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Abstract. Obtaining accurate and reliable images from low-dose com-
puted tomography (CT) is challenging. Regression convolutional neural
network (CNN) models that are learned from training data are increas-
ingly gaining attention in low-dose CT reconstruction. This paper mod-
ifies the architecture of an iterative regression CNN, BCD-Net, for fast,
stable, and accurate low-dose CT reconstruction, and presents the con-
vergence property of the modified BCD-Net. Numerical results with
phantom data show that applying faster numerical solvers to model-
based image reconstruction (MBIR) modules of BCD-Net leads to faster
and more accurate BCD-Net; BCD-Net significantly improves the recon-
struction accuracy, compared to the state-of-the-art MBIR method using
learned transforms; BCD-Net achieves better image quality, compared
to a state-of-the-art iterative NN architecture, ADMM-Net. Numerical
results with clinical data show that BCD-Net generalizes significantly
better than a state-of-the-art deep (non-iterative) regression NN, FBP-
ConvNet, that lacks MBIR modules.

1 Introduction

Low-dose computed tomography (CT) reconstruction requires careful regular-
ization design to control noise while preserving crucial image features. Tradi-
tional regularizers have been based on mathematical models like total variation,
whereas newer methods are based on models that are learned from training
data, especially regression neural network (NN) models. Deep convolutional NN
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(CNN) methods in an early stage map low- to high-quality images: specifically,
they “denoise” the artifacts in the low-quality images obtained by applying some
basic solvers to raw data or measurements. However, the greater mapping capa-
bility (i.e., higher the NN complexity) can increase the overfitting risks [15].
There exist several ways to prevent NNs from overfitting, e.g., increasing the
dataset size, reducing the neural network complexity, and dropout. However, in
solving large-scale inverse problems in imaging, the first scheme is limited in
training CNNs from large-scale images; the second scheme does not effectively
remove complicated noise features; and the third scheme has limited benefits
when applied to convolutional layers.

An alternative way to regulate overfitting of regression CNNs in inverse imag-
ing problems is combining them with model-based image reconstruction (MBIR)
that considers imaging physics or image formation models, and noise statistics
in measurements. BCD-Net [4] is an iterative regression CNN that generalizes a
block coordinate descent (BCD) MBIR method using learned convolutional reg-
ularizers [5]. Each layer (or iteration) of BCD-Net consists of image denoising
and MBIR modules. In particular, the denoising modules use layer-wise regres-
sion CNNs to effectively remove layer-dependent noise features. Many existing
works can be viewed as a special case of BCD-Net. For example, RED [11] and
MoDL [1] are special cases of BCD-Net, because they use identical image denois-
ing modules across layers or only consider quadratic data-fidelity terms (e.g., the
first term in (P1)) in their MBIR modules.

This paper modifies BCD-Net that uses convolutional autoencoders in its
denoising modules [4], and applies the modified BCD-Net to low-dose CT recon-
struction. First, for fast CT reconstruction, we apply the Accelerated Proximal
Gradient method using a Majorizer (APG-M), e.g., FISTA [2], to MBIR mod-
ules using the statistical CT data-fidelity term. Second, this paper provides the
sequence convergence guarantee of BCD-Net when applied to low-dose CT recon-
struction. Third, it investigates the generalization capability of BCD-Net for
low-dose CT reconstruction, compared to a state-of-the-art deep (non-iterative)
regression NN, FBPConvNet [8]. Numerical results with the extended cardiac-
torso (XCAT) phantom show that applying faster numerical solvers (e.g., APG-
M) to MBIR modules leads to faster and more accurate BCD-Net; regardless of
numerical solvers of MBIR modules, BCD-Net significantly improves the recon-
struction accuracy, compared to the state-of-the-art MBIR method using learned
transforms [15]; given identical denoising CNN architectures, BCD-Net achieves
better image quality, compared to a state-of-the-art iterative NN architecture,
ADMM-Net [14]. Numerical results with clinical data show that BCD-Net gen-
eralizes significantly better than FBPConvNet [8] that lacks MBIR modules.
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2 BCD-Net for Low-Dose CT Reconstruction

2.1 Architecture

Algo. 1. BCD-Net for CT reconstruction

Require: {Dθ(l) : ∀l},x(0),y,A,W, β
for l = 0, . . . , L − 1 do

Denoising : z(l+1) = Dθ(l+1)(x
(l))

MBIR: x(l+1) = argmin
x≥0

F (x;y, z(l+1))†

end for
†F (x;y, z(l+1)) is defined in (P1).

