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ABSTRACT

High b-value Diffusion-weighted MRI (DWI) is promising in

cancer imaging but suffers from long acquisition time and low

signal-to-noise ratio (SNR). We propose a low-rank tensor

model that exploits correlation across both diffusion-induced

signal decays and neighboring k-space samples, to accelerate

the acquisition of DWI using an extended range of b-values

(0 s/mm2 to 2500 s/mm2) and limited (orthogonal only) dif-

fusion directions, an imaging scheme that is increasingly used

for brain gliomas evaluation. A phase constraint accounts

for phase variations between b-values is also applied. Our

method integrates parallel imaging and partial Fourier acqui-

sition naturally, and undersamples along phase-encoding di-

rection only. Reconstruction results using both patient and

simulated data with an acceleration factor of 8 show improved

SNR and reduced aliasing, as compared to parallel imaging

only method as well as two other low-rank model-based meth-

ods.

Index Terms— cancer imaging, diffusion-weighted

imaging, high b-value, constrained reconstruction, low-rank

tensor

1. INTRODUCTION

Interest is emerging in acquiring diffusion-weighted magnetic

resonance images (DWI) using b-values higher than conven-

tional values (1000 s/mm2), as it shows potential in better tu-

mor grading and delineation [1–3]. However, the extended

sampling of b-values, plus the low signal-to-noise ratio (SNR)

and thus the need of repeated acquisition for signal averaging,

makes the acquisition time long and inconvenient for clinical

use.

Most work in accelerated DWI acquisition focuses on un-

dersmapling the k-q space [4–8], where images are acquired

using multiple diffusion directions and two b-values. While in

cancer imaging, such as in studies of brain glioma [1–3], usu-

ally only 3 orthogonal directions are sampled using a range

of b-values. Besides, most existing work uses a moderate b-

value at around 1000 s/mm2, while in high b-value DWI, the

extension of b-values to 2000 s/mm2 and higher, plus the lim-

ited sampling of diffusion directions, significantly degrades

the SNR and poses challenges for image reconstruction. Al-

though [5] presents reconstruction results using b = 2000
s/mm2 and 64 diffusion directions, that method fails at an ac-

celeration factor of 8 using k-space only undersampling as

reported.

Low-rank tensor models have been applied to accelerated

MRI and the results are promising [9–12]. However, most

methods do not consider the coil dimension, yet multichan-

nel acquisition plays a key role in clinically used accelera-

tion schemes such as parallel imaging. Although [12] builds

a tensor of the form space×coil×time and exploits the corre-

lation between coils, acceleration using multi-channel acqui-

sition can use not only the correlation between coils, but also

the correlation between neighboring k-space samples. There-

fore, exploiting coil correlations only may not fully utilize the

benefits of multichannel acquisition. In [13], the author stud-

ies tensor models for parallel imaging, but with single image

acquisition instead of image series acquisition.

This paper proposes a new low-rank tensor model that ex-

ploits both the global low-rank structure of DWI that results

from the strong correlation between diffusion signals of vox-

els and the local low-rank structure that results from the cor-

relation between neighboring k-space samples. The method

also includes a phase constraint to account for the large phase

variations between b-values and handles partial Fourier ac-

quisition naturally. We evaluate our method using both pa-

tient and simulated data and show improved SNR and re-

duced aliasing, as compared to parallel imaging only method

(GRAPPA) [14] and two other low-rank model-based meth-

ods [12] and [7].

2. THEORY

2.1. Tensor Construction

In high b-value DWI, a series of 2D DWI images are ac-

quired using Nb different b-values. Each b-value image is

acquired using Nc coils. Denote the size of the imaging ma-

trix as Nx × Ny , we record a collection of k-space samples
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D ∈ C
Nx×Ny×Nc×Nb .

To model both the local low-rank property, i.e., the

correlation between neighboring k-space samples, and the

global low-rank property, i.e., the fact that only a few tis-

sue types are present and signal decays among voxels are

highly correlated, we first organize k-space samples at each

b-value, Db ∈ C
Nx×Ny×Nc , b = 1, 2, · · · , Nb into a block-

Hankel matrix Hb ∈ C
Nc·w2×(Nx−w+1)(Ny−w+1) using

the SAKE method [15], where w denotes the size of the

sliding window that selects a neighborhood of w2 k-space

samples. Next, we stack block-Hankel matrices at differ-

ent b-values along the third dimension to form a 3D tensor

X ∈ C
Nc·w2×(Nx−w+1)(Ny−w+1)×Nb .

2.2. Phase Variation Correction

One challenge involved in applying low-rank constraint to

DWI is the large phase variations across b-values, because

DWI sequences are very sensitive to motion. If uncorrected,

such phase variations would invalidate the assumption of

global low-rankness. Following [7], we estimate the phase

map for each coil/b-value from the center of k-space, assum-

ing the phase maps are smooth, and use the estimated phase

maps to compensate for phase variations.

