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ABSTRACT

The low-rank plus sparse (L+S) decomposition model en-

ables the reconstruction of undersampled dynamic magnetic

resonance imaging (MRI) data. Solving for the L and S com-

ponents is a nonsmooth composite convex minimization prob-

lem. While current techniques for this model are based on the

classical iterative soft thresholding algorithm (ISTA), accel-

erated methods can be applied to obtain faster rate of conver-

gence of the algorithm. This paper proposes two alternative

methods for solving the L+S problem, one based on the fast

iterative shrinkage-thresholding algorithm (FISTA), and the

other based on the recent proximal optimized gradient method

(POGM). Numerical results suggest faster convergence than

the traditional ISTA, while preserving its computational sim-

plicity.

Index Terms— Low rank plus sparse model, dynamic

MRI, accelerated first-order algorithms, proximal gradient

methods

1. INTRODUCTION

One method for reconstructing undersampled dynamic mag-

netic resonance imaging (MRI) data uses the low-rank plus

sparse (L+S) matrix decomposition, where the low-rank com-

ponent L models the temporally correlated background, while

the sparse component S models the dynamic information that

lies on top of the background. With incoherence between

the acquisition space and the representation space, the model

offers high compressibility of dynamic MRI data, and has

various applications in clinical studies, such as separating

contrast enhancement from background, and efficient back-

ground suppression [1].

The L+S decomposition can be formulated as a convex

optimization problem, in which the nuclear norm and the l1
norm enforce respectively the low-rankness and the sparsity.

Popular minimization techniques for this problem include the

iterative soft thresholding (ISTA) [1], and the alternating di-

rection methods of multipliers (ADMM) [2]. This paper con-

siders two algorithms in the category of fast proximal gradient

methods (FPGM), and compares convergence with ISTA that

has the same convergence rate as the classical proximal gra-

dient method (PGM).
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We present an algorithm framework with two alternatives

to ISTA, and numerically investigate their performance on

the L+S model. The first one is based on the fast iterative

shrinkage-thresholding algorithm (FISTA), which has a sig-

nificantly improved global rate of convergence [3]. The other

uses the recent proximal optimized gradient method (POGM),

which numerically satisfies a worst-case cost function bound

that is about twice better than FISTA [4]. Both methods pre-

serve the computational simplicity of ISTA, thus accelerat-

ing the L+S reconstruction. Experiments on the retrospec-

tively undersampled multicoil cardiac perfusion and cardiac

cine data in [1] demonstrate that FISTA and POGM converge

two to three times faster than ISTA, with the recent POGM

approach being the fastest of all three methods. Finally, we

briefly discuss the ADMM framework in [2], and its possible

extension for improving its computational efficiency.

2. PROBLEM FORMULATION

We consider the problem in the setting of undersampled dy-

namic MRI reconstruction. Given undersampled k-t data d,

an acquisition operator E, the L+S model aims to estimate

space-time matrices L and S, where L is the low-rank com-

ponent, and S has a sparse representation in the temporal fre-

quency domain. The optimization problem is:

min
L,S

1

2
‖E(L+ S)− d‖22 + λL‖L‖∗ + λS‖TS‖1, (1)

where T is a sparsifying transform, which is the (unitary) tem-

poral Fourier transform operator in our results. The regular-

ization parameters λL, λS balance the contributions between

data consistency, low-rankness, and sparsity [1]. Here the

data consistency is enforced by the l2-norm term, the low-

rankness of L by the nuclear norm, and the sparsity of the

transformed S by the l1 norm.

To solve this problem using PGM, we reformulate (1) by

concatenating L and S to form a single variable X =

[
L
S

]
.