This section modifies the archi-
tecture of BCD-Net in [4] for
CT reconstruction. For the image
denoising modules, we use layer-
wise autoencoding CNNs that
apply exponential function to
trainable thresholding parame-
ters. (The trainable thresholding
parameters replace the bias terms,
since biases can differ greatly for
different objects in imaging problems.) The layer-wise denoising CNNs are par-
ticularly useful to remove layer-dependent artifacts in reconstructed images at
the previous layers, without greatly increasing their parameter dimensions. In
low-dose CT reconstruction, for example, the CNNs at the early and later lay-
ers remove streak artifacts and Gaussian-like noise, respectively. MBIR modules
aim to regularize overfitting artifacts by combining information drawn from the
data-fidelity term and output of denoising modules. Different from the image
denoising and single-coil magnetic resonance imaging applications in [4], the
MBIR modules of CT reconstruction BCD-Net involve iterative solvers. For fast
CT reconstruction in particular, we apply a fast numerical solver, APG-M, to the
MBIR modules. Algorithm 1 shows the architecture of the modified BCD-Net
for CT reconstruction.

Image Denoising Module. For the lth layer image denoising module, we use
a convolutional autoencoder in the following form:

Dθ(l+1)(·) =
1
R

K∑

k=1

d(l+1)
k � T

exp(α
(l+1)
k )

(e(l+1)
k � (·)), (1)

where θ(l+1) := {d(l+1)
k , e(l+1)

k , α
(l+1)
k : k = 1, . . . ,K, l = 1, . . . , L} is a param-

eter set of the lth convolutional autoencoder, d(l+1)
k ∈ R

R, e(l+1)
k ∈ R

R, and
exp(α(l+1)

k ) are the kth decoding and encoding filters, and thresholding value at
the lth layer, respectively, the convolution operator � uses the circulant bound-
ary condition without the filter flip, Ta(·) is the soft-thresholding operator with
the thresholding parameter a, R and K are the size and number of the filters,
respectively, and L is the number of layers in BCD-Net. Different from the origi-
nal convolutional autoencoder in [4], we included the exponential function exp(·)
to prevent the thresholding parameters {αk} from becoming zero during training
[6]. The factor 1/R comes from the relation between convolution-perspective and
patch-based trainings [6]. By applying the trained convolutional autoencoder in
(1) to the lth layer input x(l) (i.e., reconstructed image at the (l − 1)th layer),
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we obtain the “denoised” image z(l+1) = Dθ(l+1)(x(l)). We next feed z(l+1) into
the lth layer MBIR module.

MBIR Module. The lth layer MBIR module uses the lth layer denoised image
z(l+1), and reconstructs an image x ∈ R

N from post-log measurement y ∈ R
M

by solving the following statistical MBIR problem:

x(l+1) = argmin
x�0

F (x;y, z(l+1)) :=
1
2
‖y − Ax‖2W +

β

2
‖x − z(l+1)‖22, (P1)

where A ∈ R
M×N is a CT scan system matrix, W ∈ R

M×M is a diagonal
weighting matrix with elements {Wm,m = ρ2m/(ρm + σ2) : ∀m} based on a
Poisson-Gaussian model for the pre-log measurements ρ ∈ R

M with electronic
readout noise variance σ2 [15], and β > 0 is a regularization parameter. To
rapidly solve (P1), we apply APG-M, a generalized version of APG (e.g., FISTA
[2]) that uses M -Lipschitz continuous gradients [5]. Initialized with v(0) = x̄(0) =
x(l) and t0 = 1, the APG-M updates are

x̄(j+1) =
[
v(j) + M−1

(
AT W(y − Av(j)) − β(v(j) − z(l+1))

)]

