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Abstract—In “extreme” computational imaging that collects
extremely undersampled or noisy measurements, obtaining an
accurate image within a reasonable computing time is challeng-
ing. Incorporating image mapping convolutional neural networks
(CNN) into iterative image recovery has great potential to resolve
this issue. This paper 1) incorporates image mapping CNN using
identical convolutional kernels in both encoders and decoders
into a block coordinate descent (BCD) signal recovery method
and 2) applies alternating direction method of multipliers to
train the aforementioned image mapping CNN. We refer to the
proposed recurrent network as BCD-Net using identical encoding-
decoding CNN structures. Numerical experiments show that, for
a) denoising low signal-to-noise-ratio images and b) extremely un-
dersampled magnetic resonance imaging, the proposed BCD-Net
achieves significantly more accurate image recovery, compared
to BCD-Net using distinct encoding-decoding structures and/or
the conventional image recovery model using both wavelets and
total variation.

I. INTRODUCTION

Using learned convolutional operators for iterative sig-

nal/image recovery is a growing trend in computational imag-

ing [1]–[6], improving signal recovery performances over

conventional non-trained regularizers (e.g., sparsity promoting

regularizers) [4]–[6]. The iterative image recovery approaches

that use learned convolutional operators or convolutional neu-

ral network (CNN) closely relate to challenging (nonconvex)

block optimization. The authors in [4]–[6] proposed a fast and

convergence-guaranteed block proximal gradient method using
a majorizer to quickly and stably recover images with such
image recovery approaches. Nonetheless, the corresponding

iterative algorithm needs several hundreds of iterations to

converge, detracting from its practical use.

By unfolding iterative signal recovery algorithms, there

exist several works in combining neural network approaches

into them [7]–[14]. By optimizing image mapping networks—

consisting of encoding and decoding kernels, thresholding op-

erators, etc.—at each iteration (or layer), the methods moderate

the aforementioned convergence issue, aiming to give “best”

signal estimates at each layer. The authors in [14] incorporated

iteration-wisely optimized image mapping networks into block

coordinate descent (BCD) optimization method; referred to

BCD-Net. However, encoding filters do not sufficiently capture

rich information of training data (i.e., during training these
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Algorithm 1 BCD-Net
Require: {Mapping(i) : i = 1, . . . , NNets}, x(0), y, λ > 0

for i = 0, . . . , NNets−1 do
z(i+1) = Mapping(i+1)

(
x(i)

)
x(i+1) = argmin

x∈CN

f(x;y) + λ
∥∥x− z(i+1)

∥∥2

2

end for

filters remain close to their initial conditions) [14], and this

can limit the signal recovery performance of BCD-Net.

This paper 1) proposes a new BCD-Net using image map-
ping CNNs that use identical convolutional kernels in both

encoders and decoders—we refer to this as the identical

encoding-decoding CNN structure—and 2) applies alternating
direction method of multipliers (ADMM [15]) to train the

proposed BCD-Net. Numerical experiments show that, for

a) denoising low signal-to-noise-ratio (SNR) images and b)
extremely undersampled magnetic resonance imaging (MRI),

the proposed BCD-Net significantly improves image recovery

accuracy compared to BCD-Net using the distinct encoding-

decoding structure [14] and/or the image recovery model using

both wavelets and total variation (TV) (e.g., [16]).

II. BCD-NET FOR ITERATIVE SIGNAL RECOVERY:

IDENTICAL ENCODING-DECODING CNN STRUCTURE

To recover a signal x ∈ C
N from a measurement y ∈ C

M ,

we consider the following BCD optimization framework with

two block variables x and z:

argmin
x∈CN

min
z∈CN

f(x;y) + λ‖x− z‖22 + g(z), (1)

where f(x;y) is a data fitting term and z ∈ C
N is a signal

denoised by the regularizer g(z). In imaging problems, f(x;y)
relates to physical imaging models and noise statistics; e.g.,

a) for image denoising, f(x;y) = ‖y − x‖22 where y is

the noisy image corrupted by additive white Gaussian noise

(AWGN); b) for MRI, f(x;y) = ‖y − PΩFx‖22, where y
is the k-space measurement and PΩF is an undersampled

Fourier operator with Ω ⊆ {1, . . . , N}. Examples of g(z)
include learned convolutional operators, e.g., convolutional

dictionary [4], [5] and convolutional analysis operator [6].