Then an equivalent expression is

min
X

g(X) + h1(X) + h2(X), where (2)

g(X) =
1

2
‖[E E]X − d‖22,

h1(X) = λL‖[I 0]X‖∗, and h2(X) = λS‖[0 T ]X‖1.
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Here I and 0 are respectively the identity and the zero matri-

ces, with the same size as L and S. Since g(X) is smooth,

convex, and continuously differentiable with Lipschitz con-

tinuous gradient, and h1(X), h2(X) are continuous, convex

but nonsmooth, problem (2) can be solved by proximal gradi-

ent methods. In particular, the classical PGM computes iter-

ates

Xk = proxhi

(
Xk−1 − t∇g(Xk−1)

)
, i = 1, 2, where (3)

proxhi
(Y ) = argmin

X
hi(X) +

1

2
‖X − Y ‖22

is the proximal operator of hi(X), and t is the stepsize, which

depends on the Lipschitz constant l(g).
Since h1 and h2 act upon the L and S components sepa-

rately, and are represented by different norms, their proximal

operators correspond to different expressions. In particular,

proxh1
is given by singular value thresholding, and proxh2

by

soft thresholding. Adopting the notations in [1], we define the

soft thresholding operator by

Λλ(X) = sign(X)(|X| − λ)+,

and the singular value thresholding operator by

SVTλ(X) = UΛλ(Σ)V
∗,

where UΣV ∗ is a singular value decomposition of X . Then

the PGM iteration in (3) updates Xk =

[
Lk

Sk

]
by applying

the two operators on Lk and Sk separately:

Lk = SVTλL

(
Lk−1 − td(Xk−1)

)
, and

Sk = T−1
(
ΛλS

[
T
(
Sk−1 − td(Xk−1)

)])
, where (4)

d(X) = [I 0]∇g(X) = E∗([E E]X − d) = [0 I]∇g(X).

Because the two gradient terms have the same expression,

each iteration of the simultaneous update of L and S requires

only one such evaluation. The algorithms below take advan-

tage of this fact, and further accelerate it using FPGM.

3. ALGORITHM FRAMEWORK

We present a framework that accommodates three updates for

the iterative scheme, using different proximal gradient meth-

ods. In each iteration, we update first the unknown X , then

the gradient term to enforce data consistency. Written out ex-

plicitly in the algorithm, the update of X corresponds to com-

puting the L and S components using singular value thresh-

olding and soft thresholding. Adopting the notations in [1],

which uses the ISTA update, we extend the algorithm to al-

low updates using FISTA and POGM in the proximal gradient

step, achieving faster convergence rate. We first discuss the

three different updates, then present the general framework in

Section 3.4.

3.1. ISTA update

The ISTA update, presented in [1], uses classical PGM to up-

date Lk and Sk in each iteration. Due to the same expres-

sion of the gradient term, an equivalent formulation of (4) is

used in the update, so that the gradient is only evaluated once,

in the data consistency step. Given initialization L0, S0 and

M0L0 + S0, the updates for the unknown Xk and the data

consistency term Mk are:

(3.1Xk
) Lk = SVTλL

(Mk−1 − Sk−1),

Sk = T−1
(
ΛλS

[
T
(
Mk−1 − Lk−1)

])
;

(3.1Mk
) Mk = Lk + Sk − tE∗(E(Lk + Sk)− d

)
.

When E is normalized such that ‖E‖ = 1 for the fully

sampled case, where ‖E‖ is the spectral norm of E, the Lip-

schitz constant of ∇g satisfies l(g) = 2‖E‖2 ≤ 2. Con-

vergence of ISTA here requires 0 < t < 2
2‖E‖2 = 1 (see

[3]), and we set t = 0.99. The convergence analysis of

ISTA reduces to that of the classical gradient method (when

h1(X) = h2(X) = 0), where the the sequence of function

values converges to the optimal function value at a rate of

O(1/k) [3].

