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ABSTRACT

Penalized weight-least squares (PWLS) with basis material priors
is a promising way to achieve high quality material decompositions
for Dual-energy CT (DECT). This paper proposes a new method
dubbed DECT-MULTRA for image domain DECT material decom-
position that combines conventional PWLS estimation with regular-
ization based on a mixed union of learned transforms (MULTRA)
model. Our approach pre-learns from training data a common union
of unitary transforms for all the basis materials’ patches, as well as a
cross-material union of unitary transforms that captures relationships
between the different basis material images. The proposed DECT-
MULTRA algorithm efficiently obtains material decompositions by
alternating between updating the material images and performing
clustering of patches in the MULTRA model. Both these steps of
the alternating algorithm have closed-form updates. Numerical ex-
periments with the XCAT phantom show that the proposed method
significantly improves image quality compared to the recent DECT-
ST method that learns different sparsifying transforms for different
basis materials and the DECT-EP approach that uses a non-adaptive
edge-preserving hyperbola regularizer.

Index Terms— Image domain decomposition, Machine learn-
ing, Non-convex optimization, Transform learning, Cross-material
models.

1. INTRODUCTION
Dual-energy CT (DECT) has been increasingly used in many clinical
applications and industrial applications, such as kidney stone chrac-
terizaiton, iodine quantification, and security inspection. It has been
a valuable tool because of its ability for tissue characterization and
material differentiation.

Methods for material decomposition for DECT can be character-
ized into direct decomposition [1], projection domain [2], and image
domain methods. Compared to direct decomposition methods, im-
age domain methods are more computationally efficient as they do
not need to perform expensive forward and back-projection opera-
tions. Projection-domain and direct decomposition methods require
sinograms or pre-log measurements that usually are not available on
commercial DECT scanners. Image-domain methods produce basis
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material images directly from attenuation images at low and high
energies, but their efficacy may be limited due to sensitivity to noise
and artifacts. Extracting prior information from big datasets is a
promising way to strengthen image domain DECT decomposition
methods.

Various priors such as dictionary models, sparsifying transform
models, and manifold models could be learned from datasets to char-
acterize CT images and basis material images. Dictionary learning
methods have recently shown promise for low-dose CT (LDCT) im-
age reconstruction [3] and spectral CT reconstruction [4, 5, 6, 7].
But the sparse coding step in the dictionary model and its learning
is typically computationally expensive. Recently, Ravishankar et al.
[8] proposed learning sparsifying transform (ST) models (general-
ized analysis models). The ST learning algorithms are computa-
tionally efficient with simple thresholding-based sparse coding for
the transform model. Zheng et al. [9] demonstrated that pre-learned
square sparsifying transforms lead to reduced noise for LDCT recon-
struction compared to nonadaptive methods. More recently, Zheng
et al. [10] extended the single learned ST approach to a union of
learned transforms (ULTRA) model for LDCT reconstruction. That
approach jointly pre-learns a collection of transforms such that each
image patch is assigned to a corresponding best-matched transform
(or cluster) during training and later during image reconstruction.

This paper proposes a basis material decomposition approach for
DECT with regularization based on a mixed union of learned trans-
forms (MULTRA) model that captures both the common properties
among basis materials and the cross-dependency between materi-
als. Numerial experiments with the XCAT phantom show that the
proposed method, dubbed DECT-MULTRA, significantly improves
the material images’ quality compared to the very recent DECT-
ST method that uses different pre-learned sparsifying transforms for
different basis materials and the DECT-EP approach that uses a non-
adaptive edge-preserving hyperbola regularizer.

