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Abstract—We derive a memory-efficient first-order variable
splitting algorithm for convex image reconstruction problems
with non-smooth regularization terms. The algorithm is based
on a primal-dual approach, where one of the dual variables
is updated using a step of the Frank-Wolfe algorithm, rather
than the typical proximal point step used in other primal-dual
algorithms. We show in certain cases this results in an algorithm
with far less memory demand than other first-order methods
based on proximal mappings. We demonstrate the algorithm on
the problem of sparse-view X-ray computed tomography (CT)
reconstruction with non-smooth edge-preserving regularization
and show competitive run-time with other state-of-the-art algo-
rithms while using much less memory.

Index Terms—primal-dual algorithm, Frank-Wolfe algorithm,
image reconstruction, sparse-view CT

I. INTRODUCTION

Sparsity regularized inverse problems arising in medical
imaging result in large-scale non-smooth convex optimization
problems that are computationally challenging to solve. Gen-
eral purpose first-order algorithms for nonsmooth convex opti-
mization, such as subgradient descent or smoothing techniques
[7], while memory-efficient, converge undesirably slow for
this class of problem. Instead, specialized proximal splitting
algorithms, such as the primal-dual algorithm of Chambolle-
Pock (PDCP) [2], represent the current state-of-the-art for
these problems. However, PDCP and other proximal methods
require storing and operating on one or more dual variables
with dimensions potentially several times larger than the image
volume to be reconstructed. Even for realistic problem sizes
arising in X-ray CT reconstruction, storing and operating on
these additional dual variables may be prohibitive or infeasible,
limiting the scope of these algorithms in practice. This is
especially true when using 3D regularization with all 26
neighboring voxels [11], or when computing on GPUs that
are limited in memory relative to traditional CPUs.

To address this issue, this paper introduces a novel algorithm
that has far less memory demand than previous approaches.
Specifically, we focus on reconstruction via weighted least
squares with a non-smooth edge-preserving regularization
term. This includes the total variation semi-norm and related
penalties. The proposed algorithm is based on a novel primal-
dual approach. Existing first-order primal-dual approaches [2],
[3] alternate between updating the primal variable with a
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gradient descent step and the dual variable with a projected
gradient ascent step (or their proximal equivalents). The main
idea of the proposed approach is to replace the projected
gradient ascent step in the dual update with a step of the
Frank-Wolfe algorithm [4], [6]. We show that this modification
allows for substantial memory savings over standard primal-
dual approaches. In particular, the algorithm requires storing
at most two additional auxiliary variables with dimensions
matching the primal variable. We prove convergence of the
algorithm under certain assumptions on its step-sizes.

Finally, we demonstrate the proposed algorithm by recon-
structing a sparse-view X-ray CT dataset. Empirically, the
proposed algorithm shows competitive convergence with state-
of-the-art proximal splitting methods for this problem [10], [8],
but with much less memory demand.

II. PROBLEM FORMULATION

We consider the following optimization problem:

min
x

1
2‖Ax− b‖2W + λR(x). (1)

Here x ∈ Rn represents a vectorized discrete image. The first
term in (1) measures the data-fit, where A ∈ Rm×n with
m ≤ n is a matrix representing the linear measurement oper-
ator, b ∈ Rm are the (noisy) measurements, and ‖ · ‖W is the
weighted `2-norm defined as ‖z‖W =

√
zTWz for a fixed

diagonal matrix W ∈ Rm×m with positive diagonal entries.
The second term is a regularization penalty, where λ > 0 is a
parameter balancing the tightness of data-fit and regularization.
This work focuses on regularizers of the form R(x) = ϕ(Dx)
for some regularization transform D ∈ RN×n and where
ϕ(y) :=

∑
i φ(yi) for some convex and possibly non-smooth

sparsity promoting potential function φ : R→ R+. We assume
the regularization transform D is a tall matrix (N � n) having
block form D = [DT

1 DT
2 · · · DT

` ]T with Di ∈ RNi×n.
For example, if {Di}`i=1 is a collection of first-order finite-
difference operators in each dimension and φ(x) = |x| then
ϕ(Dx) = ‖Dx‖1 is the discrete (anisotropic) total variation
(TV) of x. Other choices for {Di}`i=1 include oriented higher-
order finite differences [5] or a collection of pre-trained
sparsifying transforms [12]. Likewise, the proposed method
also generalizes to other convex potential functions φ, such as
the Huber loss or Fair potential.