Although the phase difference between b-values is due to

the motion and should be corrected, the coil phases are im-

portant for multichannel acquisition and should be retained.

2.3. Problem Formulation

Based on the low-rank assumptions, we propose the following

constrained image reconstruction scheme

ŷ, x̂, X̂ = argmin ‖d− Ωy‖22 + λR(X )

s.t. y = FPx, X = HFP1x, x ∈ R
NxNyNcNb , (1)

where d is the vectorized k-space samples, Ω is the k-space

sampling operator, F is the (full) Fourier transform operator

and H is the operator that constructs block-Hankel matrix as

described in [15]. P ∈ C
NxNyNcNb×NxNyNcNb is a diago-

nal matrix that contains the phase information estimated for

each coil/b-value image. P1 is of the same size of P, and is

the coil phase information, estimated from the phase maps at

b = 0 s/mm2, but replicated Nb times. By forcing x to be

real, we enforce the consistency between the phase informa-

tion of reconstructed images and the phase estimation using

the center of k-space, which makes our algorithm compatible

with partial Fourier acquisition [16].

To enforce the low-rank structure, we choose the regu-

larizor R to be a hard constraint on the n-rank [17] of the

tensor X such that (rank(X(1)), rank(X(2)), rank(X(3))) ≤
(r1, r2, r3), where X(i) denotes the ith order matrix unfolding

of tensor X . This hard constraint can be efficiently fulfilled

by performing truncated multilinear singular value decompo-

sition (SVD) [18] [19] that reduces the problem size signif-

icantly, which is beneficial given the large size of the tensor

X .

2.4. Algorithm

We propose an ADMM algorithm to solve this problem ef-

ficiently. All subproblems have closed-form solutions. The

augmented Lagrangian function can be written as

L(x,y,u1,u2,X ) = ‖d− Ωy‖22 + λR(X )

+ μ1(‖y −FPx+ u1‖22 − ‖u1‖22)
+ μ2(‖vec(X −HFP1x+ u2)‖22
− ‖vec(u2)‖22)

(2)

where vec denotes vectorization. We minimize (2) by updat-

ing splitting variables iteratively

yk+1 = (Ω∗Ω+ μ1I)
−1

(
Ω∗d+ μ1(FPxk − u1)

)
, (3)

by matrix inversion lemma

(Ω∗Ω+ μ1I)
−1 =

I

μ1
− 1

μ1
Ω∗(I+

ΩΩ∗

μ1
)−1Ω

1

μ1

=
1

μ1

(
I− Ω∗Ω

1 + μ1

)
, (4)

as ΩΩ∗ = I. Putting (4) back into (3), after some simplifica-

tions, we can show

yk+1 =
Ω∗d+ μ1Ω

∗Ω(FPxk − u1)

1 + μ1

+ (I− Ω∗Ω)(FPxk − u1), (5)

which can be calculated easily by updating sampled loca-

tions of y using the weighted-average of k-space samples and

(FPxk−u1), and unsampled locations using (FPxk−u1).
The update of x is

xk+1 = Real
(
μ1P

∗F∗(yk+1 + uk
1)

+ μ2P
∗
1F∗H∗(X k + uk

2)
)
/(μ1 + μ2), (6)

where H∗ is an operator that averages antidiagonal entries

in the block-Hankel matrix (which are replicates of the same

k-space samples) and puts the average back into appropriate

locations [15]. By construction, H∗H is an identity operator.

The update of the low-rank tensor is calculated as

X k+1 = mlsvd(HFP1x
k+1 − uk

2), (7)

where mlsvd is the truncated multilinear singular value de-

composition, as described in section 2.3, with a core tensor

size of (r1, r2, r3). The code is available online [20]. The

updates of auxiliary variables are

uk+1
1 = uk

1 + (yk+1 −FPxk+1) (8)

uk+1
2 = uk

2 + (X k+1 −HFP1x
k+1) (9)
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3. METHOD

3.1. Data preparation

Under IRB approval, a patient was scanned with a DW EPI

sequence on a Siemens 3T scanner with a 20-channel coil ar-

ray and 3 orthogonal diffusion directions. Eleven b-values

were sampled uniformly from 0 s/mm2 to 2500 s/mm2, with

TR = 9300 ms, TE = 93 ms and flip angle = 90◦. To en-

sure a reasonable geometric fidelity, four-fold parallel imag-

ing (GRAPPA) [14] and partial Fourier [16] (with 75% of k-

space sampled) were applied during data acquisition.

We also simulated a DWI dataset, using a brain phantom

from brainweb [21] and imaging parameters the same as the

patient scan. We removed the skull and simulated diffusion

signals for white matter, gray matter and fluid using a bi-

exponential decay model [22]. We estimated coil phase maps

from the patient dataset and simulated phase variations across

b-values assuming rigid body motion and linear phase varia-

tions [23]. We added Gaussian white noise to the simulated

k-space data, with noise covariance matrix estimated from the

noise calibration lines of the patient scan.