2. PROBLEM FORMULATION

For dual energy CT, we denote the stacked two channel high and low
energy maps as y = (yTH ,y

T
L)
T ∈ R2Np . Vector x = (xT1 ,x

T
2 )
T ∈

R2Np denotes the stacked material density images (unknown), where
xl = (xl1, xl2, . . . , xln, . . . , xlNp)

T ∈ RNp represents the lth ma-
terial for l = 1, 2. We model the underlying basis materials us-
ing a common-material and a cross-material image model. In the
common-material model, patches extracted independently from all
materials are assumed sparse in a common union (or collection) of
sparsifying transforms. Every extracted patch (from some materi-
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al image) is assumed to be best sparsified by a particular transform
in the collection. The common-material transforms capture features
that are common across materials. On the other hand, in the cross-
material model, the patches at the same spatial location in different
basis material images are stacked together to form larger1 3D patch-
es that are assumed to be sparsified using a union of cross-material
sparsifying transforms. These transforms help sparsify the materials
jointly by exploiting cross-material redundancy.

We formulate the image domain DECT decomposition problem
using a pre-learned union of common-material unitary transform ma-
trices {Ω1

k1
}K1
k1=1, and a union of cross-material unitary transform

matrices {Ω2
k2
}K2
k2=1, with each Ωkr ∈ R2m×2m, as follows:

min
x∈R2Np

1

2
‖y −Ax‖2W + R(x), (1)

with the regularizer R(x) defined as

min
{zj ,Cr

kr
}

2∑
r=1

Kr∑
kr=1

∑
j∈Cr

kr

β
{
‖Ωr

krPjx− zj‖22 + γ2
r ‖zj‖0

}
(2)

where the common-material and cross-material models are denoted
using r = 1, 2, respectively, and Kr denotes the number of clusters
in the rth model. Operator Pj ∈ R2m×2Np extracts the jth patch
(overlapping patches assumed) of materials as a vector Pjx. The
patch is constructed by stacking together the vectorized 2D patches
extracted from the same spatial location of the multiple material im-
ages. Vector zj ∈ R2m denotes the sparse coefficients for Pjx, and
the `0 “norm” counts the number of non-zeros in a vector. The set
Crkr includes the indices of all the patches belonging to the krth clus-
ter in the rth model. Each patch Pjx belongs to only one cluster in
one of the models and the minimization in (2) is over all the patches’
sparse codes and cluster memberships. The parameter β controls the
trade-off between noise and image resolution in the decomposition
and γr for r = 1, 2, controls the sparsity in the models.

For r = 1, each transform Ω1
kr is a block diagonal matrix that

sparsifies the individual material images’ patches separately (with-
out mixing them), whereas for r = 2, the transforms sparsify the en-
tire 3D patches. Section 3.1 describes the exact structure and learn-
ing of these transforms. The transforms are unitary, which simplifies
the proposed algorithm for (1).

The matrix A ∈ R2Np×2Np in (1) is composed of the mass
attenuation coefficients and is defined as A = A0 ⊗ INp , where the
operator “⊗ ” denotes the Kronecker product, and the matrix A0 is
a 2× 2 material decomposition matrix defined as

A0 =

 ϕ1H ϕ2H

ϕ1L ϕ2L

 , (3)

where ϕlH and ϕlL denote the mass attenuation coefficients of the
lth material at high and low energy, respectively.

The weight matrix W ∈ R2Np×2Np is designed under the fol-
lowing assumptions: a) the additive noise degrading the reconstruct-
ed attenuation image y follows the Gaussian distribution; b) the high
and low energy noise are uncorrelated [11]; and c) the pixels in each
attenuation image have the same noise variance [12]. The weight
matrix we obtain is W = Wj ⊗ INp , where Wj represents the
weight matrix for the jth pixel, i.e., Wj = diag(σ2

H , σ
2
L)
−1, where

σ2
H and σ2

L denote the noise variances for pixels in yH and yL, re-
spectively.

1We are focusing on 2D images here so that 3D means 2D with one more
channel direction.

We very recently proposed an image domain DECT decom-
position technique called DECT-ST [13], where the regularizer
R(x) , min

{zlj}

∑2
l=1

∑N
j=1 βl

{
‖ΩlPljx− zlj‖22 + γ2

l ‖zlj‖0
}

,

and the transforms Ω1 and Ω2 are single (square) transforms learned
separately for different material (water and bone) images, and Pljx
is the jth individual patch extracted from the lth material. Unlike
DECT-ST, the proposed model more effectively captures the similar-
ities across materials, while also using a richer union of sparsifying
transforms.

