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ABSTRACT

Various dictionaries and transforms are known to sparsify

images, and have been exploited in algorithms for image re-

construction from limited data. Methods that simultaneously

reconstruct the image and learn dictionaries or sparsifying

transforms for image patches, called blind compressed sen-

sing methods, have shown promising performance. Motivated

by such adaptive algorithms, this paper proposes an approach

to train dictionary-transform based methods for image recon-

struction by minimizing a minimum absolute reconstruction

error criterion. Each “layer” of the algorithm consists of

applying (convolving) trained transforms, thresholdings, and

dictionaries to images, followed by a simple least squares

update of the images. Numerical experiments illustrate the

usefulness and speed-ups provided by such trained algorithms

compared to related schemes.

Index Terms— Sparsifying transforms, Dictionaries,

Machine learning, Sparse representations, Smart imaging.

1. INTRODUCTION

Imaging approaches such as magnetic resonance imaging

(MRI) and X-ray computed tomography (CT) often involve

image reconstruction from limited or corrupted data such as

in the case of low-dose CT, sparse-view CT, compressive

sensing [1, 2] based static MRI, or dynamic MRI where the

data is inherently undersampled. Imaging with limited data

often has potential benefits such as scan time speed-ups for

MRI or reduced radiation exposure for X-ray CT.

Several image reconstruction methods have been propo-

sed [3–7] exploiting image characteristics such as the spar-

sity of images in analytical dictionaries or transform dom-

ains, low-rank properties [8, 9], etc. More recently, data-

driven approaches for image reconstruction that learn synt-

hesis dictionaries or sparsifying transforms have received at-

tention [10–14] and have shown promise in medical imaging

applications. Sparsifying transform-based [15] approaches

are typically faster than dictionary-based approaches due to

relatively inexpensive closed-form thresholding-based sparse
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coding, whereas synthesis sparse coding is NP-hard in ge-

neral. The transforms or dictionaries could be learned from

training data [14] (using various transform learning [15–17]

or dictionary learning [18–20] methods) and used to recon-

struct other images, or even learned simultaneously while re-

constructing the images [12], which is called (transform or

dictionary) blind compressed sensing.

Motivated by the efficient (convolutional) structure of re-

cent transform-blind compressed sensing algorithms [12,13],

this paper proposes an approach for training the parameters

(e.g., filters, thresholds, etc.) of transform-based algorithms

for image reconstruction, by minimizing a minimum absolute

reconstruction error cost.1 Each iteration (called layer) of

the algorithm consists of applying trained complex-valued

transforms, thresholdings (non-linearities), and dictionaries

to images, followed by a simple (full) least squares update

of the images that takes into account the imaging model or

physics. Numerical results illustrate potential for the trained

method over related schemes for image reconstruction. Very

recent works [22,23] also proposed incorporating the imaging

model in training specific algorithms for reconstruction. Ho-

wever, our proposed method differs in the specific algorithm

architecture/updates, non-linearities, the training objective,

and algorithm for training.

2. IMAGE RECONSTRUCTION MODEL AND

TRAINING ALGORITHM

This section describes the proposed reconstruction algorithm

architecture and its training. We first briefly describe a recent

transform-blind compressed sensing approach (UTMRI) [13]

that motivates our proposed method.

2.1. Background and Reconstruction Model

The goal in inverse problems is to estimate an unknown sig-

nal or (vectorized) image x ∈ C
p from its (typically limited

or corrupted) measurements y ∈ C
m. A typical regularized

inverse problem is as follows:

argmin
x∈Cp

‖Ax− y‖
2

2
+ ζ(x) (1)

1A recent work [21] has shown promise for minimizing MAE (�1) costs

over mean squared error or MSE (�2) costs for model training. The former

may enable better generalization of learned models.
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Fig. 1. Proposed image reconstruction architecture based on the image update step of UTMRI [13]. The initial image (x0) is

iteratively passed through a decorruption step involving filtering and thresholding operations, followed by least squares image

update (system model block) that enforces the imaging forward model. The decorruption step involves a bank of transform

filters (fk
l , with k denoting iteration and l the filter number), thresholdings, and dictionary filters (gkl ). For UTMRI, both the

transform and dictionary filters are related to the rows of W (matched) and L = n.

where A ∈ C
m×p is the imaging measurement matrix (e.g.,

a Fourier encoding for MRI) and ζ(x) is a regularizer captu-

ring assumed properties of the image (e.g., sparsity in a trans-

form domain). In the blind compressed sensing framework,

a data-driven (e.g., involving transform learning) regularizer

is used enabling joint image reconstruction and image mo-

del learning. Here, we draw inspiration from the recent uni-

tary transform-blind compressed sensing scheme involving

the following optimization problem [13]:

(P0) min
x,W,B

N∑
j=1

‖WPjx− bj‖
2

2
+ ν‖Ax− y‖2

2
+ γ2‖B‖0,

s.t. WHW = I,

where ν, γ > 0 are parameters, Pj is an operator that extracts

the jth patch (N overlapping patches assumed) of image x as

a vector Pjx ∈ C
n, and W ∈ C

n×n is a sparsifying transform

such that WPjx ≈ bj with sparse bj . Matrix B ∈ C
n×N has

the sparse bj’s as its columns, and the �0 “norm” counts the

number of non-zeros in a vector or matrix. Operations (·)H

and (·)T denote conjugate transpose and the usual transpose,

respectively. Problem (P0) (cf. [12] for variants) allows the

transform to adapt to the underlying or imaged object.

Prior work [12,13] proposed an iterative block coordinate

descent (BCD) algorithm for (P0) that alternates between sol-

ving for W (transform update step), B (sparse coding step),

and x (image update step) with other variables fixed. Here,

the sparse codes are updated as b̂j = Hγ(WPjx), where

Hγ(·) is the hard-thresholding operator that sets vector or ma-

trix entries with magnitude less than γ to zero while leaving

other entries unaffected. The output in the transform update

step is Ŵ = V UH , where PBH = UΣV H denotes a full

singular value decomposition (SVD) with P being the matrix

whose columns are the vectorized (and most recently estima-

ted) image patches. The image update step for (P0) involves

a least squares problem whose normal equation is as follows:

Gxk = νAHy +

N∑
j=1

PT
j DkHγ(W

kPjx
k−1) (2)

where k denotes the BCD iteration number, Dk �
(
W k

)H
,

and G �
∑N

j=1
PT
j Pj + νAHA is a fixed matrix. For single-

coil Cartesian MRI, where A = Fu, the undersampled Fourier

encoding, G is readily diagonalized by the 2D DFT and the

update in (2) is performed cheaply using FFTs [13]. Alter-

natively, one could solve (2) using iterative methods such as

conjugate gradients (CG).

Fig. 1 provides a schematic of the image update over the

BCD iterations for (P0). Note that the second term in (2) is

equivalently written as
∑n

l=1

∑N

j=1
PT
j dkl Hγ(r

kT

l Pjx
k−1),

with dl and rl denoting the lth columns of D and R = WT ,

respectively. In particular, when all the overlapping image

patches (with patch stride of 1 pixel) are used in (P0) and

the patches overlapping the image boundaries wrap around

on the opposite side of the image (periodic image condition),

then the second term in (2) involves filtering (via circular

convolution) xk−1 with each transform filter (the filter is

obtained by flipping and zero-padding a reshaped row of

W ), hard-thresholding the result, filtering with each corre-

sponding dictionary (D) filter (obtained by zero-padding the

reshaped column of D), and aggregating the outputs from

the various (1 ≤ l ≤ n) filters. This aggregate is further

updated by adding the bias term νAHy and applying G−1 (or

alternatively performing CG).

The filtering and thresholding operations (with the fil-

ters learned via the aforementioned SVD-based update using

(P0)) in each iteration (or layer) of Fig. 1 help denoise or

decorrupt the image and the other operations enforce the

imaging model or physics. The (UTMRI) algorithm thus has

a convolutional network architecture (with depth correspon-

ding to the number of iterations), where the filters are learned
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on-the-fly from the measurements y using (P0) (i.e., without

using any explicit training data). Next, we will describe an

alternative approach to train such an algorithm using training

datasets to explicitly minimize image reconstruction errors.

Such pre-training would save runtime when applying the

algorithm to new test data.

2.2. Training Cost and Algorithm

Our proposed method exploits the iterative or multi-layer

structure in Fig. 1, with each layer comprised of a trai-

ned decorruption step, followed by the least squares update

in (2) that uses the imaging system model. Learning the

decorruption step involves learning the transform and dicti-

onary filters and thresholdings. We assume L transform and

dictionary filters in each layer, and a potentially different

threshold for each filter pair (or arm in Fig. 1). We use

soft-thresholding, which is amenable to gradient-based op-

timization. A complex-valued scalar is soft-thresholded as

Sτ (c) = max(|c| − τ, 0)ej∠c for τ ≥ 0.

