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ABSTRACT
Penalized weighted least squares (PWLS) with better image

priors is a promising way to develop improved image-domain

dual-energy CT (DECT) methods for achieving high quality

basis material images. We propose a new method for DECT

that combines conventional PWLS estimation with regular-

ization based on sparsifying transforms (DECT-ST) learned

from datasets of numerous CT images. Numerical experi-

ments with phantom and patient data show that the proposed

method significantly improves the image quality over direct

matrix inversion decomposition and over PWLS decomposi-

tion with an edge-preserving hyperbola regularizer (DECT-

EP).

Index Terms— Dual-energy CT, Sparsifying transform

learning, Basis material decomposition, Machine learning.

1. INTRODUCTION
Dual-energy CT (DECT) enables characterizing concentra-

tion of constituent materials (e.g., soft tissue and bone) in

scanned objects, known as material decomposition [1]. The

decomposed material images are useful for many clinical

and industrial applications, such as kidney stone character-

ization and liver-fat quantification. Image-domain decom-

position methods [2, 3] for DECT decompose reconstructed

CT images at high and low energies into material images.

Image-domain methods are more practical than projection-

domain [4] and direct decomposition methods [5] that both

require sinograms or pre-log measurements that are not di-

rectly available on commercial DECT scanners. Howev-

er, image-domain methods are susceptible to artifacts (e.g.,

beam-hardening artifacts) and noise in reconstructed CT im-

ages, especially for low dose imaging.

Existing big databases of CT images could be exploited

to learn or adapt priors for improving image-domain DECT

methods. Xu et al. [6] applied dictionary learning to CT

image reconstruction by proposing a PWLS approach with
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regularization based on a trained redundant dictionary. Then

dictionary learning methods were applied to DECT for de-

noising [7] and reconstruction [8, 9]. A generalized analysis

dictionary learning method called sparsifying transform (ST)

learning [10] provides promising performance in low-dose

CT image reconstruction [11]. In contrast to the often highly

non-convex and NP-hard dictionary learning problems, the

transform model can be learned efficiently [10] due to the

simple thresholding-based sparse coding in the transform

domain. This paper proposes a new image-domain dual-

material decomposition method for DECT that combines a

weighted LS image-domain term with regularization based on

sparsifying transforms learned from datasets of CT images.

Numerical experiments with the NCAT phantom and clinical

data show that the proposed method (DECT-ST) improves

image quality and decomposition accuracy over direct matrix

inversion decomposition and over PWLS decomposition with

an edge-preserving hyperbola regularizer (DECT-EP).

2. PROBLEM FORMULATION
For image-domain DECT, we first use the sinograms at

each energy to reconstruct a two-channel image vector

y = (yT
H ,yT

L)
T ∈ R

2Np , where yH ,yL are the attenua-

tion maps at high and low energy, respectively, and Np is

the number of pixels. Let x = (xT
1 ,x

T
2 )

T ∈ R
2Np de-

note the stacked unknown material density images, where

xl = (xl1, xl2, . . . , xln, . . . , xlNp)
T ∈ R

Np denotes the lth
material for l = 1, 2. We solve the following optimization

problem to decompose x ∈ R
2Np from y ∈ R

2Np using two

pre-learned ST matrices Ω1 ∈ R
m×m and Ω2 ∈ R

m×m:

min
x∈R

2Np

1

2
‖y −Ax‖2W + R(x) (1)

with the regularizer R is defined as R(x) � min
{zlj}

∑2
l=1

∑N
j=1 βl{

‖ΩlPljx− zlj‖22 + γ2
l ‖zlj‖0

}
, N is the number of image

patches, operator Plj ∈ R
m×Np extracts the jth patch (over-

lapping patches assumed) of xl as a vector Pljx, zlj ∈ R
m

denotes the sparse coefficients for Pljx , and the �0 “norm”

counts the number of non-zeros in a vector. Parameters βl

for l = 1, 2, control the trade-off between noise and image
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resolution and γl for l = 1, 2, control the sparsity in the

model.

