LIGHT-FIELD RECONSTRUCTION AND DEPTH ESTIMATION FROM FOCAL STACK
IMAGES USING CONVOLUTIONAL NEURAL NETWORKS

Zhengyu Huang', Jeffrey A. Fessler!, Theodore B. Norris', Il Yong Chun*

f Department of EECS, University of Michigan, Ann Arbor, MI, USA
* Department of EE, University of Hawai’i at Manoa, HI, USA

ABSTRACT

Light-field (LF) reconstruction from focal stack images has
diverse applications including face recognition, autonomous
driving, and 3D reconstruction in virtual reality. It is a large-
scale ill-conditioned inverse problem and typically requires
regularized iterative algorithms to solve, which can be slow.
This paper proposes a non-iterative LF reconstruction and
depth estimation method based on three sequential convo-
lutional neural networks (CNNs). The first CNN estimates
an all-in-focus image from focal stack images. The second
CNN estimates 4D ray depth from the estimated all-in-focus
image via the first CNN, and focal stack images. The third
CNN refines a Lambertian LF that is rendered using the all-
in-focus image and ray depth estimated by the first and sec-
ond CNNs, respectively. Numerical experiments show that
the proposed CNN-based method achieves significantly more
accurate and/or faster LF reconstruction, compared to a state-
of-the-art sequential CNN using a single image, conventional
model-based image reconstruction from a focal stack, and di-
rect regression CNN from a focal stack.

Index Terms— Light-field reconstruction, Depth estima-
tion, Focal stack, Inverse problem, Neural network

1. INTRODUCTION

In conventional photography, a pixel value is formed by inte-
grating light rays coming from different directions and hence
the directional information is lost. On the other hand, the di-
rectional information is preserved in light-field (LF) photog-
raphy, because a 4D LF records the directional distribution of
the light ray passing through each location of a 2D plane. 4D
LFs lead to better scene understanding, such as more accu-
rate depth estimation, better object detection and recognition
[1, 2, 3, 4]; 4D LF photography has numerous applications
including face recognition, autonomous driving, and 3D re-
construction in virtual reality.

A 4D LF can be parameterized using two parallel refer-
ence planes placed at arbitrary positions. In this two-plane
parameterization, every light ray can be identified by its inter-
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ception at the first plane coordinates v = (u, v) and the sec-
ond plane coordinates = (s,t), with its radiance I(x, V).
There are multiple approaches for directly acquiring 4D LFs.
Examples include a 2D camera array, a camera mounted on
a 2D gantry with sequential exposures at different positions,
and plenoptic cameras, e.g., Lytro and RayTrix. However,
these methods have limitations: a 2D camera array is expen-
sive; for single camera on 2D gantry, the number of exposures
increase, as the angular resolution of LFs increases; plenop-
tic cameras have a trade-off between the spatial and angular
resolutions in 4D LFs.

To overcome the aforementioned limitations, researchers
have proposed model-based image reconstruction (MBIR)
methods that reconstruct a 4D LF from a set of limited focal
stack images [5, 6, 7, 8]. Reconstructing a 4D LF from a
3D focal stack, i.e., a set of 2D images captured by sensor
at multiple different locations along the optical axis, can be
viewed as solving a large-scale ill-posed inverse problem;
sophisticated regularizer designs can improve reconstruction
quality. Assuming a Lambertian LF, Levin and Durand used a
3D Gaussian prior to reconstruct a LF from a focal stack [5].
Blocker et al. proposed a MBIR method that uses a low rank
plus sparse tensor regularizer [8]. Since these MBIR methods
are iterative, they become slower as one attempts to recover
higher-resolution LFs.

Convolutional neural network (CNN) methods are rapidly
emerging as a powerful tool for various image processing and
computer vision tasks due to their ability to model compli-
cated functions and short inference time [9]. CNN methods
also have been applied to inverse imaging problems, includ-
ing computed tomography [10], magnetic resonance imag-
ing [11], positron emission tomography [12], and LF view
synthesis [13, 14, 15]. Srinivasan et al. proposed a sequential
CNN approach that reconstructs a LF from a single all-in-
focus image [14]. Their pipeline consists of a CNN that esti-
mates ray depth of the scene from the input all-in-focus im-
age, a rendering module that renders a Lambertian LF using
the estimated ray depth, and a second CNN that corrects the
artifacts in the rendered Lambertian LF. As their method uses
ray depth to render a LF, LF reconstruction quality largely
depends on the quality of the estimated ray depth. However,
depth estimation from single image is challenging as it lacks
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Fig. 1. Proposed CNN-based method for LF reconstruction and depth estimation using focal stack.

reliable depth cues. As a result, a better depth estimation
would greatly benefit LF reconstruction. Motivated by this,
[15] used coded projection images (at most two) to obtain
more accurate ray depth and LF, by modifying the pipeline
in [14].

