
Improving GPU Scaling for X-Ray CT
Harini Muthukrishnan, Thomas F. Wenisch, Jeffrey A. Fessler

Abstract—Model-based iterative reconstruction (MBIR) for X-
Ray CT is computationally expensive, yet highly parallelizable,
making it amenable to multi-GPU implementation. However,
reconstruction time does not improve linearly with the number
of GPUs, mainly due to high inter-GPU copying delays at the end
of computation phases. Overlapping copies with computation—
by copying incrementally as data are produced—can mitigate
copy overhead and improve performance scalability. This paper
demonstrates how to perform asynchronous copies using GPU
threads initiated via dynamic kernel launch. Our technique
enables 90% of copy time to overlap with compute, achieving
a speedup of 1.24× (nearing the theoretical bound of 1.31×
with instantaneous copies) over conventional cudaMemcpy at
the end of compute phases on four Tesla K40m GPUs. Relative
to a baseline implementation on a single GPU, our accelerated
approach achieves a speedup of 3.46× on four GPUs. We project
even higher impact from our technique with more GPUs.

I. INTRODUCTION

Model-based iterative reconstruction (MBIR) for X-Ray CT
offers improved image quality at lower radiation doses than
Filtered Back Projection (FBP) [1], but at higher compu-
tational costs. Although researchers have explored various
acceleration techniques, such as using SIMD instructions on
CPUs [2, 3] and cloud computing [4, 5], the compute times
remain undesirably high for MBIR to be ubiquitous clinically.

Further MBIR acceleration requires increasing both compu-
tational resources and memory bandwidth, making a case for
employing multiple GPUs [6, 7]. But GPU scaling does not al-
ways result in linear speedup. Fig. 1 shows projected speedups
as we parallelize a state-of-the-art MBIR algorithm [8] over
more GPUs. Using more GPUs initially provides near-linear
speedup up to about eight GPUs, as the computational phases
of MBIR can be readily partitioned across the GPUs. However,
beyond eight GPUS, speedup saturates and then begins to
decrease. This reversal arises due to the time spent copying
data among GPUs between computational phases. Sinogram
and image data must be exchanged all-to-all among the GPUs
between phases, yet current systems offer no mechanism
to broadcast data, requiring pairwise copies. As a result,
even though computation time shrinks, copy time grows and
ultimately dominates as the number of GPUs increases.

High copy time can be mitigated by overlapping copying
with computation—by “streaming” data from producer GPUs
as soon they become ready. By initiating some copies while
computation is ongoing, the next computational phase must
wait only for straggling data produced at the end of a phase.

While overlapping communication with compute between
CPU and GPU has been studied for FBP[9], hiding copies
underneath compute in multi-GPU systems entails several

Supported in part by NIH Grant U01 EB018753. The authors are with the
EECS Department of the University of Michigan, Ann Arbor, MI 48019 USA
(email: {harinim, twenisch, fessler}@umich.edu).

1

5

9

1 11 21 31

Sp
ee
du
p	
w
.r.
t	1
	G
PU

Number	of	GPUs

Ideal

Projected

Fig. 1: Ideal and Projected speedups achievable with GPU scaling
with conventional multi-GPU implementation.

challenges: (1) State-of-the-art CPU–GPU systems provide an
astonishing diversity of mechanisms to move data from one
GPU’s memory space to another. Data may be moved by
CPU loads/stores through a variety of addressing mechanisms,
by GPU loads/stores, by DMA engines integrated on the
GPU, and potentially even by other devices on the PCIe bus.
These alternatives trade off bandwidth, initiation latency, and
disruption to other GPU threads in non-trivial ways; the best
approach for our purpose is not obvious. (2) Every CT phase
must indicate when enough data has been generated for a
copy to start. It is neither clear how to trigger copies, nor at
what granularity they should be performed. (3) The CUDA
programming model allows enormous freedom in ordering
the execution of individual threads. No existing programming
interface allows GPU programs to efficiently track production
of output data, initiate copies, and await copy completion.