The 2Np × 2Np mass attenuation cofficient matrix A is

defined as A = A0⊗INp
, where “⊗” denotes the Kronecker

product, and the 2× 2 material decomposition matrix A0 is:

A0 =

(
ϕ1H ϕ2H

ϕ1L ϕ2L

)
, (2)

where ϕlH and ϕlL denote the mass attenuation coefficient of

the lth material at high and low energy, respectively. In this

work, these four values are obtained as ϕlH = μlH/ρl and

ϕlL = μlL/ρl where ρl denotes the density of the lth material

(1 g/cm3 for water and 1.92 g/cm3 for bone), and μlH and μlL

denote the linear attenuation coefficient of the lth material at

high and low effective energy, respectively. To obtain μlH and

μlL, we manually select a uniform area in yH and yL (e.g.,

water region and bone region) respectively and compute the

average pixel value in this area [2].

We assume that the acquired attenuation image y is de-

graded by additive noise ε ∈ R
2Np as y = Ax + ε. The

statistical weight matrix W in (1) is a 2Np × 2Np diagonal

matrix. Assuming that the low- and high-energy noise are

uncorrelated [12] and the noise in each pixel of the attenua-

tion images has equal variance [2], we rearrange the measure-

ments and compose W = Wj⊗INp
with Np small (and iden-

tical) 2× 2 diagonal matrices where Wj = diag(σ2
H , σ2

L)
−1

,

and σ2
H and σ2

L denote the noise variances of the attenuation

images at high and low energy, respectively. Each Wj de-

notes the weighting matrix corresponding to the jth pixel. In

this work, we compute Wj by calculating the standard devia-

tions of two uniform regions that are manually selected in the

acquired attenuation images.

We compare the adaptive approach in (1) to DECT-

EP [13], which differs from the proposed model in that

the edge-preserving regularization is defined as R(x) =∑2
l=1 βlRl(xl), where the regularizer for the lth material is

Rl(xl)=
∑K

k=1 ψl([Cxl]k), where K = NpNlp with Nlp be-

ing the number of neighbors of pixel xlp, C ∈ R
K×Np is the

finite difference matrix and ψl(t) � δ2l
3

(√
1 + 3(t/δl)2 − 1

)
.

The regularization term R(x) here strengthens the smoothness

of the decomposed material images while retaining boundary

sharpness [2].

3. ALGORITHM
3.1. Sparsifying Transform (ST) Learning
We learn two sparsifying transforms Ω1 and Ω2 independently

from patches extracted from a dataset of corresponding ma-

terial images. The following transform learning problem is

solved for l = 1, 2 using the algorithm in [10] that alternates

between a �0 “norm” based sparse coding step (solving for

Zl) and a non-convex transform update step (solving for Ωl):

min
Ωl,Zl

‖ΩlYl−Zl‖2F+λ
(‖Ωl‖2F − log |detΩl|

)
+

N ′∑
i=1

η2‖Zli‖0
(3)

where Y1,Y2 ∈ R
m×N ′

are matrices of patches extracted

from the two material images, N ′ is the number of training

patches (for each material), λ = λ0‖Yl‖2F where λ > 0 is

a constant, η is a scalar parameter that controls the sparsi-

ty, Zl ∈ R
m×N ′

for l = 1, 2, are matrices whose columns

Zli are the sparse coefficients of the corresponding training

patches in Yl. The term ‖ΩlYl − Zl‖2F in (3) is called spar-

sification error, and denotes the deviation of the data in the

transform domain from its sparse approximation. The term

‖Ωl‖2F − log |detΩl| is a regularizer preventing trivial so-

lutions and controlling the transform condition number [10].

The cost of learning a ST in [10] scales as O(m2IN ′) where

m is the number of pixels in a patch and I is the number of

iterations.

3.2. Optimization algorithm
We propose an algorithm for (1) that alternates between up-

dating x (image update step) and {zlj} (sparse coding step)

with other variables kept fixed.

