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Abstract—Deep image mapping networks have been recently
applied to solving some inverse problems in imaging due to
their good mapping capabilities. However, the greater mapping
capability can increase the chance of causing some artificial
features when test images differ from training images. Combin-
ing image mapping networks with an iterative image recovery
that naturally considers imaging system physics is an alternative
approach to solving inverse problems. This alternative approach
can avoid artificial features, by (back-)projecting the output
signals of image mapping networks while considering the
imaging system physics. By generalizing the state-of-the-art it-
erative image recovery algorithm using learned regularizer with
iteration-wise image mapping networks, this paper proposes a
new recurrent convolutional neural network, Momentum-Net.
In addition, this paper investigates the theoretical convergence
behavior of Momentum-Net. Numerical experiments show that,
for a) denoising low signal-to-noise-ratio images, and b) sparse-
view X-ray computed tomography, the proposed Momentum-
Net achieves significantly more accurate and faster image re-
covery, compared to the state-of-the-art data-driven regularizer
or the unsupervised autoencoding regularizer.

I. INTRODUCTION

Convolutional analysis operator learning (CAOL) can
train an autoencoding convolutional neural network (CNN)
in an unsupervised learning fashion to more accurately solve
inverse problems [1]. CAOL has several theoretical and
practical benefits from the perspectives of both training
and testing. First, CAOL can benefit from “big data”, i.e.,
training data consisting of many (high-dimensional) signals
[2]. Second, the autoencoding CNNs trained via CAOL can
achieve compressed sensing recovery guarantees [2]. Third,
CAOL is useful for training deep layered CNNs within
unsupervised learning frameworks. Finally, for sparse-view
X-ray computed tomography (CT), trained autoencoding
CNNs via CAOL significantly improves image reconstruction
accuracy over the existing state-of-the-art edge-preserving
(EP) regularizer [1]. Combined with Block Proximal Gradient
method using a Majorizer (BPG-M) [1], [3] and sharp
majorizers, one can achieve accelerated CAOL and fast
signal recovery in solving inverse problems using the trained
autoencoding CNNs while guaranteeing algorithmic conver-
gence [2]. Nonetheless, the corresponding iterative algorithm
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needs several hundreds of iterations to converge, detracting
from its practical use.

BCD-Net, a recurrent CNN designed to achieve fast it-
erative image recovery, consists of image mapping and
reconstruction modules; its image mapping module is an
autoencoding CNN motivated by CAOL [4]. By training
image mapping modules in a supervised learning fashion,
BCD-Net achieved fast image recovery within a few dozen of
layers, for denoising low signal-to-noise-ratio (SNR) images
and for reconstructing highly undersampled magnetic reso-
nance imaging (MRI) data [4]. In addition, for a) denoising
low SNR images, b) highly undersampled MRI, and c)
low-count positron-emission tomography (PET), BCD-Net
significantly improved image recovery accuracy compared
to the existing state-of-the-art (data-driven) regularizers [4],
[5]. Nonetheless, BCD-Net has no convergence guarantees,
and for some imaging modalities, e.g., CT, PET, parallel
MRI, etc., the method requires multiple iterations in each
reconstruction module (see, e.g., [5]), diminishing image
recovery speed.

This paper introduces a new recurrent CNN architecture
where each layer consists of 1) image mapping, 2) extrap-
olation, and 3) reconstruction modules, aiming for fast and
convergent iterative image recovery. Because this recurrent
CNN uses momentum terms in its extrapolation module, we
call it Momentum-Net. Similar to BCD-Net, Momentum-
Net uses iteration-wise image mapping modules that are
trained in a supervised way to effectively remove iteration-
wise artifacts and give “best” image estimates at each layer.
In addition, this paper investigates fixed-point convergence
behavior of Momentum-Net under some mild conditions,
and influence of the mathematical property of autoencoding
CNNs to Momentum-Net. Numerical experiments show that,
for denoising low SNR images and sparse-view CT, the
proposed Momentum-Net significantly improves both image
recovery accuracy and speed compared to the state-of-the-
art data-driven or trained regularizers, e.g., K-SVD [6] and
pre-learned CAOs [1].

