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ABSTRACT

Convolutional analysis operator learning (CAOL) enables
the unsupervised training of convolutional sparsifying au-
toencoders, taking advantage of large datasets to obtain high
quality filters. In previous works, using CAOL within model-
based image reconstruction (MBIR) for ill-posed inverse
problems significantly improved image reconstruction accu-
racy over existing MBIR using non-trained regularizers and
generalized better than existing non-MBIR deep neural net-
work approaches. This paper modifies the CAOL Procrustes
filter update to allow some filters to be handcrafted. Doing
so makes it possible to incorporate domain knowledge in the
learning process and accelerates CAOL by learning fewer
filters. We apply the proposed generalization of CAOL to
MBIR for sparse-view CT. Numerical experiments show that
1) handcrafting discrete cosine transform filters can trade-off
training time and reconstruction quality and 2) handcraft-
ing filters based on finite differences can speed up training
without sacrificing reconstruction quality.

1. INTRODUCTION

New models and algorithms for image reconstruction attempt
to reduce computation time and/or form higher quality im-
ages. For computed tomography (CT) image reconstruction,
the goal is to help doctors diagnose patients while minimizing
patient exposure to radiation [1]. To achieve lower radiation
doses in CT, one often undersamples the data, making the in-
verse problem ill-posed. Thus, one must make assumptions
about the properties of the images (a prior) to reconstruct
them. Analytic models are commonly based on total varia-
tion, e.g., [2, 3], or sparsity in the wavelet transform, e.g., [4].

Learned priors can lead to better reconstruction perfor-
mance than analytic models [5,6], at a cost of increased train-
ing time and decreased generality. Learned priors have be-
come increasingly popular due to greater availability of com-
putational resources and large, labeled training datasets [7,8].

Among prior learning approaches, convolutional dictio-
nary learning (CDL) methods achieve lower redundancy in
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sparse representation and are therefore more memory efficient
than synthesis patch-based dictionary learning methods, mak-
ing it possible to train from larger data-sets [8,9]. A combina-
tion of a “blind” CDL model and total variation (TV) penalty
was successfully applied to sparse-view CT model-based im-
age reconstruction (MBIR) [10]. However, the model has
large computational costs because it optimizes both a convo-
lutional dictionary and corresponding sparse representations;
benefits of the CDL model itself – without TV regulariza-
tion – are yet unknown in sparse-view CT MBIR. An alterna-
tive prior learning approach is convolutional analysis opera-
tor learning (CAOL). CAOL is more amenable to large data-
sets than CDL [5], and has theoretical benefits from using
more training samples [11]. In ill-posed inverse problems like
sparse-view CT, applying learned convolutional analysis op-
erators to MBIR has yielded significantly more accurate im-
age reconstruction than existing MBIR with non-trained regu-
larizers, e.g., edge-preserving regularizers [6], and better gen-
eralization (and explainability) than existing non-MBIR deep
neural network approaches [12].

This paper extends the CAOL framework to incorporate
handcrafted filters. The generalization allows system design-
ers to integrate domain-specific knowledge with adaption to
the training data. We investigate how the number of hand-
crafted filters impacts training time and CT image reconstruc-
tion quality. Our numerical experiments show how handcraft-
ing general purpose filters can trade-off between training time
and CT reconstruction quality, and how handcrafting a few
filters using domain-specific knowledge can lead to shorter
training times while maintaining reconstruction quality.

2. FILTER LEARNING WITH CAOL

CAOL [5] learns K filters, h1, . . .hK ∈ CK from N training
samples. Unlike synthesis models, CAOL learns filters that
sparsify, rather than synthesize, the signals. The cost function
for learning these filters is [5]:

Ĥ = argmin
H

min
Z

N∑
n=1

K∑
k=1

1

2
‖hk ~ xn − zk,n‖22 + λ‖zk,n‖0

s.t. HH′ =
1

K
I, (1)
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where ~ is circular convolution, xn ∈ CM is the nth training
sample, H = [h1, . . . ,hK ] is a matrix of the filters, zk,n ∈
CM is a sparse code, and λ is a regularization parameter. The
tight-frame constraint in (1) encourages filter diversity.

We briefly review the block coordinate descent (BCD)
method for optimizing (1). BCD alternates between minimiz-
ing with respect to zk,n and with respect to H.