III. PRIMAL-DUAL FRANK-WOLFE ALGORITHM

For ease of exposition we focus on the case ϕ(y) = ‖y‖1
in the remainder of this work, i.e., R(x) = ‖Dx‖1. Because
the `∞-norm is dual to the `1-norm, the primal problem (1)
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with an `1 regularizer has an equivalent primal-dual saddle
point formulation1 given by

min
x

max
‖y‖∞≤λ

1
2‖Ax− b‖2W + 〈Dx,y〉 (2)

Partitioning the dual vector as yT = [yT1 · · · yT` ] correspond-
ing to the blocks DT = [DT

1 · · · DT
` ], we re-express the inner

product in (2) as

〈Dx,y〉 =
∑̀

i=1

〈Dix,yi〉 =

〈
x,
∑̀

i=1

DT
i yi

〉
.

Therefore, introducing the auxiliary variable z ,
∑`
i=1 D

T
i yi,

(2) is equivalent to the equality constrained problem:

min
x

max
‖yi‖∞≤λ,
i=1,...,`

1
2‖Ax−b‖2W +〈x, z〉 s.t. z =

∑̀

i=1

DT
i yi. (3)

Below we show that the proposed algorithm only needs to
maintain an estimate of the auxiliary variable z ∈ Rn, which
has dimensions of the image volume, rather than the full dual
variable y ∈ RN that is generally several times larger.

We also dualize the data-fit term by defining
g(t) := 1

2‖t− b‖2W and using the identity

g(Ax) = max
t
〈t,Ax〉 − g∗(t),

where g∗ is the convex conjugate of g. Simple analysis yields
g∗(t) = 1

2‖t+Wb‖2W−1− 1
2‖b‖2W . Inserting this into (3) and

dropping constant terms yields the equivalent formulation

min
x

max
t

max
‖yi‖∞≤λ,
i=1,...,`

〈t,Ax〉 − 1

2
‖t + Wb‖2W−1 + 〈x,z〉 (4)

subject to z =
∑`
i=1 D

T
i yi.

A. Frank-Wolfe dual update

The Frank-Wolfe (FW) algorithm [4], [6], also known as
the conditional gradient method, is a projection-free approach
to solving constrained problems of the form

max
y∈C

f(y),

where f is a concave function and C is a closed, convex set. At
each iteration, the FW algorithm solves for a search-direction
s? via

s? = arg max
s∈C

〈s,∇f(y(k))〉

then updates y with a convex combination of the previous
iterate y(k) and the search direction

y(k+1) = (1− αk)y(k) + αks
?

where αk is some iteration-dependent step-size.
If we apply one step of the FW algorithm to the dual

variable y in (2) while holding the primal variable x fixed,
then the function to maximize is simply the linear function

1For a general regularization penalty of the form ϕ(Dx), we can derive a
similar saddle-point formulation (2) by writing ϕ(Dx) = maxy〈Dx,y〉 −
ϕ∗(y) where ϕ∗ is the convex conjugate of ϕ.

f(y) = 〈Dx,y〉 with ∇f(y) = Dx subject to ‖y‖∞ ≤ λ.
The FW search-direction update in this case is

s? = arg max
‖s‖∞≤λ

〈s,Dx〉 = λ sign(Dx).

where sign(·) is applied entrywise and we define sign(0) = 0.
Hence, a FW update of y has the form

y(k+1) = (1− αk)y(k) + αk λ sign(Dx).

A key to saving memory is that the above update is separable
in terms of the yi-blocks:

y
(k+1)
i = (1−αk)y

(k)
i +αk λ sign(Dix), for all i = 1, ..., `.

Applying DT
i to both sides above and summing over i yields

z(k+1) = (1− αk)z(k) + αkλ
∑̀

i=1

DT
i sign(Dix) (5)

where we define z(k) =
∑`
i=1 D

T
i y

(k)
i for all k ≥ 0.

To save memory, we compute z(k+1) incrementally, first by
rescaling the current estimate by (1 − αk) then by adding
αkλD

T
i sign(Dix) for all i = 1, ..., ` in sequence.

B. Proximal dual update

Similar to other primal-dual approaches [2], [3], to update
the dual variable t we take one step of a proximal point
algorithm applied to (4) while fixing the other variables.
Specifically, given the current iterates (x(k), t(k)), we set

t(k+1)= arg max
t
〈t,Ax(k)〉− 1

2‖t+Wb‖2W−1− 1
2σk
‖t−t(k)‖2W−1

where σk > 0 is a step-size parameter to be specified later.
This has the closed form solution

t(k+1) = 1
1+σk

t(k) + σk

1+σk
W (Ax(k) − b). (6)

C. Primal update

Finally, we update the primal variable x via a gradient
descent step (or equivalently a proximal-point step) applied
to (4) with the dual variables fixed:

x(k+1) = x(k) − τk(z(k+1) + AT t(k+1)) (7)

where τk > 0 is a step-size parameter to be specified later.
Inspired by [2] we include an optional over-relaxation step:

x(k+1) = xk+1 + θ(x(k+1) − x(k)), (8)

where θ ∈ [0, 1], and perform the dual variable updates (5)
and (6) with x(k) in place of x(k).