+
, (2)

v(j+1) = x̄(j+1) +
tj − 1
tj+1

(x̄(j+1) − x̄(j)), where tj+1 = (1 +
√

1 + 4t2j )/2, (3)

for j = 0, . . . , J −1, where the operator [·]+ is the proximal operator obtained by
considering the non-negativity constraint in (P1) and clips the negative values,
and J is the number of APG-M iterations. We design the diagonal majorizer
M ∈ R

N×N in (2) as follows [5]: M = diag(AT WA1)+βI � ∇2F (x;y, z(l+1)) =
AT WA + βI, where diag(·) converts a vector into a diagonal matrix. The lth
layer reconstructed image x(l+1) is given by the Jth APG-M update, i.e., x(l+1) =
x̄(J), and fed into the next BCD-Net layer as an input.

2.2 Training BCD-Net

Algo. 2. Training BCD-Net for CT recon.

Require: {xi,x
(0)
i ,yi,A,Wi, β : ∀i}

for l = 0, . . . , L − 1 do
Train θ(l+1): Solve (P2) using {xi,x

(l)
i : ∀i}

for i = 1, . . . , I do
Denoising : z

(l+1)
i = Dθ(l+1)(x

(l)
i )

MBIR: x
(l+1)
i = argmin

x≥0
Fi(x;yi, z

(l+1)
i )†

end for
end for

†F (x;y, z(l+1)) is defined in (P1).

This section proposes a
BCD-Net training frame-
work for CT reconstruc-
tion, based on the image
denoising and MBIR mod-
ules defined in the previous
section. The training pro-
cess requires I high-quality
training images, {xi : i =
1, . . . , I}, and I training
measurements simulated via
CT physics, {yi : i =
1, . . . , I}. Algorithm 2 summarizes the training framework.
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At the lth layer, we optimize the parameters θ(l+1) of the lth convolutional
autoencoder in (1) from I training pairs (xi,x

(l)
i ), where x(l)

i is the ith recon-
structed training image at the (l − 1)th layer. Our patch-based training loss
function at the lth layer is

θ(l+1) = argmin
{D,α ,E}

1
RP̃

‖X̃ − DTexp(α)(ET X̃(l))‖2F , (P2)

where encoding and decoding filter matrices D ∈ R
R×K and E ∈ R

R×K are
formed by grouping K filters as D := [d1, . . . ,dK ] and E := [e1, . . . , eK ], respec-
tively, α ∈ R

K is a vector containing K thresholding values, P̃ is the number
of patches extracted from all training images, and X̃ ∈ R

R×P̃ and X̃(l) ∈ R
R×P̃

are paired training matrices whose columns are vectorized patches extracted
from {xi : ∀i} and {x(l)

i : ∀i}, respectively. The soft thresholding operator
Ta(u) : R

K → R
K is defined as follows: (Ta(u))k equals to uk − aksign(uk)

for |uk| > ak, and 0 otherwise, ∀k. We optimize (P2) via a mini-batch stochastic
gradient method.

2.3 Convergence Analysis

There exist two key challenges in understanding the convergence behavior of
BCD-Net in Algorithm 1: (1) (general) denoising NNs {Dθ(l+1)} change across
layers; (2) even if they are identical across layers, they are not necessarily non-
expansive operators [10] in practice. To moderate these issues, we introduce a
new definition:

Definition 1 (Asymptotically nonexpansive paired operators [6]).
Paired operators {Dθ(l) ,Dθ(l+1)} are asymptotically nonexpansive if there exist
a summable sequence {ε(l+1) ∈ [0,∞) :

∑∞
l=0 ε(l+1) < ∞} such that

‖Dθ(l+1)(u) − Dθ(l)(v)‖22 ≤ ‖u − v‖22 + ε(l+1), ∀u,v and ∀l.

Based on Definition 1, we obtain the following convergence result for Algo-
rithm 1:

Theorem 2 (Sequence convergence). Assume that paired denoising neu-
ral networks {Dθ(l) ,Dθ(l+1)} are asymptotically nonexpansive with the summable
sequence {ε(l+1) ∈ [0,∞) :

∑∞
l=1 ε(l+1) < ∞} and AT WA 
 0. Then the

sequence {x(l+1) : l ≥ 0} generated by Algorithm 1 (disregarding the non-
negativity constraints in the MBIR optimization problems (P1)) is convergent.