The sparse code update is separable, yielding:

z
(i+1)
k,n =argmin

zk,n

1

2
‖h(i)

k ~ xn − zk,n‖22 + α‖zk,n‖0 (2)

=τ(h
(i)
k ~ xn,

√
2α), where τ(y, α) =

{
y |y| > α

0 else

is the element-wise hard thresholding operator.
Letting Xn denote the data matrix for which Xnhk is

equivalent to xn ~ hk, the filter update can be written in ma-
trix form [11]:

argmin
H

∥∥∥XH− Z(i+1)
∥∥∥2
F
, s.t. HH′ =

1

K
I, where

X =

X1

...
XN

 and Z(i+1) =


z
(i+1)
1,1 . . . z

(i+1)
K,1

...
z
(i+1)
1,N . . . z

(i+1)
K,N

 . (3)

Defining Q =
√
KH′, B = Z(i+1)′ , and A = 1√

K
X′ yields

the standard Procrustes problem [13]:

Q̂ = argmin
Q

‖B−QA‖2F , s.t. Q′Q = I (4)

= UV′, where UΣV′ = svd(BA′).

Therefore, the update equation for the filters is

H(i+1) =
1√
K

UV′, where UΣV′ = svd(X′Z(i+1)). (5)

The CAOL algorithm alternates between the sparse code
update (2) and the filter update (5), where memory efficient
implementations form X′Z(i+1) incrementally to avoid stor-
ing all the sparse codes. See [5] for details about initialization,
stopping criteria, and a generalization to non-square H.

3. INCORPORATING HANDCRAFTED FILTERS

This section proposes CAOL with handcrafted filters (CAOL-
HF): a modification to CAOL that constrains the first P fil-
ters to be handcrafted (“predefined”) and learns the remaining
L = K − P filters from training data.

3.1. Modification of the Procrustes problem

Using the standard Procrustes variables, we assume the ini-
tialization Q(0) has the scaled handcrafted (“predefined”) fil-
ters in the first P rows and satisfies the tight frame constraint
in (1). To incorporate handcrafted filters, we include an addi-

tional constraint in the filter update:

argmin
QL

‖B−QA‖2F , s.t. Q′Q = I and Q =

[
QP

QL

]
,

(6)

where QP ∈ CP×K contains the handcrafted filters and
QL ∈ CL×K contains learned filters.

The tight-frame constraint in (1) forces Q to be a unitary
matrix. Thus, IK = Q′Q = QQ′ implies QPQ′L = 0
(Condition (i)) and QLQ′L = IL (Condition (ii)).

We now introduce a change of variables:

W = QL(Q
(0))′ ⇐⇒ QL = WQ(0). (7)

We use Q(0) to define W, but any matrix satisfying the tight
frame condition and containing the handcrafted filters in the
first P rows works. By Condition (i) and definition of Q(0),

W = [WP ,WL] = [QLQ′P ,QL(Q
(0)
L )′]

= [0L,QL(Q
(0)
L )′].

Furthermore, in terms of W, Condition (ii) becomes

IL = QLQ′L = (WQ(0))(WQ(0))′

= WW′ = WPW′
P + WLW′

L.

Therefore, in terms of our new variable, the two conditions
require that WP = 0 and WL ∈ CL×L be unitary.

Applying these two conditions, the minimization in terms
of WL is the orthogonal Procrustes problem:

ŴL = argmin
WL

∥∥∥BL −WLQ
(0)
L A

∥∥∥2
F
, s.t. W′

LWL = IL

= UV′, where UΣV′ = svd(BL(Q
(0)
L A)′),

and BL contains the last L rows of B. Substituting for Q, the
final expression for the minimizer to (6) is:

Q̂L = WLQ
(0)
L = UV′Q

(0)
L , where (8)

UΣV′ = svd(BLA′(Q
(0)
L )′).

Finally, substituting for the original CAOL variables, the
modified filter update equation is:

H
(i+1)
L = H

(0)
L UV′, where (9)

UΣV′ = svd((H(0)
L )′X′Z

(i+1)
L ),

where ZL contains the last L columns of Z that correspond to
the sparse codes of the learned filters. In this form, one can
verify that the learned filters are constrained to be in the range
of H

(0)
L . Alg. 1 summarizes CAOL-HF.