The data for training consists of a set of reference (ground

truth) images reconstructed from densely sampled imaging

measurements along with subsampled measurements of these

images. Initial images are obtained from the measurements

(e.g., A†y), and the dictionary, transform, and thresholds are

trained layer-by-layer. Once the parameters for a specific

layer have been trained, the training image reconstructions

are passed through that layer (with fixed parameters) and the

resulting images are used for training the next layer. In the

kth layer, we minimize the following cost consisting of an �1
(with ‖Q‖

1
= ‖vec(Q)‖

1
) patch-based reconstruction error

and a regularizer (a related cost appears in [24]), to train the

model:

(P1) min
Dk,Wk,Γk

‖P train −DkSΓk(W kP̂ k−1)‖1 + βR̃(Dk),

where Dk ∈ C
n×L, W k ∈ C

L×n and Γk ∈ R
L are the

dictionary, transform (with L filters), and a set of thresholds,

respectively, for the kth reconstruction layer. The regularizer

R̃(Dk) �
∑L

l=1

(∥∥dkl
∥∥2
2
− 1

)2

with non-negative weight β

keeps the �2 norms of dictionary columns (dkl ) close to unity,

which helps eliminate scaling ambiguities2 [25] in the solu-

tion. The operator SΓk performs entry-wise soft-thresholding

using corresponding thresholds. Matrix P train ∈ C
n×J

has a set of (often randomly chosen) patches from reference

(ground truth) images as its columns, and P̂ k−1 has the cor-

responding patches from the reconstructed versions of the

images after layer k − 1.

2Each column of Dk can be scaled by a positive constant α and the cor-

responding row of Wk and entry of Γk can be both scaled by 1/α (the soft-

thresholding function is scale-homogenous jointly with respect to the row of

Wk and corresponding entry of Γk), and the cost in (P1) is invariant to such

scalings.

Unlike the previous UTMRI algorithm, the proposed ar-

chitecture uses soft-thresholding instead of hard-thresholding.

We do not however constrain Dk and W k to be “matched”,

which allows a degree of flexibility for the proposed scheme.

The variables Dk, W k, and Γk could be updated using

gradient-based techniques such as sub-derivative descent with

backtracking line search for step sizes. This would ensure

monotone decrease of the cost. Here, we instead use the re-

cent ADAM approach [26] that exploits higher-order gradient

information to jointly update the variables. ADAM performs

stochastic updates, where each iteration computes the gra-

dient of the objective corresponding to a subset (minibatch)

of all data (thus saving memory). The following are gradients

(computed efficiently using sparse multiplications) of the cost

in (P1) with respect to the columns dkl and rkl , and scalar γk
l

(i.e., lth entry of Γk), where R = WT :

∂ψ

∂γk
l

= Re
(
dk

T

l sign∗(Ek)hkT

l

)

∂ψ

∂dkl
= −sign

(
Ek

)
SH
γk
l

(ckl ) + 4β
(∥∥dkl

∥∥2
2
− 1

)
dkl

∂ψ

∂rk
T

l

=
(
φ− γk

l φ� |ckl |+ γk
l Re

(
φ� sign∗(ckl )

)
� ckl

)

×
(
Ẑ � 11|ck

l
|>γk

l

)H

where Ek � P train − DkSΓk(RkT

P̂ k−1), ckl � rk
T

l P̂ k−1,

hk
l � sign(ckl )�1|ck

l
|>γk

l
, sign(·) denotes the complex phase

computed element-wise, 1 and 1|ck
l
|>γk

l
denote a length-n co-

lumn vector of ones and the (row vector) indicator function

(takes value 0 when condition is violated and 1 otherwise)

computed element-wise, φ � (dkl )
Hsign(Ek) and ψ is the

cost in (P1). Here, � denotes element-wise multiplication,

� denotes element-wise division, (·)∗ denotes the complex

conjugate, and Re(·) denotes real part.

Once all layers of the algorithm have been trained by op-

timizing (P1) for each successive k, we reconstruct new test

data by passing the initial image reconstruction from unders-

ampled measurements through the trained network.

3. NUMERICAL EXPERIMENTS

Here, we present preliminary experiments illustrating the

performance of the proposed method for MR image recon-

struction. We used the multi-slice dataset with 32 512 × 512
(complex-valued) slices provided by Prof. Michael Lustig,

UC Berkeley. We simulated single coil Cartesian k-space

measurements from a subset (five) of these slices, and used

these to train our proposed image reconstruction model with

20 layers at 3.3 fold and 5 fold undersampling of k-space, and

β = 104. The transforms and dictionaries in each layer had

256 filters, which were trained together with the correspon-

ding 256 soft-thresholds, from 8× 8 patches, and ν = 106/p
with p the number of image pixels [13]. We used variable
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(1) (2) (3)

(4) (5)

Fig. 2. 512× 512 test images used in Table 1.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Reconstructed images (magnitudes shown) and recon-

struction error maps (magnitude of difference between recon-

structed and reference images) for image 3 with 30% samples

using Sparse MRI (top row), UTMRI (middle row) and our

trained method (bottom row).

density 2D random sampling patterns [27], which are feasible

for 3D imaging.