Theorem 2 implies that if denoising neural networks {Dθ(l) : l ≥ 1} con-
verge to a nonexpansive one, BCD-Net guarantees the sequence convergence.
Figure S.1 shows the convergence behaviors of {Dθ(l+1)} and their Lipschitz con-
stants.
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2.4 Computational Complexity

The computational cost of the proposed BCD-Net is O((MJ + RK)NL). Since
MJ � RK, the computational complexity of BCD-Net is dominated by forward
and back projections performed in the MBIR modules. To reduce the MJ fac-
tor, one can investigate faster optimization methods (e.g., proximal optimized
gradient method (POGM) [13]) with ordered subsets. Applying these techniques
can reduce the MJ factor to (M/G)J ′, where G is the number of subsets and
the number of POGM iterations J ′ < J (e.g., J ′ = (1/

√
2)J) due to faster

convergence rates of POGM over APG.

3 Experimental Results and Discussion

3.1 Experimental Setup

Imaging. For XCAT phantom images [12] and reconstructed clinical images in
[15], we simulated sinograms of size 888 × 984 (detectors ×projection views) with
GE LightSpeed fan-beam geometry corresponding to a monoenergetic source
with ρ0 = 104 incident photons per ray and electronic noise variance σ2 = 52

[15] (while avoiding inverse crimes). We reconstructed 420 × 420 images with
pixel-size Δx = Δy = 0.9766 mm. For the clinical data collected from the GE
scanner using the CT geometry above, and tube voltage 120 kVp and current
160 mA, we reconstructed a 716 × 716 image (shown in the third row of Fig. 2)
with Δx = Δy = 0.9777 mm.

Training BCD-Net, ADMM-Net, and FBPConvNet. Based on the pro-
posed framework in Sect. 2.2, we trained 100-layer BCD-Nets with the two
parameter sets, {K = R = 82} and {K = 102, R = 82}, and the regular-
ization parameter β = 4 × 106. In particular, we solved (P2) with Adam [9]
and P̃ ≈ 1.7 × 106 training patches that were extracted from ten training images
of the XCAT phantom [12]. We used the mini-batch size 512, 200 epochs, initial
learning rates 10−3, and 10−2 for {D(l),E(l) : ∀l} and {α(l) : ∀l}, and random
i.i.d. Gaussian filter initialization. We decayed the learning rates by a factor of
0.9 every 10 epochs. We trained a 100-layer ADMM-Net that uses the layer-wise
denoising NNs (1) with K = R = 82, with the identical training setup above.
We chose the ADMM penalty parameter as 1 × 106, by matching the spatial res-
olution in the heart region of test sample #1 to that reconstructed by BCD-Net.
We trained FBPConvNet with 500 2D XCAT phantom images and the similar
parameters suggested in [8].

Image Reconstruction. We compared trained BCD-Nets with the conven-
tional MBIR method using an edge-preserving (EP) regularizer, the state-of-
the-art MBIR method using �2 prior with a learned square transform [15], a
state-of-the-art iterative NN architecture, ADMM-Net [14] (i.e., plug-and-play
ADMM [3] using denoising NNs), and/or a state-of-the-art (non-iterative) deep
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regression NN, FBPConvNet [8]. For the first two MBIR methods, we finely
tuned their parameters to give the lowest root-mean-square-error (RMSE) val-
ues [5]. (See their parameter details in Section S.2). We tested the aforementioned
methods to two sets of three representative chest CT images that are selected
from the XCAT phantom and clinical data provided by GE. (Note that the
testing phantom images are sufficiently different from training phantom images;
specifically, they are ≈2 cm away from training images.) We quantitatively eval-
uated the quality of phantom reconstructions by RMSE (in Hounsfield units,
HU) in a region of interest [15].

3.2 Results and Discussion

0 10 20 30 40 50
30

40

50

60

Fig. 1. RMSE convergence of BCD-Nets
using different MBIR modules for low-dose
CT reconstruction (for the first testing
image in Table 1).