3.2. Computational benefit

One can use an accumulator to store only one sparse code at
a time since the lth column of X′Z

(i+1)
L is

∑N
n=1 X′nzP+l,n,

for l = 1 . . . , L. Assuming one uses an accumulator in both
implementations, CAOL-HF and CAOL have the same mem-
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Algorithm 1 CAOL with handcrafted filters.
1: procedure CAOL-HF(HP , tol, Imax)
2: i = 0
3: H

(0)
L = (1/

√
K)null(H′P )

4: while i < Imax and

∥∥∥H(i)
L −H

(i−1)
L

∥∥∥∥∥∥H(i−1)
L

∥∥∥ > tol do

5: for k = (P + 1) : K, n = 1 : N do
6: z

(i+1)
k,n = τ.(h

(i)
k ~ xn, α) . From (2)

7: end for
8: UΣV′ = svd((H(0)

L )′X′Z
(i+1)
L )

9: H
(i+1)
L = H

(0)
L UV′ . From (9)

10: i = i+ 1
11: end while
12: return H

(i)
L

13: end procedure

ory complexity: O(min(M,KL)), where L = K for CAOL
and typically KL�M .

When K ≤ MNL (which holds for large datasets),
the per-iteration computational cost of CAOL-HF is smaller
than the O(MNK2) required by CAOL. CAOL-HF avoids
O(MNPK) operations by not calculating zk,n for k ≤ P
(Alg. 1 line 6) and again when evaluating X′ZL (Alg. 1 line
8). Thus, the time complexity of each CAOL-HF BCD iter-
ation is O(MNLK). Section 4.2 empirically examines the
number of iterations required to reach convergence.

4. APPLICATION TO SPARSE-VIEW CT

This section examines the effect of the number of handcrafted
filters on training time and sparse-view CT reconstruction
quality. All CT images are presented in modified Hounsfield
units (HU), where air is 0 HU and water is 1000 HU. Training
code is available at [14].

4.1. Training setup and results

Training learns Ĥ via Alg. 1 from high quality CT images.
We usedN = 10 XCAT phantom 512×512 slices [15] spaced
by five slices (3.125mm) and normalized to [0,1] (see Fig. 1
for example slices). We setK = 7×7, λ = 5 ·10−4 (selected
by visually comparing to the filters presented in [6]), a con-
vergence tolerance of 10−6, and 2000 maximum iterations.

To examine the effect of handcrafted filters, we used
two sets of filters. First, we used the 2D DCT, ordered

Fig. 2: Example filters for the DCT (a-b) and EFD (c-d) cases. (a)
and (c) show the case of all-learned filters (P = 0) while (b) and
(d) show the case of the maximum number of handcrafted filters
(P = 49 for DCT and P = 9 for EFD). Handcrafted filters are
outlined by white borders.

from low to high frequency. We learned filters for P ∈
{0, 1, 3, 6, . . . , 43, 46, 49}, which is equivalent to all filters
up to the ith anti-diagonal in the usual DCT arrangement.
Second, we used extended finite difference (EFD) filters (e.g.,
[1, -1] and [1, 1, -1, -1]). To initialize, we replaced the
first nine DCT filters with our EFD filters and applied the
Gram-Schmidt procedure to obtain an orthogonal matrix. We
learned filters for P ∈ {0, 1, 5, 9}. Fig. 2 shows four example
H’s as a grid of filters arranged in column-major order.

Fig. 3 shows the number of iterations and the time per
iteration versus P . The time per iteration decreases linearly
with P as discussed in Section 3.2. The number of iterations
to convergence is less predictable, but the overall trend is that
the number of iterations decreases as P increases.

4.2. CT reconstruction formulation

Reconstruction recovers a linear attenuation coefficient image
x̂ ∈ RX from a post-log measurement y ∈ RY [16, 17] by
optimizing [5]:

x̂ = argmin
x≥0

1

2
‖y −Ax‖2W + (10)

γmin
Z

K∑
k=1

1

2
‖hk ~ x− zk‖22 + α ‖ψ � zk‖0 .