This paper proposes a sequential CNN framework that
reconstructs a LF and estimates a depth map from focal stack
images, instead of from a single all-in-focus image or coded
projection images. A focal stack consists of a set of images
focused at different depths of the scene. In each image, only
the part of the scene that is in-focus is sharp and out-of-focus
regions are blurred by depth-dependent amounts. This di-
versity provides useful depth cues and can be exploited to
improve depth estimation and LF reconstruction. Motivated
by [15], our proposed method uses three sequential CNNs.
The first CNN estimates an all-in-focus image from focal
stack images; the second CNN estimates 4D ray depth from
focal stack images and the estimated all-in-focus image; a
rendering module renders a Lambertian LF with the esti-
mated all-in-focus image and ray depth, and the third CNN
subsequently refines the rendered LF and provides the fi-
nal reconstructed LF. Numerical experiments show that the
proposed method significantly improves LF reconstruction
accuracy, compared with a state-of-the-art sequential CNN
approach using a single all-in-focus image [14], conventional
MBIR using 4D edge-preserving (EP) regularizer (from a fo-
cal stack) [8], and direct regression CNN from a focal stack.
In addition, the proposed method considerably reduces LF re-
construction time compared with MBIR using EP regularizer.

2. METHOD

The proposed approach uses four steps to reconstruct LFs, as
illustrated in Fig. 1. In the first step, an “all-in-focus image
synthesis” neural network (NN) synthesizes an all-in-focus
image from a focal stack (Section 2.1). In the second step, a
depth estimation NN estimates 4D ray depth d (depth maps
for every view point) from the estimated all-in-focus image i
and focal stack images f (Section 2.2). The third step renders
a Lambertian LF [, by backward warping the all-in-focus im-
age i, using the estimated 4D ray depth d (Section 2.3). Be-
cause the rendered LF is Lambertian and may contain artifacts
around occlusions, we use a refining NN to further refine [,
and obtain a final LF I* (Section 2.4). The following subsec-
tions describe details of each step.

2.1. All-in-focus image synthesis NN

We first estimate an all-in-focus image, given the focal stack
images; this process is called focal stacking. There are several
focal stacking approaches, e.g., edge detection, Fourier analy-
sis, and CNN. Among these, we choose CNN-based method —
specifically, U-Net [16] with modified input and output chan-
nel numbers — due to its good image mapping capability. We
forward pass reshaped focal stack images (from the size C' x
NpxHxW to (C - Np)x HxW, where C is the num-
ber of color channel, N is the number of focal planes in the
focal stack, H and W are the image height and width, respec-
tively) through the modified U-Net. To squeeze the output
all-in-focus image to be within the interval [0, 1], we put a
differentiable nonlinear function g(-) = (tanh(-) + 1)/2 at
the end of the U-Net. We train the modified U-Net, Ay, (f).
having parameter set 6, by minimizing the ¢; loss:

H;{IJHZ HAQQ (fn) - in||1v

where { f,, : Vn} are training focal stack images, and {%,,: Vn}
are the ground truth all-in-focus images. We use the center
sub-aperture images of the ground truth LFs for {4, }, because
sub-aperture images of LFs have small enough aperture such
that all regions of the image are well in focus.

2.2. Depth estimation NN

The LF rendering (Section 2.3 uses both an all-in-focus im-
age and a 4D ray depth d(x, v), i.e., a collection of 2D dis-
parity maps, one for each angular coordinate v. We modify
the CNN architecture in [14] to estimate 4D ray depth using
focal stack images and the all-in-focus image from Ag, . We
reshape the input focal stack as in Section 2.1). We use dilated
convolution layers [17] to have exponentially growing recep-
tive field without losing resolution. At the end of the NN, a
tanh scaling layer squeezes the estimated disparity within the
range [—1,1]. We jointly train the depth estimation NN and
the refininig NN (Section 2.4); see training loss in Section 2.5.