The BCD-Net incorporates the iteration-wise trained image

mapping networks into the BCD algorithmic framework in

(1). See Algorithm 1.
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The signal recovery performance of BCD-Net largely de-

pends on the performance ofMapping(i)(x(i)) in Algorithm 1.
Our goal is to reduce the number of layers by designing

better image mapping networks that achieve more accurate

image recovery. Motivated by designing g(z) with the learned
convolutional operators [4]–[6], we are particularly interested

in the following image mapping CNN using the identical

encoding-decoding structures:

Mapping(i)(x(i)) :=

K∑
k=1

Sd
(i)
k �T

α
(i)
k

((
d
(i)
k

)∗�x(i)
)
, (P0)

for i = 1, . . . , NNets, where Mapping(i)(·) denotes the trained
mapping network at the ith layer and NNets is the number of

layers in BCD-Net. Here, d
(i)
k ∈ C

R denotes the kth filter at
the ith layer, the soft thresholding operator Ta(x) : CN → C

N

is defined by

(Ta(x))n :=

{
xn − an · sign(xn), |xn| > an,

0, |xn| ≤ an,
(2)

for j = 1, . . . , N , sign(·) is the (real or complex) sign
function, and α

(i)
k ∈ R denotes the kth thresholding value at

the ith layer, S ∈ C
R×R flips a column vector in the vertical

direction (e.g., it rotates 2D filters by 180◦), R is the size of

filters, K is the number of filters, and (·)∗ indicates complex
conjugate.

In the distinct encoding-decoding structure [14, (2)], the

decoding filters evolved significantly during training while the

encoding filters changed very little. In the proposed mapping

structure (P0), we use same filters both in encoders and

decoders to avoid this concern, i.e., we expect that (P0) can

capture rich information of training data both in encoders and

decoders—see Fig. 1 later.

III. TRAINING THE PROPOSED BCD-NET

Reformulating the convolutional operators in (P0) with

a local approach (i.e., patch-based method) [6, §S.I], this

section proposes an algorithm for training image mapping

CNN (P0) in BCD-Net (see Algorithm 1). The training process

requires L high-quality training images, {xtrainl : l = 1, . . . L},
and L training measurements simulated via imaging physics

considered by f(x;y) in (1), {ytrainl : l = 1, . . . , L}. At the
ith layer, we train Mapping(i) in (P0) as follows:{

D(i),α(i)
}
= argmin

{D,α}

∥∥∥X(i)
train −DTα

(
DHX(i−1)

)∥∥∥2

F
,

subj. to ‖dk‖2 ≤ 1, k = 1, . . . ,K. (P1)

where X
(i)
train,X

(i−1) ∈ C
R×N ′

are training data matrices in

which columns correspond to N ′ patches randomly extracted
from {xtrainl } and {x(i−1)

l }, respectively, {x(i−1)
l : l =

1, . . . , L} is a set of L images recovered at the (i−1)th layer,
the filter matrix D ∈ C

R×K is defined by D := [d1, · · · ,dK ],
and α(i) ∈ R

K is a vector consisting ofK thresholding values.

Algorithm 2 summarizes the training procedure.

To trainMapping(i) via (P1), we update 2K blocks sequen-

tially; at the kth block, we alternatively update the kth filter

Algorithm 2 Training BCD-Net

Require: {xtrainl ,x
(0)
l ,ytrainl : l = 1, . . . , L}, λ > 0

for i = 0, . . . , NNets−1 do
Train Mapping(i+1) (P0) via (P1) using {xtrainl ,x

(i)
l }

for l = 1, . . . , L do
z
(i+1)
l = Mapping(i+1)

(
x
(i)
l

)
x
(i+1)
l = argmin

xl∈CN

f(xl;y
train
l ) + λ

∥∥xl − z
(i+1)
l

∥∥2

2

end for
end for

and thresholding value—d
(i)
k and α

(i)
k , respectively. (P1) can

be decomposed as 2K {dk, αk}-update problems [14]:{
d
(i)
k , α

(i)
k

}
= argmin
{dk,αk}

∥∥∥E(i)
k − dkTαk

(
dH
k X(i−1)

)∥∥∥2

F
,

subj. to ‖dk‖2 ≤ 1, (3)

where E
(i)
k := X

(i)
train −

∑
k′ �=k dk′Tαk′

(
dH
k′X̃(i)

)
. To solve

(3), we alternatively update d
(i)
k and α

(i)
k .

A. kth Thresholding Value Update

Using the current estimates of dk, the kth thresholding
value αk is updated by subgradient descent method with

backtracking line search (for step sizes) [14, §2].

B. kth Filter Update

Using the current update of αk, we apply ADMM [15,

§3.1.1] to update the kth filter dk. We update the kth filter
dk by augmenting (3) with auxiliary variables (dropping the

filter indices k and layer indices (i), (i− 1) for simplicity):

dk = argmin
d

∥∥E− dTα(vH)
∥∥2

F

subj. to ‖d‖2 ≤ 1, v = XHd.

