fig. 3. Training/Validation MSE loss versus number of epochs.

B. Virtual Patient Phantom Results

Visually, there was much better agreement between GT and

dose-rate maps generated by CNN than those generated by

VDK with density scaling and MC as evident in Fig. 4. In

Fig. 4(A), CNN revealed clearly separated small lesion and

kidney. In Fig. 4(B), CNN showed improved resolution of

kidney than VDK and MC relative to GT. For quantitative

results, Table. I and Table. II compared the average MDE

and NRMSE across all test phantoms with the corresponding

range shown in the parenthesis. For all organs in I, the GT

agreed better with CNN than with VDK. In particular, the

error of mean dose-rate had an average of 50%, 60%, 40%,

55% and 63% improvement in healthy liver, tumor, spleen

and left/right kidney, respectively. The NRMSE relative to

GT was also substantially lower for CNN than for VDK,

for all regions evaluated in Table. II, where CNN improved

NRMSE by 7%, 23%, 27%, 15% and 11% in healthy liver,

tumor, spleen and left/right kidney compared to VDK with

density correction. Besides, in all of the cases except the MDE

in healthy liver, CNN also showed consistent improvement

compared to the MC. For example, in tumors, spleen and

left/right kidney, CNN demonstrated an average of 58%, 44%,

24%, 56% improvement for MDE, and an average of 22%,

28%, 16%, 11% improvement for NRMSE, respectively.

SPECT Density DoseGT

DoseMC DoseCNN
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VDK

MC

CNN

SPECT Density

DoseMC

GT
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CNN
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DoseCNN
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Fig. 4. VDK, MC and CNN dose-rate maps for test phantoms relative to GT.

TABLE I
COMPARISONS OF VDK, MC AND CNN IN MEAN DOSE ERROR ACROSS

ALL TEST PHANTOMS.

Organ VDK w/ density MC CNN
Healthy liver 3.2% (1.9-6.4) 1.0% (0.1-3.7) 1.6% (0.4-2.7)

Liver 4.0% (1.8-6.4) 2.1% (0.1-4.2) 1.9% (0.4-3.5)

Tumor 13.7% (0.5-24.4) 13.2% (0.1-23.8) 5.5% (0.8-13.0)
Spleen 4.5% (2.2-6.8) 4.8% (2.8-6.6) 2.7% (0.4-6.2)

Left kidney 2.9% (1.9-4.2) 1.7% (0.9-2.6) 1.3% (0.2-2.1)

Right kidney 5.6% (1.2-9.7) 4.8% (2.8-6.6) 2.1% (0.6-5.1)

TABLE II
COMPARISONS OF VDK, MC AND CNN IN NRMSE ACROSS ALL TEST

PHANTOMS.

Organ VDK w/ density MC CNN
Healthy liver 22.3% (18.9-27.1) 22.7% (19.2-27.4) 20.8% (17.0-26.1)

Liver 21.6% (17.8-24.9) 21.8% (18.1-25.0) 19.4% (15.4-22.1)

Tumor 22.4% (16.3-32.6) 22.3% (16.5-32.3) 17.3% (13.2-28.8)
Spleen 17.7% (16.2-20.3) 18.0% (16.7-20.3) 12.9% (10.7-17.7)

Left kidney 21.5% (20.4-23.7) 21.7% (20.7-23.8) 18.3% (15.1-21.9)
Right kidney 21.6% (16.5-25.3) 21.7% (17.0-25.0) 19.3% (15.4-21.5)

C. Patient Study

Although the GT dose-rate map was unknown for patients,

potential improvement could be seen in CNN dose-rate maps

compared to VDK and MC dose-rate maps. Fig. 5 visualizes

the first scan that was taken at day 0 after 177Lu DOTATATE

for a test patient, where the necrotic lesion and the small lesion

at the left side of the liver showed a potentially better dose-rate

recovery.