II. ITERATIVE IMAGE RECOVERY USING UNSUPERVISED
AUTOENCODING CNNS AND BPG-M

This section motivates the architectures of Momentum-Net.
Specifically, we introduce the updates of BPG-M for solving
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inverse problems with unsupervised autoencoding CNNs, i.e.,
learned CAOs [1].

A. Image recovery model using learned CAOs

Consider the following (block separable) convex optimiza-
tion problem for recovering signal x from measurements y
[1, (P3)]:

argmin
x∈X

f(x; y) + λ

(
min
{zk}

r(x, {zk})
)
,

r(x, {zk}) :=

K∑
k=1

1

2
‖dk ~ x− zk‖22 + αk‖zk‖1, (1)

where X is a closed convex set, f(x; y) is a differentiable
convex data fidelity term, r(x, {zk}) is a regularizer trained
via CAOL in an unsupervised way, i.e., the learned CAO
[1], {zk : k = 1, . . . ,K} is a set of sparse codes, {dk ∈
CR : k = 1, . . . ,K} is a set of learned convolutional
kernels, and R and K denote the size and number of learned
filters, respectively. This model significantly improves image
reconstruction accuracy in sparse-view CT (when `1 norm is
replaced with nonconvex `0 quasi-norm) – see details in [1],
[7], [8].

B. Convergent image recovery using learned CAOs: BPG-M

In BPG-M [1], [3], we consider a more general concept
than Lipschitz continuity of the gradient and define the
following:

Definition 1 (M -Lipschitz continuity [1, Def. 3.1]). A func-
tion g : Rn → Rn is M -Lipschitz continuous on Rn if there
exists a (symmetric) positive definite matrix M such that

‖g(x)− g(y)‖M−1 ≤ ‖x− y‖M , ∀x, y,

where ‖x‖2M := xTMx.

Suppose that 1) the gradient of f(x; y) is M (i+1)
x -Lipschitz

continuous, and 2) the learned filters in (1) satisfies the tight-
frame (TF) condition,

K∑
k=1

‖dk ~ x‖22 = ‖x‖22, ∀x, (2)

for some boundary conditions [1, Prop. 2.1]. BPG-M uses
the following block-wise updates to solve (1):

x
(i+1)
0 =

K∑
k=1

(Fd∗k)~Tαk
(dk~x

(i)), (3)

x́(i+1) =x(i) +E(i+1)
x

(
x(i)−x(i−1)

)
, (4)

x(i+1)

= argmin
x∈X

1

2

∥∥∥x− x́(i+1) +
(
M (i+1)
x

)−1∇f(x́(i+1);y)
∥∥∥2

M
(i+1)
x

+
λ

2
‖x−x0‖22, (5)

where extrapolation matrix E(i+1)
x is updated by

E(i+1)
x = δw(i) ·

(
M (i+1)
x

)−1/2(
M (i)
x

)1/2
, (6)

Algorithm 1 Momentum-Net for convex {f(x; y),X}
Require: {Mθ(i) , κ

(i+1) ∈ (0,∞) : i = 1, . . . , NNets}, ρ ∈
(0, 1), {w(i) ∈ [0, 1] : i = 1, . . . , NNets}, λ > 0, x(0) =
x(−1), y
for i = 0, . . . , NNets−1 do

Image mapping:
if κ(i+1) > 1 then
x

(i+1)
0 = (1− ρ)x(i) +

ρ

κ(i+1)
Mθ(i+1)

(
x(i)
)

else
x

(i+1)
0 = (1− ρ)x(i) + ρMθ(i+1)

(
x(i)
)

end if
Calculate M (i+1)

x for f(x; y) and E(i+1)
x by (6)

Extrapolation:
x́(i+1) = x(i) + E(i+1)

x

(
x(i) − x(i−1)