3.2.1. Image update
With the sparse vectors zlj fixed, (1) reduces to the following

penalized weighted least squares (PWLS) problem:

min
x∈R

2Np

1

2
‖y −Ax‖2W +

2∑
l=1

N∑
j=1

βl ‖ΩlPljx− zlj‖22 . (4)

We solve (4) using FISTA-M [14, 15] (FISTA using a ma-

jorizer). For FISTA-M, the majorizer ψM (x;u) of R2(x), the

second term in (4), is given by:

ψM (x;u) = R2(u)+ 〈∇R2(u),x−u 〉+ 1

2
‖x−u‖2M. (5)

The matrix M above is a diagonal majorizing matrix of

∇2R2(x) defined as follows:

M � ∇2R2(x) = 2

2∑
l=1

βl

N∑
j=1

P′
ljΩ

′
lΩlPlj . (6)

Ignoring constant terms in (5) yields the following update

in FISTA-M:

x(i+1) = argmin
x

1

2
‖y −Ax‖2W +

1

2
‖x− ξ(i)‖2M, (7)

where ξ(i) = u(i)−M−1∇R2(u
(i)). We assume periodically

positioned overlapping image patches with patch stride of 1
pixel, and that the patches beginning at image boundaries

wrap around on the opposite side of the image. Then the en-

tries of the diagonal matrix
∑N

j=1 P
′
ljPlj corresponding to

the lth material are equal to mINp (INp ∈ R
Np×Np is the

identity matrix, while the entries corresponding to the other

material are all zero. Therefore, the diagonal majorizer M is:

M = diag (2β1mλmax(Ω
′
1Ω1), 2β2mλmax(Ω

′
2Ω2)) ⊗ INp

,
where λmax(·) denotes the maximum eigenvalue of a matrix.

Thus, we solve the image update problem in (4) by iterating

over the following FISTA-M steps (∀j = 1, 2, · · · , Np) with

θ(0) = 1 and u(0) = x(0) being an appropriate initialization,

and Bj = AT
0 WjA0 +Mj is precomputed for all j:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ(i) = u(i) −M−1∇R2(u
(i))(

x
(i+1)
1j , x

(i+1)
2j

)T

= B−1
j (AT

0 Wjyj +Mjξ
(i)
j )

θ(i+1) =
1 +

√
1 + 4θ(i)

2

2

u(i+1) = x(i+1) +
θ(i) − 1

θ(i+1)
(x(i+1) − x(i))

(8)

While (7) may appear computationally expensive because A
is large, we use the block diagonal structure in A to separate

the x-update in (7) into Np subproblems, i.e., the x-update

step in (8), where Mj ∈ R
2×2 is a diagonal weighting matrix

denoting the majorizing matrix for (x1j , x2j)
T

.

3.2.2. Sparse coding
With x fixed, we update all zlj values by solving

min
{zlj}

2∑
l=1

N∑
j=1

βl

{
‖ΩlPljx− zlj‖22 + γ2

l ‖zlj‖0
}
. (9)

The solution is obtained by hard-thresholding as ẑlj =
Hγl

(ΩlPljx), ∀ l, j. If the magnitude of b is no less than

γ, the hard-thresholding operator (applied element-wise to a

vector) Hγ(b) returns b, else 0.

The cost of the proposed algorithm for I alternations

scales as O(m2INp) and is dominated by the matrix-vector

products of the sparse coding step, since time-consuming

forward and back-projections are not involved.

4. EXPERIMENTAL RESULTS
4.1. NCAT phantom study
We evaluate DECT-ST and compare its performance to those

of the direct matrix inversion method and DECT-EP. We pre-

learned two ST matrices from five slices of water and bone

images of the XCAT phantom [16] (different from test image)

using (3), respectively. We extracted image patches of size

8 × 8. For water and bone, we chose λ and η as {5.28 ×
108, 0.12} and {9.74× 107, 0.15}, respectively. We ran 2000

iterations of the transform learning algorithm [10] to ensure

convergence. Fig. 1 shows the learned ST matrices with each

row displayed as an 8× 8 patch.

(a) transform for water (b) transform for bone

Fig. 1: Rows of learned transforms shown as 8× 8 patches.

The simulated true NCAT images were 1024 × 1024 and

the pixel size was 0.49× 0.49 mm2. We generated sinograms

of size 888 × 984 using GE LightSpeed X-ray CT fan-beam

system geometry corresponding to a poly-energetic source at

80kVp and 140kVp with 1.86 × 105 and 1 × 106 incident

photons per ray, respectively. A total of 984 projections over

360◦ were obtained for each CT scan. We used filtered back

projection (FBP) to reconstruct 2D high and low energy at-

tenuation images of size 512× 512, where the pixel size was

0.98× 0.98 mm2.