3. ALGORITHM

3.1. Learning a Mixed Union of Sparsifying Transforms

We pre-learn a union of common-material unitary transform ma-
trices {Ω̃1

k1
}
√
K1

k1=1, and a union of cross-material unitary transform
matrices {Ω̃2

k2
}K2
k2=1, from patches extracted from a set of training

material images. For the common-material transforms, we extract
patches from all individual basis material images for training and
for the cross-material transforms; patches extracted at the same
spatial locations from the basis material images of the same object
are stacked together to generate the training patches. During the
decomposition step (or solving (1)), {Ω̃1

k1
} are used to form the two

blocks (for two materials) of the block diagonal matrices {Ω1
k1
},

while {Ω̃2
k2
} are identical to {Ω2

k2
}. We solve the following trans-

form learning problem for each r = 1, 2, where Imr denotes the
m×m identity matrix for r = 1 and the 2m× 2m identity matrix
for r = 2 [14]:

min
{Ω̃r

kr
,Cr

kr
,Zr

ir
}

Kr∑
kr=1

∑
ir∈Cr

kr

{
‖Ω̃r

krYr
ir − Zrir‖

2
2 + η2‖Zrir‖0

}
s.t. Ω̃rT

kr Ω̃r
kr = Imr , 1 ≤ kr ≤ Kr, (4)

where η > 0 is a scalar parameter controlling sparsity during train-
ing, and {Y1

i1} and {Y2
i2} denote the vectorized 2D and 3D train-

ing patch sets for the two models. The formulation (4) automati-
cally groups the training patches {Yr

ir} into Kr classes (according
to the best matching transforms) for r = 1, 2. The transform s-
parse codes for the training signals are denoted as {Zrir} for each
r. We use a variant of the algorithm in [10, 15] for training that
enforces the unitary constraint [8, 14]. We optimize (4) by alter-
nating between updating {Crkr ,Z

r
ir} (sparse coding and clustering)

and {Ω̃r
kr} (transform update) with efficent solutions in each step

[10, 14, 15]. The cost of the learning algorithm scales in general as
O(m2JN ′), where J is the number of iterations of the alternating
algorithm and N ′ is the number of training patches.

3.2. Optimization algorithm

We propose an algorithm for the regularized material seperation
problem (1) that alternates between updating x (image update step)
and updating {zj , Crkr} (sparse coding and clustering step).

3.2.1. Image update

With {zj , Crkr} fixed, (1) reduces to the following penalized weight-
ed least squares (PWLS) image decomposition problem:

min
x∈R2Np

1

2
‖y−Ax‖2W+

2∑
r=1

Kr∑
kr=1

∑
j∈Cr

kr

β ‖Ωr
krPjx− zj‖22 . (5)
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Fig. 1: First to fifth column: material images (from the central slice) of the ground truth, DECT-MULTRA, DECT-ST, DECT-EP, and
the direct matrix inversion decomposition, respectively. Water and bone images are in the top and bottom rows with display window [0.6
1.4] g/cm3 and [0 0.8] g/cm3, respectively.

The gradient of R2(x), the second term in (5), is given as follows:

∇R2(x) = 2β

2∑
r=1

Kr∑
kr=1

∑
j∈Cr

kr

PT
j ΩrT

kr (Ω
r
krPjx− zj). (6)

Using periodically positioned overlapping image patches with
a patch stride of 1 pixel that wrap around at material image (2D)
boundaries, the term

∑2
r=1

∑Kr
kr=1

∑
j∈Cr

kr

PT
j Pj is a diagonal

matrix equal to mI2Np . Then, because each Ωr
kr is a unitary ma-

trix, the gradient in (6) is further simplified as follows:

∇R2(x) = 2β

mx−
2∑
r=1

Kr∑
kr=1

∑
j∈Cr

kr

PT
j ΩrT

kr zj

 . (7)