The trained models were used to reconstruct five test

UF Image Zero-filled Sparse MRI UTMRI Proposed

3.3x

1 25.6 26.7 28.3 28.2

2 25.2 26.6 27.9 27.8

3 26.0 27.3 29.3 28.9

4 25.4 26.7 28.2 28.1

5 27.2 28.9 30.6 30.3

5x

1 24.7 25.9 27.6 27.5

2 24.2 25.5 27.2 27.0

3 24.9 26.3 28.5 28.0

4 24.4 25.7 27.6 27.4

5 26.2 27.9 29.8 29.5

Table 1. PSNR values in decibels (dB) for the five test images

at two undersampling factors (UF) using various methods.

images from undersampled measurements, including an axial

slice from a different acquisition (Fig. 2). We compare the

performance of the trained method to Sparse MRI [3] that

exploits sparsity in wavelets and total variation domains, and

the recent blind compressed sensing method UTMRI [13].

We ran UTMRI for 120 iterations (a transform is estima-

ted in each iteration), with other parameters as in prior

work [13]. We used the built-in parameter settings in the

publicly available Sparse MRI implementation [28]. These

settings performed well in our experiments. We evaluated re-

construction quality on test data using the peak signal to noise

ratio (PSNR) metric (in decibels (dB)) computed between the

complex-valued reference and reconstructed images.

Table 1 lists the PSNR values for zero-filled IFFT (the

initial image for the methods), Sparse MRI, UTMRI, and the

trained algorithm for various test images and undersampling

factors. Both UTMRI and the trained method outperformed

the non-adaptive Sparse MRI. The trained method performed

quite similarly as UTMRI but was up to 5x faster (average

reconstruction times for UTMRI and Sparse MRI were about

241s and 100s respectively, compared to about 50s for our

method). While our current implementation uses patch-based

processing for testing, much lower runtimes can be achieved

using fast convolutional implementations. Figure 3 compares

the reconstructed images and error maps for different methods

showing potential for our trained approach.

4. CONCLUSIONS

In this work, motivated by recent works on transform-

blind compressed sensing, we presented a deep dictionary-

transform learning method for image reconstruction using a

minimum absolute error criteron. The image reconstruction

algorithm learned from training scans can be applied relati-

vely cheaply to reconstruct other images from undersampled

measurements. Preliminary experiments illustrated poten-

tial for such a trained algorithm in terms of image quality

and runtime. Investigation of end-to-end training (instead

of layer-by-layer) of the reconstruction scheme, and more

extensive evaluation and validation on large datasets will be

performed in future work.

1211



5. REFERENCES

[1] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty prin-

ciples: exact signal reconstruction from highly incomplete fre-

quency information,” IEEE Trans. Information Theory, vol.

52, no. 2, pp. 489–509, 2006.

[2] D. Donoho, “Compressed sensing,” IEEE Trans. Information

Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[3] M. Lustig, D.L. Donoho, and J.M. Pauly, “Sparse MRI: The

application of compressed sensing for rapid MR imaging,”

Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–

1195, 2007.

[4] M. Lustig, J. M. Santos, D. L. Donoho, and J. M. Pauly, “k-

t SPARSE: High frame rate dynamic MRI exploiting spatio-

temporal sparsity,” in Proc. ISMRM, 2006, p. 2420.

[5] J. Trzasko and A. Manduca, “Highly undersampled mag-

netic resonance image reconstruction via homotopic l0-

minimization,” IEEE Trans. Med. Imaging, vol. 28, no. 1, pp.

106–121, 2009.

[6] Y. Kim, M. S. Nadar, and A. Bilgin, “Wavelet-based compres-

sed sensing using gaussian scale mixtures,” in Proc. ISMRM,

2010, p. 4856.

[7] H. Jung, K. Sung, K. S. Nayak, E. Y. Kim, , and J. C. Ye, “k-t

FOCUSS: A general compressed sensing framework for high

resolution dynamic MRI,” Magnetic Resonance in Medicine,

vol. 61, no. 1, pp. 103–116, 2009.

[8] Z. P. Liang, “Spatiotemporal imaging with partially separable

functions,” in IEEE Intl. Symp. Biomed. Im. (ISBI), 2007, pp.