This work focuses on accelerating a penalized weighted
least-squares with ordered subsets (PWLS-OS) reconstruction
algorithm [8] on a multi-GPU system by hiding copies under
computation phases that generate data. We discuss performing
copies using GPU threads initiated though dynamic kernel
launch as the mechanism best suited for our purpose. We
identify the best granularity at which to perform such copies
and describe techniques to track data production and copy
completion. We also consider how the subdivision of MBIR
phases into individual GPU kernels affects the order data is
generated and how to orchestrate these to maximize gains from
our technique.

Using four Tesla K40m GPUs, we show that a 20-iteration
helical CT reconstruction of a 512×512×512 image from
7256 views of size 888×64 takes 11.25 minutes using our copy
mechanism. We also demonstrate, using a simple mathematical
model, how our technique makes MBIR CT more amenable
to further GPU scaling.

256 The fifth international conference on image formation in X-ray computed tomography



Fig. 2: (a) Conventional: computation and copies in series. (b)
Our goal: incremental copying overlapping computation

II. METHODS

A. Background

We reconstruct the image x̂ by iteratively minimizing the
PWLS cost function [5]:

x̂ = argmin
x≥0

Ψ(x), Ψ(x) =
1
2
‖Ax−y‖2

W +R(x), (1)

where A is the system matrix, y is the sinogram measurements,
W is the statistical weighting and R is the regularizer.

Each iteration updates the current image estimate (x(n))
using the following gradient of Ψ:

∇Ψ(x(n)) = AT W(Ax(n)−y)+∇R(x(n)). (2)

Each iteration comprises four phases as shown in Figure 4.
Each phase can be formulated to admit considerable paral-
lelism over image voxels or detector values in the sinogram,
making it well-suited to using the enormous compute capabil-
ities of modern GPUs [10].

GPUs have multiple Streaming Multiprocessors that con-
currently execute many threads [11]. These hardware ele-
ments execute a GPU kernel (programmed in CUDA) orga-
nized as blocks, warps and threads [12]. Kernel ordering is
programmer-controlled, but ordering of blocks and warps is
left to the hardware scheduler.

In our GPU implementation of PWLS-OS, we parallelize
forward projection by partitioning views across multiple
GPUs, employing one GPU thread to compute the value of one
detector residual. Every GPU broadcasts its generated residual
values to every other GPU, since back projection uses all of
them. We then parallelize computation of the other phases
by partitioning the y plane across multiple GPUs. Each thread
performs the back projection, regularization and update of one
image voxel. The GPUs then copy the corresponding partial
image to other GPUs before the next iteration commences.

B. Overlapping copy with compute

As shown in Figure 1, although PWLS-OS is highly
amenable to parallelization, GPU scaling does not yield linear
speedup due to time taken to perform all-to-all copies of
the detector residual at the end of forward projection and
of the image voxels at the end of the update phase. The
total amount of data copied increases linearly with number
of GPUs; although each GPU produces fewer values, they

Fig. 3: GPU SM resource utilization and copy initiation. The
launch of the initiated copy kernels depends entirely on the
hardware scheduler.

must copy to more destinations. Since using more GPUs also
reduces compute time per GPU, scaling beyond 12 GPUs
results in copy time that exceeds compute time.

The available copy bandwidth is bound by the interconnect
(PCIe3.0 and PCIe4.0 pose theoretical limits of 16GB/s and
32GB/s, respectively, though substantially lower sustained
throughput is achievable in practice) and cannot be increased
without hardware enhancements. However, a careful study
of the hardware utilization pattern during the reconstruction
process indicates that the interconnect remains idle during
the computation phases and is utilized to its practical limit
only during the ensuing copy phase, when no compute takes
place. Hence, one way to decrease the reconstruction time is to
initiate copies of data generated early in the computation phase
while the rest is still being computed, overlapping computation
and copying, as depicted in Figure 2.

To overlap compute and copy, the copy mechanism must
impose minimal overhead and interference on the computation.
Our concurrent work [13] identifies GPU thread-based copy
using dynamic kernel launch as the mechanism best suited for
our purpose. In this technique, the GPU threads that perform
computation also trigger copies after generating a data chunk
(e.g., a set of sinogram bins) of the desired granularity. The
copies are issued via dynamic kernel launch, wherein a copy
kernel is launched from within the main CT computation
kernels—a capability introduced in CUDA 5.0 [14]. The copy
kernel is scheduled by the GPU hardware scheduler and copies
the data chunk to the other GPUs as shown in Figure 3. As
computation proceeds, copy kernels are triggered, scheduled
by hardware, and executed.