We calculated the basis material images from attenua-

tion images via matrix inversion to initialize the DECT-EP

method. The DECT-EP method converges quickly in image

domain. For the proposed method, we used the images ob-

tained with the DECT-EP method as the initialization. For

DECT-EP, βl was set as 28.5 and 29 for water and bone re-

spectively, and δ1 = 0.01 g/cm3 and δ2 = 0.02 g/cm3. For

DECT-ST, the parameters β1, β2, and γ1, γ2, were set as

{25, 27, 0.06, 0.05}. We empirically selected optimal pa-

rameter combinations for DECT-ST and DECT-EP to achieve

the best image quality and decomposition accuracy.

To evaluate performance, we computed the Root Mean

Square Error (RMSE) for the decomposed material images.

For a decomposed material image x̂l, RMSE is defined

as
√

1
Np

∑Np

j=1(x̂lj − x�
lj)

2, where x�
lj denotes the down-

sampled true density of the lth material at the jth pixel

location. Table 1 summarizes the RMSE of three different

methods. The proposed method further decreases the RMSE

achieved by DECT-EP or with direct matrix inversion.

Method Direct Inversion DECT-EP DECT-ST

Water 77.7 40.2 35.0
Bone 78.7 53.7 46.2

Table 1: RMSE of decomposed images of basis materials by

different methods. The unit of RMSE is 10−3 g/cm3.

Fig. 2 shows zoom-ins of specific regions in the water

and bone decompositions. The proposed method successfully

differentiates basis materials and suppresses the high noise in

the direct matrix inversion method. In addition, the proposed

method provides better edges compared to DECT-EP.

4.2. Patient study
The patient data were obtained by Siemens SOMATOM

Force CT scanner using dual-energy CT imaging protocols.

The CT scanner applied the dual-source at 80kVp and

150kVp for dual-energy data acquisition. The CT images

of the patient’s thigh are shown in Fig. 3.

We used the same learned transforms (from XCAT) as in

Section 4.1. We used basis images calculated from matrix

inversion as initialization for the DECT-EP method and the

DECT-EP result was used as initialization for DECT-ST. For

DECT-EP, (β , δ) were set as {211, 0.008} and {212, 0.015}
for water and bone, respectively. For DECT-ST, the param-

eters (β1, β2) and (γ1, γ2) were set as {2 × 102, 3 × 102}
and {0.012, 0.024}. Results in Fig. 4 show that the proposed

DECT-ST provides better image edges, improved decomposi-

tion accuracy and decreased cross-talk compared to the other

two methods.
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Fig. 2: First to fourth row: material images of ground truth,

direct matrix inversion decomposition, DECT-EP, and the

proposed DECT-ST, respectively. Water images are in the

first column with display window [0.25 1.6] g/cm3, and bone

images are in the second column with narrower window [0.12

0.25] g/cm3, to highlight differences in decomposed basis ma-

terial images.

5. CONCLUSIONS
We proposed a new method for DECT that combines an

image-domain WLS term with regularizer involving learned

sparsifying transforms, and demonstrated that the proposed

DECT-ST method outperformed the DECT-EP method (which

uses a fixed finite differencing type sparsifying model) in

terms of image quality and material decomposition accuracy

for both simulated and clinical studies. In future work, we

0.15

0.2

0.25

0.3

Fig. 3: Thigh CT images of a patient. Left image is at the

high-energy: 150 kVp, and the right image is at the low-

energy: 80 kVp. Display window is [0.12 0.32] cm−1.

Fig. 4: First to third row: material images of direct matrix

inversion decomposition, DECT-EP, and the proposed DECT-

ST, respectively. Water and bone images are in the first (dis-

play window [0.25 1.5] g/cm3) and second (display window

[0 0.3] g/cm3) columns, respectively.

will investigate cross-material ST that accounts for correla-

tion between material images, for example, material images

share common edges. We will investigate reconstruction

methods using a more accurate DECT measurement model

[5] with ST-based regularization.
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