3.2. k-space sampling and phase map estimation

We retrospectively undersampled the k-space of both datasets,

where we fully sampled the center of the k-space, and ran-

domly undersampled the peripheral part of k-space, along the

phase-encoding direction only. Note that the patient dataset

was undersampled by 4 with a quarter plane of k-space not

acquired. Our sampling scheme further undersamples this

dataset. We undersampled the simulated dataset the same way

as the patient dataset. Both undersamplings of patient and

simulated dataset achieve an acceleration factor of 8.0, de-

fined as the ratio between the full data size and sampled data

size. We repeated the random sampling process to test the

stability of our algorithm. Figure 1 shows example sampling

scheme of patient data.

We estimated the phase map at each coil/b-value by first

calculating a GRAPPA [14] kernel from the auto-calibration

region at b = 0 s/mm2 and filling up the regularly undersam-

pled k-space center for other b-values. The phase map was

then calculated from the GRAPPA-filled center of k-space.

3.3. Evaluation

We compared our method with two other low-rank model-

based methods: the phase-constrained low-rank matrix model

[7] (denoted as the PCLR method) and the low-rank tensor

model with coil as one dimension [12] (denoted as the LRT

method).

For the simulated dataset, we quantitatively evaluated our

reconstruction error by comparing our results γ̂ to the noise-

free groundtruth γ. We calculated the reconstruction error as

Fig. 1: Sampling scheme of patient data. White lines indicate

sampled readouts.

‖γ−γ̂‖2/‖γ‖2. For the patient dataset, due to the poor signal-

to-noise ratio at high b-values, which is further degraded by

parallel imaging, the reconstruction difference between our

results and the one by parallel imaging is not informative. In-

stead, we evaluated the SNR of the reconstructed images us-

ing different methods.Characterization of noise distributions

in reconstructed MR images has been an open problem [24].

We chose the standard definition of SNR in imaging (ratio

between mean signal of the imaging object and standard de-

viation of the background) for simplicity, while more sophis-

ticated noise characterization schemes may be used in future

work.

4. RESULT

Figure 2 shows the reconstruction results using (1) parallel

imaging (PI) using GRAPPA [14]; (2) PCLR [7]; (3) LRT

[12]; and (4) our proposed method. All methods perform well

at b = 0 s/mm2, possibly due to the high SNR and the fully

sampled auto-calibration region. However, at a high b-value

(b = 2500 s/mm2), PI and PCLR result in poor SNR and

the LRT method shows aliasing (indicated by the red arrow),

while our method still produces clean reconstruction.

Figure 3 shows the reconstruction results using the sim-

ulated dataset at b = 2500 s/mm2, as well as the absolute

difference maps as compared to the noise-free groundtruth.

The reconstruction by PCLR is blurry while the reconstruc-

tion by LRT shows aliasing, as can be visualized from the

difference map. Although the aliasing is not strongly visi-

ble in the image, it may affect subsequent image analysis us-

ing higher-order diffusion models such as the bi-exponential

model [22], as the non-linear fitting procedure is very sen-

sitive to errors. Repeating the experiment with another ran-

dom sampling scheme shows similar results. The overall re-

construction error for 4-fold PI is 10.0%, and 14.0%/17.8%,

6.4%/11.7%, 3.6%/4.3% respectively for the two repeated ex-
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Fig. 2: Reconstruction results using patient data.

periments using PLCR, LRT and our proposed method.

Fig. 3: Reconstruction results using simulated data at b=2500

s/mm2.

Figure 4 compares different methods by plotting the SNR

of reconstructed images at different b-values using patient

data and reconstruction errors (averaged between 2 repeated

experiments) at different b-values using simulated data. Our

method consistently achieves superior SNR and lower recon-

struction error for all b-values.

5. CONCLUSION AND DISCUSSION

In this work we develop a low-rank tensor model with phase

constraint, to accelerate the acquisition of high b-value DWI

for cancer imaging. Our model exploits both the local and

global low-rank structure of the DWI data. The problem for-

mulation integrates parallel imaging and partial Fourier re-

construction, two commonly used acceleration schemes in

clinic. The reconstruction results, with an acceleration factor

of 8, show improved SNR and reduced aliasing as compared

to other image reconstruction methods.

One important parameter in low-rank models is the rank

number. Currently it is decided by visually inspecting the sin-

gular value distributions of unfolding matrices. Future work

will evaluate the selection of rank constraint more systemat-

Fig. 4: Left: SNR of reconstructed images using patient data;

right: reconstruction errors using simulated data.

ically. Future work will also estimate diffusion parameters

from our reconstruction results, using higher-order diffusion

models [1] [22] rather than mono-exponential decay mod-

els, to extract potential new biomarkers for tumor delineation,

grading and treatment response assessment.
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