Although our technique incurs minimal copy initiation over-
head, the copy kernels nevertheless use GPU resources that
might otherwise have been used by CT computation kernels,
and hence indirectly delay computation. Hence, invoking the
copy kernel at an appropriate frequency while ensuring that
the maximum amount of copy time is hidden behind compute
becomes crucial. We address this challenge by carefully tuning
the granularity at which copies are initiated. Since this gran-
ularity depends only on the CT geometry and not on patient
features, it can be determined in advance via a parameter-
sweep over a sample image.

Choosing the right granularity to track data production is
also important, as tracking at too low granularity (such as
thread granularity) would increase the overhead of tracking,

The fifth international conference on image formation in X-ray computed tomography 257



Fig. 4: Phases of X-Ray CT MBIR. After forward projection, the GPUs exchange their generated sinogram data, followed by three
computational phases and an image update. The GPUs then exchange image data and the algorithm repeats until convergence.

slowing computation, while tracking at too high granularity
might not ensure enough compute-copy overlap. We perform
the tracking at the granularity of GPU thread blocks. Once
consecutive thread blocks produce a chunk of data of the
desired granularity, a dynamic copy kernel initiates the copies.

Our final design decision entails selecting the best im-
plementation to track data generation. Proper design of this
mechanism is crucial because the CUDA programming model
offers enormous freedom to the scheduler with respect to
block ordering, so blocks may complete in any order. We
employ an atomic counter-based approach, wherein each data
chunk is assigned a corresponding atomic counter, initialized
to the number of blocks that contribute data to the chunk.
The first thread of each block waits until all its sibling
threads complete, then decrements the counter using an atomic
decrement instruction. When the counter reaches zero, it
indicates that the corresponding group of consecutive blocks
is complete. The thread then initiates a dynamic copy kernel
for the corresponding data chunk. Although the counter-based
approach uses atomic accesses that are inherently slower than
normal reads and writes, it performed better than alternatives
(e.g., dedicated threads that poll for chunk completion).

C. Sequencing data generation

To ensure that the reconstruction method can effectively use
the copy strategy discussed above, it is important to structure
the kernels to perform all the computation corresponding
to a particular data element in quick succession, producing
data elements incrementally rather than performing multiple
updates to all data elements during kernel execution. The goal
is to ensure that data chunks are available as early as possible
to maximize copy-compute overlap. While the original forward
projection code computed the detector residuals in succession,
the back projection code updated the relevant voxels using one
view before updating the voxels using the next view, i.e., an
outer loop over views. This led to voxels being ready for copy
only during the processing of the last view, leaving very little
room for compute-copy overlap. We restructured the code to
generate the voxels in succession by having each voxel loop
over the relevant views that contribute to it, thus ensuring voxel
values are produced incrementally.

III. EXPERIMENTAL RESULTS

We report on our multi-GPU PWLS-OS implementation.
We validate the GPU implementation against a CPU baseline,
which it matches to within 0.0289HU (Hounsfield units). Our
test system comprises four Tesla K40m GPUs, each having

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

Sp
ee
du
p	
w.
r.t
	1	
GP

U
Number	of	GPUs

Baseline Our	design Ideal(Instantaneous)

Fig. 5: Measured speedups achieved through GPU scaling

2880 CUDA cores, 11.9GB global memory and 4KB shared
memory per block. Each GPU is capable of performing a peer
access to the other GPUs. They reside on a PCIe3.0 bus that
also interfaces them with the host.

We simulated 9-turn helical CT data with pitch 63/64 and
7256 views of size 64 rows by 888 channels, and reconstructed
a 512×512×512 voxel image volume over a 512 mm transax-
ial field of view (FOV) with 0.625 mm slice thickness using
the separable footprint projector [15] and [8] with 24 subsets.