D. Time cost

Table. III shows the computation time (for image size

512×512×130) of VDK, MC and CNN running on CPU/GPU.

Calculating VDK dose-rate map took about 20 seconds using a

single CPU processor (Intel Core i9 @2.3 GHz) and 10 seconds

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 05,2022 at 20:47:22 UTC from IEEE Xplore.  Restrictions apply. 



SPECT Density

Dose VDK Dose MC Dose CNN
Necrotic lesion

Small 

lesion

Fig. 5. CNN dose-rate maps for test patients compared to VDK and MC.

using a Tesla V100 GPU. Running DPM MC code took about

40 min for the same patient simulating 1 billion histories on

a single CPU processor (Intel Xeon @3.2 GHz), while we are

unaware of if any radionuclide therapy dosimetry MC code

for GPU is available. Note that our in-house DPM MC code is

substantially faster than general purpose MC codes typically

used in internal dosimetry calculations. The CNN network

dose-rate map prediction for the same patient took about 20

min using a single CPU processor (Intel Core i9 @2.3 GHz),

and took 2 seconds using a Tesla V100 GPU. If considering the

VDK pre-computation time for the residual learning network,

the total GPU time cost for CNN will be about 12 seconds.

TABLE III
TIME COST COMPARISON AMONG VDK, MC AND CNN.

VDK w/density MC CNN
CPU ∼20 sec ∼40 min ∼20 min
GPU ∼10 sec ? ∼10+2 sec

IV. DISCUSSION

With test virtual patient phantoms that covered clinically

relevant conditions, we demonstrated our CNN using residual

learning framework can be applied for the fast, accurate

dosimetry estimation. Despite using only moderate amount

of training data, our CNN provided highly promising results

across all test phantoms and a patient. Although generating the

ground truth labels of the training data by running DPM MC

code with full radiation transport algorithms is computationally

expensive, these procedures are applied only once at training

time, for a given SPECT imaging system. Results on phantoms

revealed that the main limitation to the voxel-level dose-rate

estimation was the poor resolution of the SPECT camera,

because the theoretically accurate MC algorithm only slightly

outperformed VDK, and resulted in relatively large error on test

lesions/organs. However, due to the use of true-activity map

based dose estimates instead of SPECT-based dose estimates

as training labels, our residual CNN had the ability to partially

compensate for the SPECT resolution effects. Thus, the CNN

can even outperform SPECT-based MC that is considered to

be the clinical gold standard for voxel-level dose-rate accuracy,

as evident in Table. I and Table. II. In the patient example,

although the true dose-rate distribution is unknown, potential

recovery and resolution improvement can be concretely seen in

Fig. 5. While our CNN provided consistently promising results

in terms of MDE and NRMSE, more evaluations such as joint

histograms, dose volume histograms are needed. Besides, a

larger set of phantoms and patients should also be used to

further test the CNN performance.

V. CONCLUSION

In this study, we constructed a residual CNN that was trained

on phantoms derived from a set of patient 68Ga DOTATATE

PET/CT scans to learn the mapping from SPECT emission

and density maps to the corresponding dose-rate distributions

in 177Lu DOTATATE radionuclide therapy. The performance

of the proposed method, evaluated by MDE and NRMSE,

was consistently superior to VDK with density correction and

mostly better than MC. In patient studies, there was also poten-

tial resolution improvement. The residual CNN possesses much

promise for real-time clinical use because of the time efficiency

(∼12 sec on GPU, compared to ∼40 min of for MC using our

relatively fast DPM code) while achieving high voxel-level

dose-rate accuracy by potentially reducing the degradation

caused by the poor SPECT resolution. Further works include

tuning the CNN to further optimize the time-performance trade

off, evaluating noise, expanding the training/testing data set and

extending to other radionuclides used in therapy. Testing on a

larger set of phantoms and patient studies is essentially prior

to considering clinical use of the proposed CNN approach.
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