The cost function above has the corresponding augmented

Lagrangian:

L(d,v) = 1

2

∥∥E− dTα(vH)
∥∥2

F
+

ρ

2

∥∥XHd− v + u
∥∥2

2

+ I{d:‖d‖2≤1}(d),

where IS(x) is the indicator function defined by IS(x) = 0,
if x ∈ S, and IS(x) =∞, otherwise. We descend/ascend the
augmented Lagrangian L(d,v), using the following iterative
updates of the primal, auxiliary, dual variables—d, v, and u,
respectively:

v(j+1) = argmin
v

1

2

∥∥∥E− d(j)Tα(v)
∥∥∥2

F

+
ρ(j)

2

∥∥∥v − (
XHd(j) + u(j)

)∥∥∥2

2
; (4a)

d(j+1) = argmin
d

1

2

∥∥∥E− dTα
(
(v(j+1))H

)∥∥∥2

F

+
ρ(j)

2

∥∥∥XHd−
(
v(j+1) − u(j)

)∥∥∥2

2



+ I{d:‖d‖2=1}(d); (4b)

u(j+1) = u(j) +XHd(j+1) − v(j+1), (4c)

where the ADMM parameters {ρ(j+1)} are fixed or change
based on some adaptive rules, e.g., residual balancing [15,

§3.4.1].

We first consider problem (4b). Rewrite (4b) as follows:

d(j+1) = argmin
d

ρ(j)

2
dHXXHd− Re

{
dH

(
ETα(v(j+1))

+ρ(j)X
(
v(j+1) − u(j)

))}
subj. to ‖d‖2 ≤ 1, (5)

by ‖dTα(vH)‖2F = c · ‖Tα(v)‖22 and tr(Tα(vH)HdHE) =
dHETα(v), using Tα(vH)H = Tα(v) and ‖d‖22 = c≤ 1. We
apply an accelerated Newton’s method to efficiently obtain the

optimal solution to problem (5) [6, §IV-A3], [4, §IV–V-A2],

considering that (5) is a (convex) quadratically constrained

quadratic program. The closed form solution in [14, (4)] is not

applicable for solving (4b), because of an additional quadratic

term, e.g., the second term in (4b).

For problem (4a), we first rewrite (4a) as

v(j+1) = argmin
v

1

2

∥∥∥Tα(v)− c−1 ·EHd(j)
∥∥∥2

2

+
ρ(j)

2c

∥∥∥v − (XHd(j) + u(j))
∥∥∥2

2
(6)

by applying the reformulation tricks used in (5). Using the

separability of (6), we solve the following element-wise opti-

mization problems:

v(j+1)
n = argmin

vn

1

2

∣∣∣Tα(vn)− g(j)n

∣∣∣2 + ρ(j)

2c

∣∣∣vn − h(j)
n

∣∣∣2 ,
(7)

for n = 1, . . . , N ′, where g(j) := c−1EHd(j) and h(j) :=
XHd(j) + u(j). We solve (7) by subgradient descent method

with backtracking line search: a) for the real-valued problem,
we apply Lemma 1, and b) for the complex-valued problem,
we apply Lemma 2.

Lemma 1. The gradient of f(v) = 1
2 (Tα(v)−g)2+ ρ

2 (v−h)2

is given by

∂f(v)/∂v = (Tα(v)− g) · 1|v|>α + ρ(v − h),

where v, g, h ∈ R and α, ρ > 0.

Lemma 2. The gradient of f(v) = 1
2 |Tα(v)− g|2+ ρ

2 |v−h|2
is given by

∂f(v)/∂v =(Tα(v)− g) · 1|v|>α + ρ(v − h)

+ iα|v|−3 · Im{v · (Tα(v)− g)
∗} · 1|v|>α,

where v, g, h ∈ C and α, ρ > 0. Distinct from the index i, we
denote the imaginary unit by i.

Proof. See [17, Appx.].

Note that Lemma 1 is a special case of Lemma 2: when

imaginary components of {v, g, h} in Lemma 2 vanish, the
gradient

∂f(v)
∂v in Lemma 2 becomes that in Lemma 1.

(a) (b) (c) (d)

Fig. 1. Examples of trained filters for BCD-Net (MR image reconstruction;
real components of complex-valued filters trained at the 10th layer). (a) Initial
filters (discrete cosine transform). (b-c) Encoding and decoding filters trained
by the image mapping module in [14]. (d) Filters trained with the proposed
image mapping module using the identical encoding-decoding CNN structure.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

1) Imaging and Image Recovery: For image denoising

experiments, we contaminated five slices of XCAT phantom

[18] by (zero-mean) AWGN with large standard deviation

σ≈ 135, 202 HU (that corresponds to σ = 20, 30 for natural
images within [0, 255]); we used four of them for training and
the remaining one for testing. For MR image reconstruction

experiments, we simulated two extremely undersampled (10%)
k-space data sets with the optimal multi-level sampling in com-
pressed sensing [19], [20] and field-of-view of 28×28cm on the
256×256 cartesian grid, while avoiding an inverse crime with
two 768×768 complex-valued phantoms [21]; we used one
for training and another for testing. We set the regularization

parameter λ as follows: for image denoising, λ=10/σ′, where
σ′ is scaled σ by considering the maximum value of XCAT

phantom; for MR image reconstruction, λ = 106 (the same
values were used for training BCD-Nets). We evaluated the

quality of recovered images by peak SNR (PSNR).