988–991.

[9] J. P. Haldar and Z. P. Liang, “Spatiotemporal imaging with

partially separable functions: A matrix recovery approach,” in

IEEE Intl. Symp. Biomed. Im. (ISBI), 2010, pp. 716–719.

[10] S. Ravishankar and Y. Bresler, “MR image reconstruction

from highly undersampled k-space data by dictionary lear-

ning,” IEEE Trans. Med. Imag., vol. 30, no. 5, pp. 1028–1041,

2011.

[11] Q. Xu, H. Yu, X. Mou, L. Zhang, J. Hsieh, and G. Wang, “Low-

dose X-ray CT reconstruction via dictionary learning,” IEEE

Trans. Med. Imag., vol. 31, no. 9, pp. 1682–1697, Sept. 2012.

[12] S. Ravishankar and Y. Bresler, “Efficient blind compressed

sensing using sparsifying transforms with convergence guaran-

tees and application to magnetic resonance imaging,” SIAM

Journal on Imaging Sciences, vol. 8, no. 4, pp. 2519–2557,

2015.

[13] S. Ravishankar and Y. Bresler, “Data-driven learning of a union

of sparsifying transforms model for blind compressed sensing,”

IEEE Transactions on Computational Imaging, vol. 2, no. 3,

pp. 294–309, 2016.

[14] X. Zheng, S. Ravishankar, Y. Long, and J. A. Fessier, “Union

of learned sparsifying transforms based low-dose 3D CT image

reconstruction,” in International Conference on Fully 3D

Image Reconstruction in Radiology and Nuclear Medicine,

2017, pp. 69–72.

[15] S. Ravishankar and Y. Bresler, “Learning sparsifying trans-

forms,” IEEE Trans. Signal Process., vol. 61, no. 5, pp. 1072–

1086, 2013.

[16] S. Ravishankar, B. Wen, and Y. Bresler, “Online sparsifying

transform learning – part I: Algorithms,” IEEE Journal of Se-

lected Topics in Signal Processing, vol. 9, no. 4, pp. 625–636,

2015.

[17] S. Ravishankar and Y. Bresler, “Learning doubly sparse trans-

forms for images,” IEEE Trans. Image Process., vol. 22, no.

12, pp. 4598–4612, 2013.

[18] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algo-

rithm for designing overcomplete dictionaries for sparse repre-

sentation,” IEEE Transactions on signal processing, vol. 54,

no. 11, pp. 4311–4322, 2006.

[19] M. Yaghoobi, T. Blumensath, and M. Davies, “Dictionary le-

arning for sparse approximations with the majorization met-

hod,” IEEE Transaction on Signal Processing, vol. 57, no. 6,

pp. 2178–2191, 2009.

[20] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning

for matrix factorization and sparse coding,” J. Mach. Learn.

Res., vol. 11, pp. 19–60, 2010.

[21] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for

image restoration with neural networks,” IEEE Transactions

on Computational Imaging, vol. 3, no. 1, pp. 47–57, Mar. 2017.

[22] J. Schlemper, J. Caballero, J. V. Hajnal, A. Price, and D. Ru-

eckert, “A deep cascade of convolutional neural networks for

dynamic mr image reconstruction,” IEEE Transactions on Me-

dical Imaging, 2018, to appear.

[23] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. So-

dickson, T. Pock, and F. Knoll, “Learning a variational network

for reconstruction of accelerated MRI data,” Magnetic Reso-

nance in Medicine, 2018, to appear.

[24] R. Rubinstein and M. Elad, “Dictionary learning for analysis-

synthesis thresholding,” IEEE Transactions on Signal Proces-

sing, vol. 62, no. 22, pp. 5962–5972, 2014.

[25] R. Gribonval and K. Schnass, “Dictionary identification–

sparse matrix-factorization via l1 -minimization,” IEEE Trans.

Inform. Theory, vol. 56, no. 7, pp. 3523–3539, 2010.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-

mization,” in Proc. 3rd International Conference for Learning

Representations, 2015.

[27] B. Roman, A. Hansen, and B. Adcock, “On asymptotic struc-

ture in compressed sensing,” arXiv preprint arXiv:1406.4178,

2014.

[28] M. Lustig, “Michael Lustig home page,” http://www.

eecs.berkeley.edu/˜mlustig/Software.html,

2014, [Online; accessed October, 2017].

1212


	MAIN MENU
	Help
	Search
	Print
	Author Index
	Program in Chronological Order


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'IEEE_Xplorer'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