)
Image reconstruction:
x(i+1) =

argmin
x∈X

1

2

∥∥∥x− x́(i+1) +
(
M

(i+1)
x

)−1∇f(x́(i+1);y)
∥∥∥2

M
(i+1)
x

+λr
(
x,x

(i+1)
0

)
end for

and M (i+1)
x is a majorization matrix for f(x; y), ∀i. In (3),

the soft-thresholding operator Tα(x) : CN → CN is

Tα(x)n :=

{
xn − α · sign(xn), |xn| > α,

0, otherwise,

F ∈ CR×R flips a column vector in the vertical direction
(e.g., it rotates 2D filters by 180◦), and (·)∗ indicates com-
plex conjugate. The update in (3) is derived by rewriting∑K
k=1 ‖dk ~ x − z(i+1)

k ‖22 to ‖x −
∑K
k=1(Fd∗k) ~ z

(i+1)
k ‖22

with the TF condition above, where z(i+1)
k = Tαk

(dk~x(i)),
∀k, i. Here, for the {zk}-updates, we do not use extrapolation,
e.g., {w(i+1) = 0 : ∀i}, in (6), because we can find sharp
majorizers {Mzk = I : ∀k} (that are exact Hessian of {zk}-
updating problems in (1)). The BPG-M updates in (3)–(5)
guarantee that any limit point of {x(i+1), x

(i+1)
0 : i ≥ 0} is

a Nash point of (1) [3, Thm. 3.3]. The following section
generalizes the BPG-M updates in (3)–(5) and constructs
Momentum-Net.

III. MOMENTUM-NET: WHERE BPG-M MEETS
FIXED-POINT ITERATIONS FOR INVERSE PROBLEMS

A. Architecture

We first rewrite the BPG-M update (3) as a general
image mapping function Mθ : CN → CN with Mθ(x) =∑K
k=1(Fd∗k)~Tαk

(dk~x) that satisfies (2). We then establish
Momentum-Net by considering the BPG-M updates in (3)–
(5) and further generalizing image mapping operators Mθ

to iteration-wise image mapping operators {Mθ(i+1) : ∀i}.
Each layer of Momentum-Net consists of 1) image mapping,
2) extrapolation, and 3) reconstruction modules, correspond-
ing to the BPG-M updates (3)–(5). See the architecture of
Momentum-Net in Algorithm 1.

The image mapping formula in Algorithm 1, i.e.,

x
(i+1)
0 = (1− ρ)x(i) +

ρ

κ(i+1)
Mθ(i+1)

(
x(i)
)
,

156



is motivated by an averaged operator in the fixed-point liter-
ature [9], but with additional normalization factor 1/κ(i+1).
The measure κ(i+1) is important for the ith image map-
ping function Mθ(i+1) in guaranteeing convergence of
Momentum-Net [10] – see the definition of κ(i+1) in the next
section. Note that iteration-wise image mapping operators
in Momentum-Net are supervisedly trained to effectively re-
move iteration-wise artifacts and give “best” signal estimates
at each layer.

Examples of the coupling function r(x, x0) of the image
reconstruction formula in Algorithm 1 include a Gaussian
prior r(x, x0) = 1

2‖x − x0‖22 [1], a compressible prior
r(x, x) = ‖x− x0‖1 [7], [8], etc.

B. Understanding general image mapping operators

To mathematically understand mapping operators
{Mθ(i+1) : ∀i}, we first introduce the κ-Lipschitz continuity
of a mapping function:

Definition 2 (Lipschitz continuity of a mapping function). A
function M : n → n is κ-Lipschitz continuous if there exist
Lipschitz constants 0 < κ <∞ such that

‖M(x)−M(y)‖2 ≤ κ‖x− y‖2, ∀x, y ∈ Rn.

The autoencoding CNN (using identical filters in both
encoders and decoders, e.g., [4]) in BPG-M update (3) is
an example of image mapping function Mθ(x), i.e.,

Mθ(x) =

K∑
k=1

(Fd∗k) ~ Tαk
(dk ~ x). (7)

Particularly, (3) involves with a proximal operator, i.e.,
Mθ(x) =

∑K
k=1(Fd∗k) ~ Prox‖·‖1(dk ~ x), where the

proximal operator with a convex function g is defined by

Proxg(z) := argmin
x

1

2
‖x− z‖22 + g(x). (8)

The mapping operator in (7) is R · λmax(DHD)-Lipschitz
continuous, where λmax(·) is the maximum eigenvalue of a
matrix and D := [d1, . . . , dK ]. Thus, when the filters {dk :
∀k} satisfy the TF condition, e.g., learned CAOs that satisfies
DHD = 1

RI [1], the autoencoding CNN in (7) is 1-Lipschitz
continuous, i.e., nonexpansive.