In our design, the GPU threads initiated through dynamic
kernel launch perform copies, as explained in Section II-B.
The copies are performed for 8kB data chunks for detec-
tor residuals and 16kB for image voxels. We compare our
approach against the baseline wherein data is copied after
compute phases using cudaMemcpy Peer-to-Peer [16].

Figure 5 shows speedup achieved with respect to a single
GPU for three cases: (1) Baseline, (2) Our design, and (3)
Instantaneous copies (copies are performed in zero time). The
blue (Instantaneous) bars indicate the theoretical limit on the
performance gains achievable via compute-copy overlap. With
only two GPUs, copy overhead is negligible and there is little
performance difference between the baseline and the ideal.
However, the potential and realized gains grow rapidly with
further scaling. Our approach realizes 94% of the theoretical
opportunity for four GPUs, achieving a speedup of 1.24× over
the baseline and 3.46× over a single GPU.

Our design falls short of the opportunity available with
instantaneous copies for two reasons: (1) The dynamic copy
kernels require some GPU execution bandwidth, slightly de-
laying execution of CT kernel threads. (2) A 100% copy-
compute overlap is not possible because the data generated
by the final blocks is copied after computation is complete.

258 The fifth international conference on image formation in X-ray computed tomography



1
6
11
16
21
26
31
36

0 5 10 15 20 25 30

Sp
ee
du
p	
w
.r.
t	1
	G
PU

Number	of	GPUs

Ideal
PCIe5.0(Our	design)
PCIe5.0(baseline)
PCIe3.0(Our	design)
PCIe3.0(baseline)

Fig. 6: Effect of GPU scaling on speedup for different intercon-
nect generations

IV. SCALABILITY ANALYSIS

Our approach holds the potential to unlock even higher
performance scalability on future, larger multi-GPU systems.
To analyze this potential, we develop a simple analytic model
that predicts the impact of our approach with more GPUs
and faster GPU interconnects. We base our scalability model
on the following observations: (1) As previously explained,
the four phases of X-ray CT are amenable to GPU scaling.
For simplicity, we assume that the compute time of individual
algorithmic phases scales linearly with the number of GPUs,
although practical implementations typically fall a bit short of
ideal linear scaling. (2) An all-to-all broadcast must occur at
the end of the forward projection and update phases. Thus,
as the number of GPUs increases, the total data to be copied,
and hence the time required for copy, increases, since the data
must be copied to additional GPUs.

A. Scalability Model

At the end of forward projection, the GPUs must exchange
the portions of the sinogram each generated. The total bytes
copied is the product of the sinogram size (Sizesino), and the
number of destination GPUs (ngpu − 1). The total time for
the copy depends upon the interconnect technology, which we
model simply as a ‘copy time per byte (tperbyte)’ bandwidth,
as expressed in the following equation:

Copytime1 = (ngpu−1) ∗ Sizesino ∗ tperbyte.

After the update phase, the GPUs must exchange the image
portions each generated. Hence the total bytes copied is the
product of the total image size (Sizeimage) and the number of
destination GPUs (ngpu−1):

Copytime2 = (ngpu−1) ∗ Sizeimage ∗ tperbyte.

B. Discussion

Using this simple model, we estimate the impact of our
design on CT reconstruction performance. Figure 6 shows the
projected speedup of our design and that of the baseline for
different GPU counts against a single GPU implementation
for two different assumptions on interconnect bandwidth (uni-
directional transfer bandwidths of 16GB/sec for PCIe 3.0 and
an estimated 64GB/s for PCIe 5.0).

For both assumptions on interconnect bandwidth, our ap-
proach enables performance scalability to a much larger
number of GPUs than the baseline. For PCIe 3.0, baseline

performance saturates at about 6× speedup (over a single
GPU) with ten GPUs. Above six GPUs, growth in copy
time exceeds reductions in computation time. In contrast,
our approach enables near-ideal scaling up to twelve GPUs.
Beyond this point, copy time grows to the point where it
exceeds compute time and can no longer be hidden.