Convergence of BCD-Net with
Different MBIR Modules. Apply-
ing faster iterative solvers to MBIR
modules leads to faster and more accu-
rate BCD-Net. This assertion is sup-
ported by comparing the APG-M and
PG-M results in Fig. 1 (given the iden-
tical iteration numbers), and noting
that APG-M is faster than PG-M
(i.e., APG-M using no “momentum”,
x̄(j+1)− x̄(j) in (3)). In addition, Fig. 1
shows that increasing the number of
iterations in numerical MBIR solvers
leads more accurate BCD-Net, given
the identical numbers of BCD-Net lay-
ers. This implies that numerical MBIR
solvers using insufficient number of iterations do not fully extract “desired”
information from CT data-fidelity (i.e., the first term in (P1)). The importance
of using rapidly converging MBIR solvers is underestimated in existing litera-
ture: existing literature often considers some applications that have practical
and closed-form MBIR solution [4].

Reconstruction Quality Comparisons. For all the testing phantom and
clinical images, the proposed BCD-Nets significantly improve the low-dose CT
reconstruction accuracy, compared to the conventional MBIR method using EP
and/or the state-of-the-art MBIR method using �2 prior with a learned trans-
form [15]. For all the testing phantom images, BCD-Net consistently achieves
better reconstruction quality than ADMM-Net. See Table 1, Fig. 2 & S.2, and
Section S.3. In particular, BCD-Net accomplishes the both benefits of EP and
image denoising (see Fig. S.2); and increasing the number of filters and thresh-
olding parameters improves its reconstruction performance (see Table 1).
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Table 1. RMSE (HU) of three reconstructed XCAT phantom images with different
MBIR methods for low-dose CTa (ρ0 = 104 incident photons)

EP Learned trans.

(K = R = 82) [15]

ADMM-Net

(K = R = 82) [14]

BCD-Net

(K = R = 82)

BCD-Net

(K = 102, R = 82)

Test #1 39.4 36.5 31.6 30.7 27.5

Test #2 39.6 37.8 32.0 31.4 29.2

Test #3 37.1 34.0 32.0 30.6 27.7
a See reconstructed images and error images in Fig. S.2 and Fig. S.3, respectively.

EP FBPConvNet [8] BCD-Net (K=R=82)

Fig. 2. Comparison of three reconstructed clinical images from different reconstruction
methods for low-dose CT (images are magnified to better show differences; display
window [800, 1200] HU).
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Generalization Capability Comparisons. The proposed BCD-Net has sig-
nificantly better generalization capability than a state-of-the-art (non-iterative)
deep regression NN, FBPConvNet [8]. Clinical scan experiments in Fig. 2 indi-
cate that deep regression NNs, e.g., FBPConvNet, can have high overfitting risks,
while our proposed BCD-Net has low overfitting risks, and gives more stable
reconstruction. These show that MBIR modules benefit regularizing overfitting
artifacts of regression NNs.

The BCD-Net result in the second row of Fig. 2 shows non-uniform spatial
resolution or noise; see blurry artifacts particularly around the center of the
reconstructed image. One can reduce such blurs by including the technique of
controlling local spatial resolution or noise in the reconstructed images [7] to
MBIR modules.

4 Conclusions

The proposed BCD-Net uses layer-wise autoencoding CNNs and achieves sig-
nificantly more accurate low-dose CT reconstruction, compared to the state-of-
the-art MBIR method using a learned transform [15]. BCD-Net provides better
reconstruction quality, compared to a state-of-the-art iterative NN, ADMM-Net
[14]. Taking both benefits of MBIR and low-complexity CNN (i.e., convolu-
tional autoencoder), BCD-Net significantly improves the generalization capabil-
ity, compared to a state-of-the-art (non-iterative) deep regression NN, FBPCon-
vNet [8]. In addition, applying faster numerical solvers, e.g., APG-M, to MBIR
modules leads to faster and more accurate BCD-Net, and those with sufficient
iterations can lead to the sequence convergence. Future work will explore BCD-
Net with local spatial resolution controls [7], to reduce blur around the center
of reconstructed images.
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