Some image mapping operators Mθ(x) can have more
complicated structures: they may not involve proximal oper-
ators and there may exist no corresponding explicit function
in a form of (8). In Momentum-Net, we are particularly
interested in such mapping operates, and Definition 2 is
useful in understanding them in algorithmic convergence. A
simple example is the autoencoding CNN that uses distinct
filters for encoding and decoding [11]:

Mθ(x) =

K∑
k=1

wk ~ Tαk
(dk ~ x). (9)

For this example, there is no explicit cost function that
corresponds to (9). However, we can still have that the
autoencoder in (9) is R ·

√
λmax(WHW ) ·

√
λmax(DHD)-

Lipschitz continuous, where W := [w1, . . . , wK ] [10].

When the soft-thresholding operators in (9) are replaced
with the ReLU operator [12], i.e., ReLU(x) := max(x, 0),
the modified autoencoder is also R ·

√
λmax(WHW ) ·√

λmax(DHD)-Lipschitz continuous, because ReLU is a
proximal operator with indicator function of the nonnega-
tivity constraint and this indicator function is convex. One
can straightforwardly apply the techniques in this section, to
estimate a Lipschitz constant of deep-layered autoencoding
CNNs [1].

C. Convergence analysis
A key challenge in analyzing the convergence of

Momentum-Net (i.e., Algorithm 1) is that the image mapping
operator {Mθ(i+1) : ∀i} can change across iterations, and the
corresponding gθ(i+1)(·) is not explicitly defined in the form
of (8). This section analyzes the convergence behavior of
Algorithm 1 under the following assumptions:

Assumption i) The data fidelity function f(x; y) is
proper, convex, differentiable, and lower-bounded. The
coupling function r(x, x0) is proper, convex, and lower
semicontinuous. The set X of feasible points is convex
and closed. Algorithm 1 has a fixed point.
Assumption ii) ∇f(x; y) is M (i+1)

x -Lipschitz continu-
ous, where M (i+1)

x is a majorization matrix that satisfies
mxIN �M (i+1)

x with 0 < mx <∞, ∀i.
Assumption iii) The image mapping operators are iden-
tical across the layers, i.e., Mθ = Mθ(i+1) , ∀i. The
functionMθ is κ-Lipschitz continuous with a Lipschitz
constant κ ∈ (0,∞).
Assumption iv) The extrapolation matrices E(i+1)

x � 0

satisfy (E
(i+1)
x )TM

(i+1)
x E

(i+1)
x � δ2 ·M (i)

x , δ < 1.

Under Assumptions i–iv, we first show that any limit points
of the sequence generated by Momentum-Net (Algorithm 1)
converge to a fixed-point:

Theorem 3 (A limit point is a fixed-point). Let {x̃(i+1) :
i ≥ 0} be the sequence generated by Algorithm 1, where
x̃ := [xT , xT0 ]T . Then, any limit point ¯̃x of {x̃(i+1) : i ≥ 0}
satisfies the fixed-point condition, i.e.,

¯̃x = Ā(¯̃x), (10)

where Ā := AM̄x
, A

M
(i+1)
x

(x̃(i)) denotes the ith functions
in Algorithm 1 that apply to x̃(i), and Mx → M̄x.

Proof. Specialize proofs in [10] for {Mθ = Mθ(i+1) : i ≥
0}.

We can show that Theorem 3 holds for Algorithm 1
without having {Mθ = Mθ(i+1) : i ≥ 0} in Assumption iii
[10].