Here, � is the Hadamard product, A ∈ RY×X is the system
matrix that captures CT physics [18]; W ∈ RY×Y is a diag-
onal matrix with Wi,i =

ρ2i
ρi+σ2 based on a Poisson-Gaussian

model for the pre-log measurements ρ with electronic readout
noise variance σ2 [16, 17]; γ and α are regularization param-
eters; and ψ is a binary mask that is one only inside the circle
inscribing x [17,19]. To rapidly solve (10) while guaranteeing
convergence to a critical point, we applied the block proximal
extrapolated gradient method using a majorizer [6].

Fig. 1: Example training and testing images, arranged by slice order in the phantom (abdominal slices are toward the left, chest slices are
toward the right; display window is [800, 1200] HU). Left images: testing images 1 and 2 from the abdominal region. Center box: images
from the beginning, middle, and end of the training dataset. Right images: testing images 3 and 4 from the chest region.
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4.3. Reconstruction setup and results

To simulate sparse-view CT sinograms, we used 4 XCAT
phantom 840 × 840 slices [15] in 1/mm units with pixel size
0.4883mm, using 888 detectors and 123 views (out of a pos-
sible 984 views, yielding a 87.5% reduction in radiation), an
incident intensity of 1 · 105, and added noise with σ2 = 25.
The reconstructed image x̂ is 420 × 420 with a pixel size of
0.9766mm. The test images are separated from the training
slices by between 18.75 and 53.125mm.

To minimize (10), we used γ = 13·106 (suggested in [6]),
α = 5 · 10−9 (based on a rough grid search), a convergence
tolerance of 10−6, and 5000 maximum iterations. We ini-
tialized with the conventional filtered back-projection (FBP)
image with a Hamming window. We evaluated the quality of
reconstructed images against the true image using root mean
square error (RMSE) inside a region of interest defined by ψ.
Fig. 3 plots the RMSE versus P and Fig. 4 shows example
reconstructed images.

For comparison, Fig. 3 reports the RMSE of images re-
constructed using a total variation (TV) regularizer with cor-
ner rounding. We implemented TV using (10) by replacing
α with αk, having h1 and h2 take vertical and horizontal dif-
ferences and satisfy the tight-frame condition (1), and setting
αk = 0 for k ≥ 3. Based on a rough grid search, we chose
α1 = α2 = 10−7 and β = 108.

The DCT filter results (Fig. 3) suggest a trade-off: as P
increases, both the iterations to convergence and reconstruc-
tion quality tend to decrease (though neither is monotonic).
This trend is more noticeable for test images 3 and 4, where
the RMSE increases by an average of 5.01 when comparing
P = 0 to P = 49. In comparison, test images 1 and 2 have
an average RMSE increase of only 0.85. The EFD filters had
lower RMSEs than the DCT filters and, unlike the DCT fil-
ters, the RMSE decreases as P increases.

Both the DCT (for small P ) and EFD filters improve on
the TV regularizer for images 3-4 but not for images 1-2. We
hypothesize that learned filters led to lower RMSEs for im-
ages 3-4 because those images have more high-contrast re-
gions, similar to the majority of our training dataset. If we
learn filters on slices similar to test images 1-2, we may out-
perform TV for these low-contrast images.

Fig. 3: (Left) Number of CAOL-HF iterations required to reach con-
vergence and time per iteration versus the number of handcrafted
filters for DCT and EFD filters. (Right) RMSE of the reconstructed
CT test images versus the number of handcrafted filters, P . TV re-
sults are plotted for comparison, but do not vary with P .

5. CONCLUSION

This paper examined how incorporating handcrafted filters
into CAOL affects training time and CT reconstruction qual-
ity. Our proposed algorithm, CAOL-HF, has lower per itera-
tion time complexity as the number of handcrafted filters in-
creases, though the overall time complexity is hard to analyze
due to the varying number of iterations to convergence. We
hypothesize that handcrafting well-designed filters generally
leads to fewer iterations, though proving this remains future
work. For reconstruction quality, we observed a decrease in
quality when handcrafting DCT filters but a slight increase in
quality when handcrafting EFD filters that are more appropri-
ate for CT. Future work should consider how to design/learn
filters for both high and low contrast CT slices.

Although our experiments are specific to sparse-view CT,
the ideas transfer to other signal processing tasks. The pre-
sented modification of the Procrustes problem could be used
in more domains to understand the trade-off between learning
and handcrafting as well as to decrease training time while
possibly maintaining or improving reconstruction quality.

Fig. 4: Reconstruction results for test image 3 (display window is [800, 1200] HU).
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