Since 2βmI2 and AT
0 WjA0 are independent of x, zj and Crkr ,

we precompute the 2 × 2 blocks of the Hessian matrix Bj =
AT

0 WjA0 + 2βmI2 for all j. Then clearly the image update
problem is solved in (5) in closed-form at each pixel j as follows:

xj = B−1
j (AT

0 Wjyj + 2βMj

2∑
r=1

Kr∑
kr=1

∑
j∈Cr

kr

PT
j ΩrT

kr zj), (8)

where Mj is a matrix that extracts vector entries corresponding to
the jth pixel. In (8), we use the block diagonal structure of A and
(7) to separate the x−update into Np pixel-wise updates to avoid
explicitly computing the large A matrix. Obviously (8) provides the
global minimizer in the image update step.

3.2.2. Sparse Coding and Clustering Step

With x fixed, we solve the following sub-problem to obtain the
sparse codes and cluster assignments for each patch:

min
{zj ,Cr

kr
}

2∑
r=1

Kr∑
kr=1

∑
j∈Cr

kr

‖Ωr
krPjx− zj‖22 + γ2

r ‖zj‖0 . (9)

For any patch Pjx, the solution with respect to the sparse code
above is obtained by hard-thresholding as zj = Hγr (Ω

r
krPjx),

where the operator Hγ(b) returns 0 if |b| < γ and otherwise returns
b. Replacing the variables zj in (9) with these optimal values, the
problem reduces to a clustering problem, where the optimal cluster
assignment for each patch is as follows:

(r̂j , k̂j) = argmin
1≤kr≤Kr
1≤r≤2

{
‖Ωr

krPjx−Hγr (Ω
r
krPjx)‖22 +

γ2
r ‖Hγr (Ω

r
krPjx)‖0

} (10)

Minimizing over kr and r above finds the best matched transform
and model for each patch, i.e., we compute the cost in (10) with
respect to each transform in the two models to determine the best
match. In particular, for r = 1, each of the two blocks (along the
diagonal) of Ω1

kr can take one of
√
K1 matrix values (chosen from

Ω̃1
k1

). Since the cost of the 3D patch in (10) for r = 1 decompos-
es into the sum of the clustering costs for the individual material
(2D) patches, we find the best matching transform Ω̃1

k1
for the

two material patches independently and then add these costs, which
would efficiently give the smallest cost value in model 1. Comparing
this to the smallest cost in model 2 yields the best matched model
(and corresponding transform). Then, the optimal sparse codes are
updated using hard-thresholding as ẑj = Hγr̂j (Ω

r̂j

k̂j
Pjx) ∀ j.

Since the proposed algorithm is an exact alternating minimiza-
tion method, the objective in (1) is monotone decreasing and con-
verges over the algorithm iterations.

4. EXPERIMENTAL RESULTS
We evaluate the proposed DECT-MULTRA and compare its perfor-
mance to the direct matrix inversion method (solving (1) without reg-
ularization), DECT-EP, and the recent DECT-ST that learns different
square transforms for different materials. For DECT-MULTRA, we
pre-learned the common-material union of transforms (

√
K1 = 15)

from 8 × 8 patches extracted from five slices of water images and
five slices of bone images of the XCAT phantom [16]. The cross-
material union of transforms (K2 = 10) was learned from patches
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extracted from five slices of cross-material images, with patch size
8 × 8 × 2. For the common-material and cross-material transform-
s, the training parameter η was set as 0.21 and 0.17, respectively.
We ran 2000 iterations of the alternating minimization algorithm for
(4) to ensure convergence. For DECT-ST, similar parameters were
used during training except that the λ0 and η values for the water
and bone (square) transforms were empirically set as {31, 0.12} and
{31, 0.15}, respectively.

For the test data, we first generated three 1024×1024 reference
images using the central (77th) slice and the 61st and 150th slices
of the XCAT phantom, with a pixel size of 0.49 × 0.49 mm2. We
generated noisy (Poisson noise) sinograms of size 888 (radial sam-
ples) × 984 (angular views) using GE LightSpeed X-ray CT fan-
beam system geometry corresponding to a poly-energetic source at
80kVp and 140kVp with 1.86 × 105 and 1 × 106 incident photons
per ray, respectively. We used filtered back projection (FBP) to re-
construct the 2D 512× 512 high and low attenuation images, where
the pixel size was 0.98× 0.98 mm2.