D. Momentum-Net vs BCD-Net
One can view Momentum-Net as a generalized version of

BCD-Net in [4]. Each layer of BCD-Net consists of 1) image
mapping and 2) reconstruction modules [4]:

x
(i+1)
0 =Mθ(i+1)

(
x(i)
)

x(i+1) = argmin
x∈X

f(x; y) +
λ

2

∥∥x− x(i+1)
0 ‖22,
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for i = 0, . . . , NNets−1. By setting ρ → 1 and r(x, x0) =
1
2‖x − x0‖22, Momentum-Net becomes BCD-Net for some
image recovery applications, e.g, image denoising.

Compared to Momentum-Net, BCD-Net has some caveats.
Besides having no convergence guarantees, BCD-Net may
require multiple iterations for its reconstruction module in
some imaging applications, e.g., CT, PET, parallel MRI,
etc. For example, in low-count PET, many expectation-
maximization iterations have been used at each reconstruction
module [5]. In general, each iteration at the reconstruction
module applies forward and backward projection operators
of imaging systems, and requiring large computational com-
plexities in some imaging applications, e.g., CT, PET, parallel
MRI using many receive coils, etc. In other words, BCD-Net
can be slow for such imaging applications.

Momentum-Net overcomes the multiple iteration issues of
the reconstruction module in BCD-Net, because the image
reconstruction module of Momentum-Net can have closed-
form solution and use only a single iteration for a wide range
of imaging applications. In addition, the closed-form solution
at each reconstruction module is useful in stably guaranteeing
the fixed-point convergence of Momentum-Net.

IV. RESULTS AND DISCUSSION

A. Experimental setup

1) Imaging and image recovery: For image denoising
experiments, we contaminated 64 512×512-sized slices of
XCAT phantom [13] by low SNR additive white Gaus-
sian noise (AWGN) with the standard deviation ≈ 202 in
Hounsfield units (HU) (that correspond to ≈ 22 peak SNR
(PSNR) value); we used 60 of them for training and the
remaining four for testing. For sparse-view CT experiments,
we simulated 152 highly undersampled (12.5% projection
views) sinograms with fan-beam geometry and 105 incident
photons per ray and electronic noise variance 52 (see details
of the setup in [1]), while avoiding an inverse crime with 152
840×840-sized different slices of the XCAT phantom [13]
(∆x = ∆y = 0.4883 mm); we used 150 of them for training
and the remaining two for testing. We reconstructed 420×420-
sized images with a coarser grid (∆x = ∆y = 0.9766 mm).
(For simplicity, we report results from a single recovered
image throughout the paper.)

For proposed Momentum-Net (using ρ = 1 − ε, where ε
is a machine epsilon), we set the regularization parameter λ
as follows: for image denoising, we used the value in [4];
for sparse-view CT, λ=13×106 that is finely tuned to give
the lowest root-mean-square-error (RMSE) value for BPG-
M-based image recovery using learned CAOs of K = 49
and R = 7× 7 [1]. For the methods in comparison with
Momentum-Net, we finely tuned their parameters to give
the highest PSNR or lowest RMSE values (e.g., K-SVD [6]
used 64×256-sized dictionary). We evaluated the quality of
recovered images by PSNR or RMSE (in HU).

2) Training Momentum-Net: For image mapping operators
{Mθ(i+1) : i ≥ 0} in Momentum-Net, we trained general au-
toencoding CNNs in the form of (9) with {w(i)

k ∈ RR, d(i)
k ∈

RR, α(i)
k : k = 1, . . . ,K, i = 1, . . . , NNets}, via stochastic

TABLE I
COMPARISON OF DIFFERENT IMAGE DENOISING AND CT

RECONSTRUCTION METHODS

Denoising images corrupted by low SNR AWGN

Measure Noisy Wiener K-SVD [6] Momentum-
Net

PSNR (dB) 22.1 29.8 36.7 41.5

Image reconstruction from sparse-view CT (12.5% projection views)

Measure FBP† EP† CAOL [1] Momentum-
Net

RMSE (HU) 82.8 40.8 34.7 24.6

†FBP and EP stands for filtered back-projection and edge preserving
regularization.