3.2. FISTA update

Among first order methods, Nesterov’s fast gradient method

(FGM) achieves the improved rate of O(1/k2)[5]. [3] then

extends this result to the case of proximal gradient methods,

showing the same rate of convergence with FISTA. In par-

ticular, FISTA uses a secondary sequence X̃k =

[
L̃k

S̃k

]
,

while the main computational effort of the gradient evalua-

tion remains the same as in ISTA. The FISTA initialization

and updates of Xk and Mk are:

(3.2 : I) X̃0 = X0, θ0 = 1;

(3.2 : Xk) Lk = SVTλL
(Mk−1 − S̃k−1),

Sk = T−1
(
ΛλS

[
T
(
Mk−1 − L̃k−1)

])
,

θk =
1+

√
1+4θ2

k−1

2 ,

X̃k = Xk + θk−1−1
θk

(Xk −Xk−1);

(3.2 : Mk) Mk = L̃k + S̃k − tE∗(E(L̃k + S̃k)− d
)
.

As in [3], we use the constant stepsize t = 1
2‖E‖2

2
= 0.5,

because the Lipschitz constant l(g) ≤ 2.

3.3. POGM update

In the smooth unconstrained setting, [6] introduces the op-

timized gradient method (OGM) that achieves a worst-case

convergence bound twice as small as that of Nesterov’s FGM.

The POGM in [4] extends OGM to nonsmooth composite

problems, with a numerical worst-case performance about

twice better than that of FISTA. POGM uses an additional

sequence Xk =

[
Lk

Sk

]
, while the computational simplicity
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is preserved. POGM has a similar formulation as FISTA,

requiring O(Nd) arithmetic operations and O(d) memory,

for N iterations and d-dimensional variable. To obtain the

expressions of the additional coefficients, [6] analytically

optimizes the step size parameters of a fixed-step algorithm,

by minimizing the upper bound on its worst-case. As in the

FISTA update, we set t = 0.5, with the following initializa-

tion and update:

(3.3 : I) X̃0 = X0 = X0, θ0 = ζ0 = 1;

(3.3 : Xk) L̃k = Mk−1 − Sk−1,

S̃k = Mk−1 − Lk−1,

θk =

{
1+

√
1+4θ2

k−1

2 , k < N
1+

√
1+8θ2

k−1

2 , k = N
,

Xk = X̃k + θk−1−1
θk

(X̃k − X̃k−1)

+ θk−1

θk
(X̃k −Xk−1) +

θk−1−1
ζk−1θk

t(Xk−1 −Xk−1),

ζk = t
(
1 + θk−1−1

θk
+ θk−1

θk

)
,

Lk = SVTλL
(Lk),

Sk = T−1
(
ΛλS

[
T
(
Sk)

])
;

(3.3 : Mk) Mk = Lk + Sk − tE∗(E(Lk + Sk)− d
)
.

3.4. General framework

For the L+S problem, the three algorithms share the same in-

puts, hence they can be viewed as different updates in a uni-

fied framework. While no further initialization is needed for

(3.1 : I), FISTA and POGM require initialization of the ad-

ditional sequences for acceleration, as summarized below.

L+S Reconstruction Algorithm

Inputs:
d: multicoil undersampled k-t data

E: space-time multicoil encoding operator

T : sparsifying transform

λL: singular value threshold

λS : sparsity threshold

i = 1, 2, or 3: update scheme

Initialization: M0 = L0 = E∗d, S0 = 0, (3.i : I)
for k = 1, 2, . . . , N do
Xk ← (3.i : Xk)
Mk ← (3.i : Mk)

end for
output: XN

4. RESULTS

Based on the framework in Section 3.4, we implemented the

L+S reconstruction methods in MATLAB, using two datasets

considered in [1], with the same operators E, T and the same

regularization parameters λL, λS .

In both experiments, since our only information is the

multicoil undersampled data, we compared the convergence

of the three updates by plotting fk − f∞, where fk is the

Fig. 1. Convergence of three updates in 36 iterations, on the

cardiac perfusion dataset. POGM achieves faster convergence

than ISTA and FISTA. Here the rank of L is 5 with ISTA, and

4 with FISTA and POGM, at 36 iterations.