We obtained the basis material images from attenuation images
via the direct matrix inversion method, and used these to initialize the
DECT-EP method. Basis material images obtained with DECT-EP
were used as initialization for DECT-ST and the proposed DECT-
MULTRA to accelerate their convergence. We empirically chose
the regularization parameters for all methods in each experiment to
achieve the best image quality and decomposition accuracy.

Fig. 1 shows the decompositions by different methods. The pro-
posed DECT-MULTRA suppresses the high noise observed in the
direct matrix inversion method. In addition, compared to DECT-
EP and DECT-ST, the proposed DECT-MULTRA significantly im-
proves image quality by reducing artifacts and improving the edge
details.

Fig. 2 presents an example of the pixel-level clustering in the
DECT-MULTRA (K1 = 225,K2 = 10) decomposition. Two
cross-material transforms and the bone and water pixels in the re-
spective clusters are shown. For each image pixel, we perform a
majority vote among the 3D patches overlapping the pixel to de-
termine the model (r) to which it belongs and the corresponding
cluster. Fig. 2 only shows the pixels (using their estimated densities)
from r = 2 for specific classes. The clustering depicts the shared
edges and other features between materials that are sparsified jointly
by the pre-learned cross-material transforms.

To compare the performance of these methods quantitatively, we
computed the Root Mean Square Error (RMSE) for the decomposed
material images. For a decomposed image x̂l, RMSE is defined

as
√∑Np,PS

j=1 (x̂lj − x?lj)2/Np,PS , where x?lj denotes the down-
sampled true density of the lth material at the jth pixel location and
Np,PS is the number of pixels in the phantom support (a circle re-
moves all the black background area outside the image that is not
interesting). Table 1 lists the RMSE for the four compared methods.
DECT-MULTRA provides significant improvements in RMSE for
the basis materials compared to DECT-ST, DECT-EP, and the direct
matrix inversion method.

5. CONCLUSIONS
We proposed a new method for image domain DECT decomposi-
tion that combines conventional PWLS estimation with regulariza-
tion based on a mixed union of learned unitary transforms model
that exploits both the common properties among material images
and their cross-dependencies. The proposed DECT-MULTRA algo-
rithm provided superior material image quality and decomposition
accuracy compared to the recent DECT-ST approach and the non-
adaptive DECT-EP method. DECT-MULTRA successfully reduces

Method
Direct

Inversion

DECT

EP

DECT

ST

DECT

MULTRA

Slice

61

Water 72.8 60.9 51.3 42.8

Bone 68.4 60.2 51.6 43.9

Slice

77

Water 92.4 65.9 55.6 38.7

Bone 89.0 72.2 61.8 49.8

Slice

150

Water 116.7 69.1 61.7 38.6

Bone 110.8 76.7 67.0 50.8

Table 1: RMSE of decomposed images of basis materials by Di-
rect Matrix Inversion, DECT-EP, DECT-ST and DECT-MULTRA
(K1 = 225,K2 = 10) for three different slices of the XCAT phan-
tom. The unit for RMSE is 10−3 g/cm3.

Fig. 2: The cross material transforms (atoms shown as 8×16 patch-
es) for classes 4 (left) and 8 (right) are shown in the top row. The
middle and bottom rows show the water and bone pixels (using es-
timated intensities) belonging to classes 4 (left) and 8 (right) with
display windows [0.6 1.4] g/cm3 and [0 0.8] g/cm3, respectively.

the artifacts at the boundaries of different materials and also pro-
vides improved sharpness of edges in the soft tissue. In future work,
we plan to investigate experiments with more general multi-material
(with several materials) decompositions with DECT-MULTRA, and
plan to apply the proposed technique for clinical or industrial CT
data.
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