gradient method, ADAM [14], using the mini-batch size 10.
For image denoising experiments, we trained Momentum-Net
with K=81, R=8×8, NNets = 5, 103 epochs, and learning
rates 10−3, 10−4, and 2.5, for {w(i)

k : ∀i}, {d(i)
k : ∀i}, and

{α(i)
k : ∀i}, respectively. For sparse-view CT, we trained

Momentum-Net with K = 49, R = 7× 7, NNets = 100,
102 epochs, and learning rates 10−3, 10−3, and 10−1, for
{w(i)

k : ∀i}, {d(i)
k : ∀i}, and {α(i)

k : ∀i}, respectively.

B. Fast and accurate iterative image recovery via trained
Momentum-Net

The proposed Momentum-Net significantly improves both
image recovery accuracy and speed in both the image
denoising and sparse-view CT reconstruction experiments,
compared to the state-of-the-art data-driven or unsupervised
regularizers, e.g., K-SVD [6] and autoencoding CNN (7)
trained via CAOL [1]. See Table I and Fig. 1 for comparing
image recovery accuracy; and see Fig. 2 for comparing image
recovery speed. Note that K-SVD [6] requires more com-
putational costs at each iteration, compared to that needed
at each layer of Momentum-Net. Other than computations
required in processing extracted patches, each iteration of
K-SVD requires additional computations to learn dictio-
nary, extract many overlapping patches, and aggregate the
processed patches. The computational complexity of BPG-
M-based image recovery using learned CAOs [1] at each
iteration is identical to that of Momentum-Net at each layer
(the filter dimension in their autoencoders is identical).

V. CONCLUSION

The proposed Momentum-Net achieves fast and accurate
iterative image recovery in “extreme” imaging problems.
Compared to the state-of-the-art data-driven regularizer, e.g.,
[6], or autoencoder trained in an unsupervised manner [1],
Momentum-Net achieves faster and more accurate iterative
image recovery in denoising low SNR images and sparse-
view CT reconstruction. In addition, Momentum-Net can
guarantee fixed-point convergence under some mild condi-
tions on data fidelity function f(x; y), coupling function
r(x, x0), and set X . In particular, the mathematical property
of image mapping networks is important in understanding
convergence behavior of Momentum-Net. Finally, different
from BCD-Net [4], Momentum-Net can lead faster and more
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Target FBP EP CAOL [1] (4000 iter.) Momentum-Net (100 lyr.)

RMSE
= 82.8

RMSE
= 82.8

RMSE
= 40.8

RMSE
= 40.8

RMSE
= 34.7

RMSE
= 34.7

RMSE
= 24.6

RMSE
= 24.6

Fig. 1. Comparison of reconstructed images from different X-ray CT reconstruction models with sparse-views (fan-beam geometry with 12.5% projections
views and 105 incident photons; display window [800, 1200] HU). The proposed Momentum-Net outperforms the state-of-the-art autoencoding CNN (7)
trained via CAOL in an unsupervised manner [1].
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e
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(a) Denoising images corrupted by low SNR AWGN
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E
(

x
(i
+
1)
,
x
tr
u
e
)

CAOL [1]
Momentum-Net

(b) Sparse-view CT reconstruction (12.5% proj. views)

Fig. 2. PSNR maximization or RMSE minimization behavior of image
denoising and CT reconstruction (for CT reconstruction, BPG-M-based
image recovery using learned CAOs [1] was initialized with EP solution;
and Momentum-Net was initialized with FBP solution). The proposed
Momentum-Net achieves faster and more accurate image recovery, compared
to the state-of-the-art data-driven or unsupervised regularizer, e.g., K-SVD
[6] and autoencoding CNN (7) trained via CAOL [1].

stable iterative image recovery by not requiring multiple
iterations at each reconstruction module, for a wide range
of imaging applications.

Future works include investigating its convergence guar-
antee with nonconvex f(x; y) and convergence behavior to
critical points. This aside, we expect sharper edge recovery
can be made by training image mapping networks with more
advanced training costs, e.g., perceptual similarity, local noise
power spectrum, etc.
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