Fig. 2. Convergence of three updates in 26 iterations, on the

cardiac cine dataset. FISTA and POGM achieve faster con-

vergence than ISTA. Here the rank of L is 3 with ISTA, and 1

with FISTA and POGM, at 26 iterations.

cost function value of the kth iterate, and f∞ is the average

of the function values at the 100th iteration with FISTA and

with POGM updates. Since the ISTA algorithm in [1] uses a

stopping criterion, in each case we first performed ISTA until

the criterion is met, and recorded the number of iterations and

the function value. We then compared the results by FISTA

and POGM with the same number of iterations, as well as the

number of iterations needed for FISTA and POGM to obtain

the same cost function value.

We first tested the framework on the undersampled car-

diac perfusion data, where the image matrix size is 128×128,

with 40 temporal frames and 12 coils [1]. The ISTA took 36

iterations to reach the stopping criterion that depends on the

difference between successive function values. Fig. 1 shows

that FISTA and POGM reach lower cost function values in 36

iterations. Reaching the same cost function value as ISTA

required 17 iterations of FISTA, and only 11 iterations of

POGM. FISTA in this case is slower than ISTA in the first

few iterations, due to the smaller stepsize in the FISTA up-

date. POGM, however, outperforms both ISTA and FISTA.

Our second experiment compared the convergence of

the three updates using the undersampled cardiac cine data,
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Fig. 3. Comparison of the L+S reconstructed images on one

temporal frame of the cardiac cine dataset, after 26 iterations

of the three updates. Compared with ISTA, the results by

FISTA and POGM provide better visualization of the struc-

ture.

where the image matrix size is 256 × 256, with 24 temporal

frames and 12 coils [1]. Here ISTA took 26 iterations to reach

the stopping criterion, while FISTA and POGM achieved the

same cost function value with respectively 12 and 8 itera-

tions. In this case, FISTA converges faster than ISTA, and

POGM is faster still; see Fig. 2. Fig. 3 suggests that FISTA

and POGM provide shaper image quality at 26 iterations. Ad-

ditionally, ISTA gives rank(L) = 3, while FISTA and POGM

give rank(L) = 1 at this number of iterations. Since problem

(1) is not necessarily strictly convex, the algorithms may con-

verge to different global minimizers. To compare the results,

we performed more iterations of ISTA, and observed that it

took 105 iterations to attain the same cost function value as

with 36 iterations of FISTA, generating comparable image

quality, and giving rank(L) = 1. This suggests that ISTA, in

this case, converges to the same global minimizer as the other

two updates. Hence the results with FISTA or POGM predict

the convergence behavior of the low-rank component with the

selected regularization parameter λL, as one performs more

iterations of ISTA.

5. DISCUSSION AND CONCLUSION

We have presented an algorithm framework for the L+S dy-

namic image reconstruction problem. In place of using ISTA

to estimate the low-rank and the sparse components, our

framework considers accelerated methods with FISTA and

POGM updates, while preserving the computational simplic-

ity of ISTA. The faster convergence obtained by the new

updates provides about three-fold acceleration in solving the

L+S decomposition problems, with simple algorithm modi-

fications. The new updates could also be used to accelerate

the sparse coding step of dictionary-based algorithms for

dynamic MRI reconstruction, such as the method in [7].

A variable splitting scheme with augmented Lagrangian

has also been proposed to solve problem (1) [2]. There,

ADMM is used to minimize the augmented Lagrangian

function of four variables, leading to sub-problems with

closed-form updates. Two of the sub-problems in [2] involve

quadratic cost functions that require computing (E∗E +
δI)−1 for some penalty parameter δ, but direct implemen-

tation of this inverse is impractical. However, one could

circumvent this issue by further variable splitting. Specif-

ically, one can represent E = FC, where F is a Fourier

encoding matrix, and C an estimate of the sensitivity maps.

Then the sub-problems are quadratic, but now with inverses

of the forms (F ∗F + δI)−1 and (C∗C + δI)−1, which can

be computed efficiently due to the circulant behavior of F ∗F
and the diagonal structure of C∗C. This idea has been inves-

tigated in [8], and is an interesting future direction for further

acceleration of the L+S reconstruction.
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