2.3. Light field rendering

Given the estimated 4D ray depth d and the estimated all-in-
focus image 4 via trained Ay (-), we render a Lambertian LF
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l,, by backward warping 7 as follows [14]:

lo(x,v) = ly(z + vd(x,v),0) = i(x + vd(z,v)) (1)
= W(z,d).

We use bilinear interpolation to calculate the values of
i(z + vd(z,v)) in the warping. As the rendering at a view-
point v given by (1) is essentially a sampling of the pixel
values at the center view, the rendered LF [,, will be ap-
proximately Lambertian and can have artifacts around the
occlusion regions.

2.4. Refining NN

Because the rendered LF [,, from Section 2.3 does not model
the non-Lambertian effect and occlusion effect, we use an ad-
ditional refining NN (see its architecture in [14]) to remove
these artifacts and get a final reconstructed LF . We use a
residual connection [18] for the NN to learn the difference
between the Lambertian LF [,, and true LF I. We input both
estimated 4D ray depth d and Lambertian LF l,, to the NN;
in particular, d is useful for predicting occluded region and to
refine 1,,.

2.5. Training of depth estimation NN and refining NN

We jointly train the depth estimation NN and the refining
NN, similar to [14]. By using differentiable bilinear inter-
polation for the LF rendering, the loss gradient can be back-
propagated from the refining NN, through the LF rendering
module, and to the depth estimation NN. Specifically, we
jointly train a depth estimation NN, Dy, (f, 1), and a refining
NN, Ry, (d,l,,) having parameters 6§, and 6,., respectively,
by minimizing the following loss function:

;2}911 ; HW(in,ng(‘fm%n)) -1, 1+
| Ro, (Do (fo,80)s W (i Day (f:80)) ) =L

Aethe (Dos(Frin) ) + At Doy (fr b)), )

+
1

where the training data consists of focal stack images { f, },
estimated all-in-focus images {z, = Ao+ (fn) = Vn} and
ground truth LFs {l,, : Vn}. In (2), ¢, and ¢y, are 4D ray
depth consistency and total variation regularizer, respectively,
designed to make the estimated ray depth d reasonable [14].
The regularizers are defined by [14]

Ye(d) =Y ld(z,v) — d(z +d(z,v),v - 1)| 3

Viv(d) := [[Vad]1. “

As the ray depth consists of depth maps at different view-
points, these depth maps should be consistent with each other.

Specifically, they are related by the equality
d(z,v) =d(x + AD(z,v),v — A) )

that is similar to the relation in (1). Note that the relation in
(1) corresponds to a special case of A = v; choosing A =1
leads to the ray depth consistency regularizer in (3), which
encourages depths maps at neighboring views to be consis-
tent. On the other hand, the total variation regularizer in (4)
ensures the estimated depth maps are spatially smooth.

3. EXPERIMENTAL SETUP

We compared the proposed method with following three
methods: /) a state-of-the-art sequential CNN method that
estimates 4D ray depth from a single image and then recon-
structs a LF [14]; 2) a conventional 4D EP MBIR method that
reconstructs a LF from focal stack (see, e.g., [8, 19]); 3) a
direct regression CNN from focal stack — we chose a U-Net
architecture [16]. For 3), a sufficient number of network pa-
rameters is chosen such that further increasing the parameter
doesn’t give better performance.

3.1. Dataset and imaging simulation

For all experiments in the paper, we used the LF dataset
in [14] that consists of 3343 RGB LFs of flowers and plants
taken with Lytro Illum camera. To avoid an inverse crime, we
simulated 185 x 269 focal stack images with number of focal
planes Nz =7, from high spatial resolution LFs consisting of
370 x 538 sub-aperture images on (central) 7 x 7 angular (v-)
grid. The locations of the seven sensors were chosen to focus
at equally spaced disparities in the interval [—1,0.3]. We
reconstructed LFs consisting of 185 x 269 RGB sub-aperture
images on the 7 x 7 v-grid.