2) Training BCD-Nets: We trained K = 64 filters of size
R=8×8, with 20, 000 randomly extracted image patches in
each layer. For training BCD-Net using the distinct encoding-

decoding CNN [14, (2)], we used the parameter set (including

the number of subgradient descent iterations, filter initializa-

tion, initial thresholding values, etc.) in [14]. For training

the proposed BCD-Net using the identical encoding-decoding

CNN (P0), we used the parameter set in [14] as the default.

The parameters related to ADMM in Section III-B are given as

follows: we used 4 ADMM iterations and 4 inner subgradient
descent iterations for updating v(j+1) in (4a); and we applied

the residual balancing scheme [15, §3.4.1] to adaptively con-

trol {ρ(j) :∀j 
=0} (ρ(0)=1). We terminated the iterations of
training each Mapping(i+1)(x(i)), if a) the relative difference
stopping criterion (e.g., [4, (44)]) is met or b) the training costs
(e.g., (P1)) increase, before reaching the maximum number of

iterations. We set the relative difference tolerance as 2×10−3;

and the maximum number of iterations to 120 and 180 for
image denoising and MR image reconstruction, respectively.

B. Relation Between Filter Richness and Image Mapping
Performance

The filters trained with the identical encoding-decoding

CNN structure capture diverse features of training data. The

rich features captured in filters are useful for better image



(1) Image denoising
(σ = 20)

(2) Image denoising
(σ = 30)

(3) MR image reconstruction
(10% sampling for 256×256 res.)
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Fig. 2. Comparison of image denoising accuracy for different encoding-decoding structures in BCD-Net and noise levels (the cross mark x in (a) denotes a
termination point). PSNR gaps between the two BCD-Nets are give as follows: (1) [0.58, 1.18]dB; (2) [0.92, 1, 32]dB; and (3) [0.16, 0.92]dB

(a) Full sampling (b) Wavelet & TV [16] (c) BCD-Net [14] (d) Proposed BCD-Net
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Fig. 3. Comparison of reconstructed MR images from BCD-Nets using different image mapping CNN modules (at the 10th layer) and Sparse MRI
reconstruction [16, built-in parameter setting]. (d) Compared to (b) (non-trained) Sparse MRI reconstruction, the proposed BCD-Net improves PSNR by 5dB.

mapping between corrupted and noiseless images, i.e., lower

cost value in (P1). See Figs. 1–2(a). On the other hand, the

filters trained with the distinct encoding-coding structure [14,

(2)] do not sufficiently capture features of training data. See

Fig. 1(b)–(c). (The result in Fig. 1(b) corresponds to that in

[14, Fig. 2, transform rows].)

C. Application of Trained BCD-Nets to Iterative Image De-
noising and MRI Image Reconstruction

Promoting better image mapping between the corrupted

and noiseless images in training, the proposed BCD-Net

(significantly) improves image recovery accuracy compare to

the BCD-Net in [14]. PSNR gaps between the two BCD-

Nets across the layers are given as follows: for denoising

low SNR images (σ = 30), [0.92, 1.32]dB; for extremely
undersampled MRI (10% sampling), [0.16, 0.92]dB. For the
extremely undersampled MRI experiment, the PSNR gap

increases as we increase the number of layers. See Fig. 2(b-

3). Compared to the conventional MR reconstruction using

wavelets and TV [16], the proposed BCD-Net significantly

improves reconstruction accuracy only with 10 layers (or

iterations): it improves PNSR by 5dB—see Fig. 3.
The drawback using BCD-Nets is that BCD-Nets are only

applicable when the imaging models in training and testing

are identical; meanwhile, the iterative signal recovery using

learned CNNs is free from this limitation [4]–[6].

V. CONCLUSION

The proposed BCD-Net achieves accurate image recovery

within a reasonable computing time in “extreme” computa-

tional imaging. The identical encoding-decoding CNN struc-

ture provides better image mapping than the distinct structure

in [14, (2)], by better capturing rich information of training

data. Future works include deriving closed-form solutions to

(4a) for faster training of the proposed BCD-Net and testing

its image mapping performances for more (locally) structured

artifacts (e.g., aliasing artifacts caused by radial line or spiral

undersampling in MRI, and streak artifacts caused by sparse-

view computed tomography).
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