Higher interconnect bandwidth under PCIe 5.0 reduces
copy time, enabling greater performance scalability for both
the baseline and our method. However, our technique still
drastically increases the scalability potential. Our technique
enables near-ideal scaling up to 24 GPUs, while the baseline
saturates at about 12× speedup with 20 GPUs. Newer GPUs
will further decrease compute time by the time PCIe 5.0
becomes available, making our solution even more relevant.

V. SUMMARY AND CONCLUSION

In this paper, we proposed compute-copy overlap using
warp based copies to overcome the communication bottle-
neck of GPU scaling of CT MBIR. We demonstrated that
our technique offers a 3.46× speedup over a single GPU
implementation on a 4 GPU system, and makes CT MBIR
more amenable to further GPU scaling.

REFERENCES
[1] J.-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “A three-dimensional

statistical approach to improved image quality for multi-slice helical
CT,” Med. Phys., vol. 34, no. 11, pp. 4526–44, Nov. 2007.

[2] K. Zeng, E. Bai, and G. Wang, “A fast CT reconstruction scheme for
a general multi-core PC,” Intl. J. Biomedical Im., vol. 2007, p. 29160,
2007.

[3] R. Sampson, M. G. McGaffin, T. F. Wenisch, and J. A. Fessler,
“Investigating multi-threaded SIMD for helical CT reconstruction on
a CPU,” in Proc. 4th Intl. Mtg. on image formation in X-ray CT, 2016,
pp. 275–8.

[4] J. Ni, X. Li, T. He, and G. Wang, “Review of parallel computing
techniques for computed tomography image reconstruction,” Current
Medical Imaging Reviews, vol. 2, no. 4, pp. 405–14, Nov. 2006.

[5] J. Rosen, J. Wu, T. Wenisch, and J. Fessler, “Iterative helical CT
reconstruction in the cloud for ten dollars in five minutes,” in Proc.
Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, 2013, pp.
241–4.

[6] M. McGaffin and J. A. Fessler, “Alternating dual updates algorithm
for X-ray CT reconstruction on the GPU,” IEEE Trans. Computational
Imaging, vol. 1, no. 3, pp. 186–99, Sep. 2015.

[7] B. Jang, D. Kaeli, S. Do, and H. Pien, “Multi GPU implementation
of iterative tomographic reconstruction algorithms,” in Proc. IEEE Intl.
Symp. Biomed. Imag., 2009, pp. 185–8.

[8] D. Kim, D. Pal, J.-B. Thibault, and J. A. Fessler, “Improved ordered
subsets algorithm for 3D X-ray CT image reconstruction,” Proc. 2nd
Intl. Mtg. on image formation in X-ray CT, pp. 378–81, 2012.

[9] T. Zinßer and B. Keck, “Systematic performance optimization of cone-
beam back-projection on the Kepler architecture,” in Proc. Intl. Mtg. on
Fully 3D Image Recon. in Rad. and Nuc. Med, 2013, pp. 225–8.

[10] K. Mueller, F. Xu, and N. Neophytou, “Why do commodity graphics
hardware boards (GPUs) work so well for acceleration of computed
tomography?” in Proc. SPIE 6498 Comp. Imag., 2007, p. 64980N.

[11] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A unified graphics and computing architecture,” IEEE micro, vol. 28,
no. 2, 2008.

[12] D. B. Kirk and W. H. Wen-Mei, Programming massively parallel
processors: a hands-on approach. Morgan Kaufmann, 2016.

[13] H. Muthukrishnan, J. A. Fessler, and T. F. Wenisch, “SUBLIME: Hiding
copies in multi-GPU systems,” 2018, submitted.

[14] S. Jones, “Introduction to dynamic parallelism,” in GPU Technology
Conf. Presentation S, vol. 338, 2012, p. 2012.

[15] Y. Long, J. A. Fessler, and J. M. Balter, “3D forward and back-projection
for X-ray CT using separable footprints,” IEEE Tr. Med. Im., vol. 29,
no. 11, pp. 1839–1850, 2010.

[16] T. Schroeder, “Peer-to-peer and unified virtual addressing,” in GPU
Technology Conference, NVIDIA, 2011.

The fifth international conference on image formation in X-ray computed tomography 259