3.2. Training setup

We used the Adam optimizer [20] to train all the NNs com-
pared in the paper. We set the default learning rate as 3x10~%;
for training the direct regression CNN, we used 5 x 1074,
In training the all-in-focus synthesis NN in Section 2.1, we
used a batch size of 2 and 40 epochs. We used learning rate
scheduling to stabilize the training: the learning rate decays
by 0.5 at epochs 3, 6, 10, and 20. For joint training of depth
estimation and refining NNs, we used a batch size of 1 and
50 epochs. We chose the regularization parameters in (2) as
Ac = 0.005 and A, = 0.01.

3.3. MBIR setup

For 4D EP regularizer, we used the hyperbola penalty func-
tion, selected the regularization and hyperpola penalty param-
eter as 1.6 x 10° and 0.38, respectively, and used conjugate
gradient descent method with 30 iterations. We reconstructed
each color channel of the LF independently.
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Fig. 2. Sub-aperture images and epipolar slices of the reconstructed LF and the estimated 4D ray depth. (a) Ground truth
LF visualized at the corner view. (b) Reconstructed LF via the proposed method at the corner view (PSNR = 42.23 dB). (c)
Estimated center view depth via the proposed method. (d) Estimated center view depth via single image sequential CNN [14].

(b) Error maps of

(a) Input Scene the proposed method

4D EP MBIR

38.25 (40.95) PSNR (dB) =

PSNR (dB) =

--- 4

PSNR (dIB) = 38.44 (40.71) PSNR (dB) =

calculated from reconstructed LFs.
4. RESULTS

Fig. 2(a-c) shows an example of reconstructed LF and in-
termediate estimated depth from the proposed method. The
proposed method can reconstruct both ray depth and LF with
good quality from a focal stack.

Fig. 2(c-d) shows ray depth estimated by the proposed
method using focal stack (c) and by sequential CNN using
a single image (d). The proposed method can improve depth
estimation. As expected, better depth estimates benefits sub-
sequent LF reconstruction: Table 1 shows that the proposed
method achieves a 4.8 dB peak signal-to-noise ratio (PSNR)
improvement over the state-of-the-art sequential CNN using
a single image [14]. In addition, the proposed method sig-
nificantly improves LF reconstruction accuracy compared to
other LF reconstruction methods using focal stack images:
the proposed method achieves 2.85 dB and 1.97 dB PNSR
improvements, over the conventional 4D EP MBIR method
and direct regression CNN, respectively; see Table 1. Fig. 3
shows sub-aperture view error maps of two test LF for all the
methods. The error maps of proposed method shows signifi-
cantly reduced error.

The second column of Table 1 includes the timing com-
parison between the proposed method and other methods. In
particular, it shows that the proposed method significantly re-
duces computation time compared to 4D EP MBIR.
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(c) Error maps of

34.03 (37.57) PSNR (dB) =

35.62 (38.81) PSNR (dB) =

(d) Error maps of
direct regression CNN

(e) Error maps of
single image seq. CNN [14]
S :

36.19 (38.76) PSNR (dB) =

30.51 (33.26)

36.63 (37.94) PSNR (dB) =

28.32 (31.51)
Fig. 3. Error maps of the reconstructed LF sub-aperture view (v = —1,v = 3). The PSNR values shown in parenthesis are

Methods | PSNR (dB)| Time (sec.)
Proposed method 39.76 4.14 (6.2x10~2)
Single image 9
sequential CNN' [14] 34.96 3.96 (4.6 x1079)
4D EP MBIR 36.91 152 (n/a)

Direct regression CNN | 37.79 0.23 (1.7x1079)

Table 1. Average PSNR of the reconstructed LF and recon-
struction time (on CPU/GPU) for 100 test samples. Values in
parenthesis are GPU reconstruction times.

5. CONCLUSION

This paper proposed a sequential CNN-based framework that
reconstructs LF and estimates ray depth from focal stack im-
ages. The proposed method achieves significantly more ac-
curate and/or faster LF reconstruction, compared to the state-
of-the-art sequential CNN using a single image [14], conven-
tional 4D EP MBIR from focal stack, and direct regression
CNN from focal stack.

Future works include applying the proposed method to the
LF imaging system using transparent imaging sensors that can
capture focal stack with single exposure [21], and investigat-
ing effects of the number of focal planes on LF reconstruction
and depth estimation performance.
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