D. Algorithm summary and convergence

Algorithm 1 summarizes the proposed primal-dual Frank-
Wolfe (PDFW) algorithm. Using similar analysis as in [1]
we are able to prove the following convergence result for
Algorithm 1 in the special case θ = 0 by showing it is a
particular instance of an ε-subgradient descent method; we
omit the proof for brevity.

Theorem 1. Let X ∗ denote the set of minimizers to (1), and let
{xk}∞k=1 be the iterates generated by Algorithm 1 with θ = 0.
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Algorithm 1 Primal-Dual Frank-Wolfe (PDFW)

Initialize x(0) = x(0), z(0) = 0 ∈ Rn and t(0) = 0 ∈ Rm.
Choose step-sizes (τk, σk, αk), θ ∈ [0, 1].
for k = 0, ..., kmax do
t(k+1) = 1

1+σk
t(k) + σk

1+σk
W (Ax(k) − b)

z(k+1) = (1− αk)z(k) + αkλ
∑`
i=1 D

T
i sign(Dix

(k))
x(k+1) = x(k)−τk(AT t(k+1) + z(k+1))
x(k+1) = x(k+1) + θ(x(k+1) − x(k))

end for

Suppose the iterates {xk}∞k=1 are bounded. If the step-size
sequences {αk} ⊂ [0, 1], {σk} ⊂ (0,∞), and {τk} ⊂ (0,∞)
satisfy τk → 0,

∑∞
k=0 τk = +∞, and

k∑

j=1

τj−1

k∏

i=j

(1− αi)→ 0,
k∑

j=1

τj−1

k∏

i=j

1

1 + σk
→ 0

as k → ∞, then dist(xk,X ∗) → 0, where dist denotes the
Euclidean distance of a point to a set. In particular, if the
solution x∗ to (1) is unique then xk → x∗.

The step-size conditions in Theorem 1 are satisfied, for
example, when τk = O( 1

kp ), 0 < p ≤ 1, αk and σk are
constant. There are also valid choices of τk, αk, σk for which
αk → 0 and σk → ∞, such as τk = O( 1

kp ), αk = O( 1
kq ),

and σk = O( 1
τk

) with 0 < p < 1 and 0 < q < p/2.
Empirically, we observe improved convergence rates using

θ = 1 and a constant step-size τk = τ . However, our current
proof of Theorem 1 does not extend to the case θ 6= 0 nor to
the case of τk constant, and we leave its convergence under
these conditions as an open problem for future work.

E. Connections to Chambolle-Pock primal dual algorithm

Algorithm 1 is closely related to the primal-dual algorithm
of Chambolle-Pock (PDCP) [2]. If we introduce an auxiliary
variable s(k) ∈ RN and replace the z(k+1) update in Algo-
rithm 1 with the alternative update

z(k+1) = DTs(k+1) := DT proj‖·‖∞≤λ(s(k) + σkDx(k))

where proj‖·‖∞≤λ denotes Euclidean projection onto the set
{s : ‖s‖∞ ≤ λ}, then this modified version of Algorithm 1
coincides with PDCP applied to (4). In [2] it is shown that
PDCP converges when σk = σ and τk = τ are constant and
τσL2 < 1 and θ = 1, where L is the operator norm of the
concatenated matrix [AT ,DT ]T .

F. Memory benefits

Table 1 summarizes the memory requirements of different
first-order proximal methods for solving (2). An important
feature of Algorithm 1 is that it only requires storing at
most three arrays having the size of the image volume to
be reconstructed. In contrast, the linearized augmented La-
grangian method (LALM) of [8] would need to store several
arrays have the same size as the image plus two additional
arrays of size N , the output dimension of the regularization
transform. Similarly, the PDCP algorithm [2] implemented as

number of variables of size total memory
x ∈ Rn Dx ∈ RN b ∈ Rm 3D CT example
(image) (reg. transform) (data) (in GB)

LALM [8] 4 2 2 3.02
PDCP [2], [10] 2 1 2 1.60
PDFW, θ = 1 3 0 2 0.47
PDFW, θ = 0 2 0 2 0.38

TABLE I
MEMORY DEMANDS OF FIRST-ORDER METHODS FOR SOLVING (1).

in [10] needs to store at least one array of size N . The last
column of Table 1 we illustrates the memory demand of these
algorithms for the iterative reconstruction of a 3D axial CT
scan as specified in the next section. The proposed PDFW
algorithm requires an order of magnitude less memory for
this example because it avoids having to store large auxiliary
variables associated with the regularization transformed image.

IV. EXPERIMENTS

Here we demonstrate the proposed PDFW algorithm’s po-
tential for sparse-view X-ray CT reconstruction. We simu-
late an axial CT scan of the XCAT phantom [9] of size
1024 × 1024 × 154 voxels to obtain a sinogram of size
m = 888 × 64 × 120 (channels × rows × views) and
reconstruct on a coarser grid of size n = 512 × 512 × 90.
Our reconstruction is obtained by solving (1) with regularizer
R(x) = ‖Dx‖1 where D computes all finite-differences
with thirteen nearest-neighbors of each voxel. We set the
statistical weighting matrix W = I , and set the regularization
parameter λ = 4096. We compare against two state-of-the-
art first-order algorithms for solving (1): PDCP as adapted
to CT reconstruction in [10], and the linearized augmented
Lagrangian method 2 (LALM) of [8]. For the proposed PDFW
algorithm we test two sets of step-sizes. The first set (S1) is
designed to satisfy the conditions of Theorem 1:

τk = 2
2+k , σk = 1

L2τk
, αk =

(
2

2+k

)0.49

, θ = 0. (S1)

The second set (S2) uses a constant step-size τk = τ , violating
the conditions of Theorem 1, but matches the settings proposed
for the PDCP algorithm in [10] (except for the choice of αk):

τk = 1/L, σk = 1/L, αk = 2
2+k , θ = 1. (S2)

Figure 1 shows cropped images from the central transaxial
plane initial filtered back projection reconstruction, reference
solution, and the reconstruction obtained from the proposed
PDFW algorithm with settings (S2) after 500 iterations. We
obtained a reference solution to the optimization problem by
running several thousands of iterations of the LALM algo-
rithm, which reached the smallest cost among the competing
algorithms. Observe that there is almost no visual difference
between the reference solution and the PDFW solution after
500 iterations.

Figure 2 compares the performance of the algorithms with
respect to two convergence metrics: (1) the normalized cost

2An ordered subsets variant of LALM is also presented in [8]. The proposed
PDFW algorithm could also be modified to include ordered subsets updates,
but is outside the scope of this work. For fair comparison, we compare against
LALM without ordered subsets.
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Fig. 1. Reconstructions of central transaxial plane of XCAT phantom from sparse-view measurements (left to right): filtered back projection (FBP)
reconstruction, a reference solution, and a reconstruction obtained after running 500 iterations of the proposed PDFW algorithm with settings (S2). Images
displayed in HU (modified so that air is 0) clipped to range [800, 1200] and cropped to the region of interest.

0 100 200 300 400 500

iteration

10
-2

10
0

10
2

n
o
rm

a
liz

e
d
 c

o
s
t

PDCP

PDFW-(S1)

PDFW-(S2)

LALM

0 100 200 300 400 500

iteration

0

20

40

60

80

100

120

R
M

S
D

 [
H

U
]

PDCP

PDFW-(S1)

PDFW-(S2)

LALM

Fig. 2. Plots of convergence metrics using the proposed PDFW algorithm with settings (S1) and (S2), the PDCP algorithm [10], and LALM algorithm [8].

defined as (f(x(k))− f(x∗))/f(x∗) where f(x) is the cost
function in (1), x(k) is the kth iteration of a given algo-
rithm, and x∗ is the reference solution; and (2) the root
mean square difference (RMSD) computed as RMSD =√

1
|Ω|
∑

i∈Ω |x
(k)
i − x∗i |2 where Ω is the index set of voxels

in a cylindrical region of interest containing the phantom
anatomy. Overall, the LALM algorithm performs best in
terms of the convergence metrics, reaching the lowest cost
and RMSD after 500 iterations. However, we reiterate that
the LALM algorithm has the highest memory demand of
the compared methods (see Table I). The proposed PDFW
algorithm with step-size scheme (S1) shows a fast initial
decrease in the cost and RMSD, but slows in improvement
after 100 iterations and has the highest RMSD after 500
iterations, indicating that the (S1) step-size scheme may yield
slow asymptotic convergence. The PDFW algorithm with step-
size scheme (S2) has better long-run performance in RMSD,
yielding nearly the same as LALM after 500 iterations, and
its reduction in normalized cost is similar to PDCP.

V. CONCLUSION

We introduce a memory-efficient algorithm for solving
large-scale convex image reconstruction problems with trans-
form sparse regularization based on a novel hybrid of proximal
methods and the Frank-Wolfe algorithm. Our experiments
demonstrate that the algorithm has competitive performance
with other first-order algorithms but with substantially less
memory demand. In our experiments we use all of the sino-
gram measurements to update the primal variable in each

iteration, but the proposed algorithm could potentially be
modified to incorporate ordered subsets updates similar to [8]
for improved computational efficiency and faster convergence.
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